Web-based robotics simulation
A programming interface for a hardware system includes an embedded layer for programmatic access to a physical realization of hardware, a simulation system for simulation of the hardware, and a diagnostics engine that analyzes and compares feedback data from the simulation system and the physical realization. The programming interface may be usefully employed, for example, in the design, purchase, and deployment of robotics for semiconductor manufacturing.
This application is a continuation-in-part of U.S. application Ser. No. 11/302,563, filed on Dec. 13, 2005 and entitled “ROBOTICS PROGRAMMING INTERFACE”. The entire content of that application is incorporated herein by reference.
BACKGROUND1. Field of the Invention
This invention relates to application programming interfaces for robotic systems, and more particularly, interfaces that optionally share control of simulated and physical systems.
2. Description of the Related Art
Computer simulation has long been used in a variety of fields to predict and evaluate behavior of physical systems prior to incurring the cost of physically realizing such systems in electro-mechanical form. While simulation has improved with increases in computational power, little has been done to systematically provide simulation tools to physical system users such as design engineers or purchasers and end users of complex electro-mechanical systems such as manufacturing robotics systems. There remains a need for improved access to simulation technologies in commercial and design settings. A need also exists for simulation systems that operate effectively in real time, such as during operation of a machine.
SUMMARYA programming interface for a hardware system may include an embedded layer for programmatic access to a physical realization of hardware, a simulation system for simulation of the hardware, and a diagnostics engine that analyzes and compares feedback data from the simulation system and the physical realization. The programming interface may be usefully employed, for example, in the design, purchase, and deployment of robotics for semiconductor manufacturing. In embodiments, the embedded layer and the simulation system operate simultaneously, allowing real-time, simultaneous access to tools for computer simulation (e.g., for diagnostic purposes, for simulating activities of a machine, or the like) and tools for physical control.
BRIEF DESCRIPTION OF THE FIGURESThe invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures.
Described below is a programming interface for simulation (optionally including virtual reality simulation), diagnosis and control of a machine, which may be manufacturing system, such as a robotic manufacture system, and more particularly may be a robotic manufacturing facility for semiconductor manufacturing, such as vacuum-based manufacturing. While such a system may be usefully employed in semiconductor manufacturing, and the design, purchase, and use of robotic systems therefore, it will be appreciated that the inventive concepts disclosed herein are not limited to semiconductor manufacturing robotics. Rather, the concepts disclosed herein have wide applicability to any systems that are amenable to simulation and include a control interface with command outputs and sensor inputs or feedback. This may include, for example, food processing systems, manufacturing systems, automated warehouse management, or any other systems with similar characteristics, and all such variations and alternative uses are intended to fall within the scope of this disclosure.
The control 102 may include hardware and/or software to drive the motors of the various arms 106, 108, 110 and may include a data storage facility, such as a memory to record path motions, such as in a path motions file, as well as recording other operation data for the robotics system 100. The control 100 may be connected to a base 104 that may be shaped and sized to aid in the positioning of the arms 106, 108, 110 and the movement and activation of the end effector 112 in, for example, a manufacturing process. The base 102 may additionally include various motors for effecting movement of the arms 106, 108, 110 and end effector 112. Although three arms are illustrated, it will be appreciated that fewer or more arms, each of varying lengths, may be employed with the robotic systems 100 described herein. Multiple arms 106, 108, 111, such as those depicted in
In embodiments the end effector 112 may provide for manipulation of a tool or work piece, such as a wafer in a semiconductor manufacturing process. The end effector 112 may include, for example a gripper, a pincer, a fork, a tray, a platform, a finger, a nozzle, a vacuum grip, a tumble gripper, a passive centering gripper, or any other tool or tools that might be useful in the robotic system 100. The end effector 112 may, for example, be used to move or grab objects within a manufacturing process. Other components that may be used within the robotic system 100 include, for example, a valve, an arm, a multi-link arm, a door, a seal, an elevator, a conveyer, a belt, a chain, a cart or the like.
The arms 106, 108, 110 of the robotic system 100 may be modeled and controlled, for example, using equations of motion, such as inverse kinematics (IK) equations that describe the motion of a feature, such as a multi-armed device, in a coordinate system. Generally, a set of equations may be established that describe each sub-part of a machine, such as a robot, based on the dimensions of the machine and its degrees of freedom, such as its ability to translate, to rotate, or to pivot about one or more points of pivot. Inverse kinematic equations may be used, for example, to predict the placement of an end point of a device based on the motion of the movable components or predict the motion of the movable components based on the position of the end point. It will be understood that the term inverse kinematics is used herein as a short hand for any equations of motion, including inverse kinematics as that term is generally understood in the art as well as forward kinematics or any other equations of motion suitable for characterizing robotics components and related drives and/or work pieces.
It will be appreciated that, while
Further, processing tools may be chained together into linear or other clusters for various processing steps. In such a system the robotics system 100 may, in addition to controlling a variety of process steps and parameters, manage physical movement of a wafer from tool to tool, and through buffer stations, if any.
The robotic system 100 may also include one or more sensors 114. Sensors may be used, for example, to track the position of a work piece or the operating environment of the robotic system 100. Thus for example, the sensors 114 may include temperature sensors (e.g., ambient temperature, process temperature, work piece temperature, and so on), atmospheric pressure sensors, motion sensors, proximity sensors, weight sensors, light sensors, voltage sensors, sound sensors and so on. The sensors 114 may detect the presence of, or concentration of, a gas or other substance within the process environment. The sensors 114 may employ a variety of techniques for detecting position and other parameters, such as optical beams (with, e.g., emitter/detector beam paths), infrared, RF, sonar, capacitive and/or magnetic sensing techniques or other imaging and sensing techniques. The sensors 114 may detect a state of a component of the robotic system 100 or a work piece, such as a position of, direction of, or distance to a work piece, or a distance to an obstruction, a valve status, a seal status, a door position, or a diagnostic state (e.g., okay, malfunctioning, etc.). More generally, the sensors 114 may employ any suitable technology for gathering sensor data consistent with the use of the robotic system 100. In one embodiment, one or more of the sensors 114 may be sealed within a processing chamber and communicate with the control 102 through a wireless data/control link such as IEEE Standard 802.11b or 802.11g.
As the foregoing examples illustrate, a wide number of components, sensors, and actuators may be employed with the robotic system 100 described herein, and all such components, sensors, and actuators are intended to fall within the scope of this disclosure.
The external programming environment 202 may include, for example, a .NET object layer for user with Microsoft's .NET software development platform. The .NET framework offers a development environment for Microsoft Windows and web applications, as well as more atomic components and web services. While the .NET framework is one useful programming paradigm for deploying services and various Internet and intranet applications, it will be appreciated that other environments may also, or instead, be usefully employed with the robotics systems described herein. For example, a distributed computing environment may be supported by Java EE from Sun or Component Object Model (“COM”), Microsoft's precursor to .NET. Similarly, the modules 206, 208, 210 may be packaged as libraries or subroutines for a standalone application, or may be deployed as a service, such as a web service (such as in a services oriented architecture), or through a web-accessible interface. All such software implementations, as well as variations and combinations thereof, are intended to fall within the scope of this disclosure.
The application programming interface (“API”) 204 may communicate with the programming environment 202 using, for example data messages, a TCP packet stream, or any other message-oriented, connection-oriented, serial, or other communications protocol. The API 204 serves as a programming interface for a simulation environment such as the simulation module 206, controller for hardware, such as the hardware module 210, and a diagnostic system such as the diagnostic module 208. In one embodiment, the API 204 exchanges data messages with the .NET object layer of the external programming environment 202. More generally, the API 204 may include any set of definitions of the ways an external computer system (e.g., from the external programming environment 202) communicates with the internal functional modules of the architecture 200 (e.g., the modules 206, 208, 210 presented by the API 204). Thus, any predefined programmatic interface may be used as the API 204 of the architecture 200, provided the API 204 may be suitably adapted to the external programming environment 202 on one hand and the simulation module 206, the diagnostics engine 208, and the hardware module 210, on the other hand.
In one aspect, the API 204 may accommodate explicit access to each of the modules 206, 208, 210, so that a programmer may, for example, configure, refine, load, customize, analyze, or otherwise manipulate the simulation, the diagnostics engine, and/or the embedded controller or other layers of the hardware interface. Thus, for example, a user may access the simulation module 206 during a teaching phase or automated teaching phase in which robotic arms and/or other parts are trained to safely operate within physical boundaries and constraints of an environment. The results may be transferred to the hardware module 206 (or retained as constraints within, e.g., the diagnostic module 208) for use in subsequent control of physically realized hardware 218. In another aspect, the API 204 may not differentiate between use of the simulation module 206 and the hardware module 210. In this latter embodiment, the API 204 may be presented as a simple hardware controller that provides, in addition to other outputs, diagnostic feedback summarizing deviations from expected hardware behavior, i.e., output from the diagnostic module 208. In another aspect, the API 204 may have two operating modes, a design mode in which full access is provided, and a user mode configured for distribution to end users of the robotic system 100.
The simulation module 206 may simulate the physical realization of hardware 218, along with the hardware module 210 and any other control or data interfaces of the hardware 218. In an embodiment, the simulation module 206 may provide a real time input/output simulation 212 of the hardware 218 (including any embedded layer 216), such that the input/output interface of the simulation module 206 substantially corresponds to the input/output interface of the hardware module 210. The application programming interface may, for example, maintain consistency by concurrently feeding external inputs to the hardware module 210 and the simulation module 206. In embodiments, the simulation module may take as inputs three-dimensional models from one or more three-dimensional visualization modules, such as commercially available modules available from SolidWorks®.
A variety of simulation techniques are known, and may be usefully employed with the simulation module 206. This may include, for example physical modeling of robotic components and the environment of the robotic system 100. Physical modeling may embrace such features of the system and environment as temperature, heat transfer, wear, sensors and sensor input/output, thermal dynamics, electrical and magnetic behavior, optical features, vibration and resonance behaviors, solid state and crystalline behavior, thermal expansion and contraction, statistical mechanics, Newtonian physics, inverse kinematics and other behavior of interconnected physical parts, pressure, fluid flow, gas flow, and so on. The simulation may also, or instead, employ statistical models, heuristic models, linear models, qualitative models, decision analysis models, decision trees and any other modeling or behavioral techniques useful for characterizing and predicting responses. The simulation module may embrace elements of the hardware input and output such as data acquisition, signal processing, and the like. More generally any aspects of the hardware 218 and hardware module 210 useful for an accurate or real time simulation may be usefully incorporated in a simulation executed by the simulation module 206.
The simulation module 206 may update using any time base or time frame. One common time interval for industrial control systems is twenty milliseconds. Thus, in one corresponding embodiment, real time operation of the simulation module 206 may be satisfied by any combination of hardware and software that fully updates simulation results in twenty milliseconds or less. It will be appreciated that other faster or slower update times may be employed, according to particular hardware module 210 behaviors, and the adaptability of the diagnostic module 208 to asynchronous data from the hardware module 210 and the simulation module 206. A variety of signal processing techniques are available for upconversion, downconversion, and interpolation of time based data to accommodate timing constraints between these modules.
In general, the diagnostics module 208 may perform diagnostic functions, such as based on comparisons of the differences between operation of the robotic system, as received from the hardware module 210, and operation of the simulation, as received from the simulation module 206. In an embodiment, the diagnostic module 208 includes a diagnostic engine 214 for real time comparison of simulation and actual data. The diagnostics module 208 may provide various types of analysis concerning the relationship of outputs from the hardware module 210 and the simulation module 206. For example, the diagnostics module 208 may provide statistical analysis that accommodates small, statistically acceptable deviations without generating a diagnostic message. The diagnostics module 208 may also, or instead, provide a direct data feed of a differential between expected and actual results, which may be passed through the API 204 for independent analysis and use by an end user. The diagnostics module 208 may also, or instead provide analysis of deviations with specific error messages indicating known and unknown error conditions. This may include, for example, identification of malfunctioning parts, malfunctioning sensors, or malfunctioning interfaces. The diagnostics module 208 may optionally embody statistical models for diagnosis and predictions of faults, including qualitative reasoning methods, methods based on statistical process control, methods based on failure mode effects analysis, or models that combine features of the foregoing, as well as combine any of the foregoing with the outputs of the simulation module 206.
In another aspect, the diagnostics module 208 may further provide control signals to the hardware module, such as based upon diagnosis of a malfunction. This may include, for example, a signal to shut down an individual component, a group of related components, or an entire system, or to otherwise alter the operation of the foregoing. Shut down commands and other diagnostic-derived control signals, and triggers therefore, may be user configured based upon, for example, safety risks, work-in-progress value and/or cost, expected damage to one or more work pieces, expected damage to equipment, and so forth. The diagnostics module 208 may also, or instead, provide predictive maintenance, such as advance notification of component malfunctions or the identification of maintenance requirements such as filter changes, battery replacements, fluid changes, and the like.
The hardware module 210 may encapsulate, or include an interface to, the embedded layer 216 of a physical realization of hardware 218. At this interface, control and command data may be provided to the hardware 218 through a direct or indirect physical connection. This may include, for example, low level commands such as step motor settings, voltages on control lines, and the like, or this may include higher level commands in computer or human readable syntax, which may be interpreted by the embedded layer 216 for direct activation of hardware 218. This may also include data from the hardware 218 including, for example, raw or preprocessed sensor data, status and control feedback, and the like.
In one aspect, the hardware module 210 may simplify programmatic access to the hardware 218 by providing an abstracted command interface for use at the API 204 level. In another aspect, the hardware module 210 may implement control systems for operation of the hardware 218. This may include, for example, discrete control algorithms implemented as look-up tables or logic, or analytical control algorithms implementing feedback control and so on. The API 204 may expose optional use of such control algorithms, access to parameters thereof, and/or direct programming of arbitrary control algorithms. Thus, in general, varying degrees of control abstraction and varying degrees of control intelligence and automation may be incorporated into the hardware module 210, and into the simulation module 206 version thereof. It will also be appreciated that the hardware module 210 may include different design and runtime instances of a hardware controller. The design instance may, for example be created in a human readable form, or a dynamically re-configurable form such as an interpreted programming language. The runtime instance may, instead, be compiled to execute on a controller associated with the hardware 218, which may include, for example, one or more application specific integrated circuits, microprocessors, microcontrollers, or other programmable devices.
The physical realization of hardware 218 may be, for example, any of the robotic systems 100 described above with reference to
According to the foregoing, a method described herein includes providing a simulation of hardware, providing a physical realization of the hardware, providing a programming interface to control the hardware, and interconnecting one or more of the simulation, the physical realization, and the programming interface in a communicating relationship. Thus, a robotic system, a simulation of the robotic system, and a programming interface may be arbitrarily interconnected to one another. Such a method of interconnection may allow for independent programmatic access to, e.g., the simulation process for programming modifications, or simulated training of the system, alongside independent programmatic access to the hardware controller for implementation of new control algorithms, system configuration, or any other purpose. This method of interconnection may also, or instead, permit direct comparison of simulation results and hardware sensor data in real time.
In another aspect, a method according to the above description may include controlling a robotic system, receiving sensor data from the robotic system, concurrently executing a simulation of the robotic system in real time, receiving simulated sensor data from the simulation; and comparing the sensor data to the simulated sensor data.
It will also be appreciated that a wide range of software and hardware platforms may be used to create and deploy the above-described software components such as the simulation module 206, the diagnostics module 208, and the hardware module 210. Generally, the components may be realized in hardware, software, or some combination of these. The components may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable devices, along with internal and/or external memory such as read-only memory, programmable read-only memory, electronically erasable programmable read-only memory, random access memory, dynamic random access memory, double data rate random access memory, Rambus direct random access memory, flash memory, or any other volatile or non-volatile memory for storing program instructions, program data, and program output or other intermediate or final results. The components may also, or instead, include an application-specific integrated circuit, a programmable gate array, programmable array logic, or any other device or devices that may be configured to process electronic signals in a manner consistent with the systems and methods described herein.
Any combination of the above circuits and components, whether packaged discretely, as a chip, as a chip set, or as a die, may be suitably adapted to use with the systems described herein. It will further be appreciated that the above software components may be realized as computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language that may be compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software. All such variations and combinations are intended to fall within the scope of this disclosure.
It should also be appreciated that the recurring example provided above—semiconductor manufacturing robotics—is only one example of a possible use of the programming and control system disclosed herein. The system described with reference to
The analysis engine 302 may provide one or more tools for analyzing data within the data repository 304. This may include, for example tools for improving diagnostic functions such as detection of malfunction, tools for statistical analysis of hardware and simulation data, and deviations among these. The analysis engine 302 may pool data from a number of robotic systems, which may include similar or identical robotic systems as well as disparate robotic system, and provide tools for comparative analysis thereof.
In one aspect, the analysis engine 302 may provide a diagnostics tool kit for identification and analysis of diagnostically significant relationships. This may include, for example, statistical analysis tools, linear system modeling tools, frequency domain analysis tools, and so forth. Using the diagnostics tool kit, new relationships that are identified from data in the data repository may be deployed as new diagnostic analyses current and/or future diagnostics modules. Similarly, existing diagnostics may be refined and tested against data in the data repository 304. As diagnostic techniques are developed using the diagnostics tool kit, they may be back-tested against data in the data repository using the analysis engine.
To enhance use of the analysis engine 302 and the diagnostics tool kit, certain know fault modes, such as a motor failure, pressure leak, wafer defect, or the like may be copied into a separate location or otherwise flagged for use and re-use.
The data repository 304 may be any mass storage device suitable for the volume and rate of data acquisition from a system such as any of the robotic systems 100 described above. This may include, for example semiconductor memory devices, optical memory devices such as CD-ROM or DVD-ROM, network attached storage, storage area network devices, magnetic disk drives, magnetic tape drives, or any other volatile or non-volatile memory device. The data repository 304 may also include arrays of such devices such as farms, RAID arrays, and the like. In addition to the physical media for storage, the data repository 304 may include a database management system such as those commercially available from Microsoft Corporation, International Business Machines, and Oracle, as well as a number of open source software projects.
The hardware module 306, diagnostics module 308, and simulation module 310 may be, for example, the modules 206, 208, 210 described above with reference to
In one embodiment, the internetwork 410 is the Internet, and the World Wide Web provides a system for interconnecting clients 402 and servers 404 in a communicating relationship through the Internet 410. The internetwork 410 may include other networks, such as satellite networks, the Public Switched Telephone Network, WiFi networks, WiMax networks, cellular networks, and any other public, private, or dedicated networks that might be used to interconnect devices for transfer of data.
An exemplary client 402 may include a processor, a memory (e.g. RAM), a bus which couples the processor and the memory, a mass storage device (e.g. a magnetic hard disk or an optical storage disk) coupled to the processor and the memory through an I/O controller, and a network interface coupled to the processor and the memory, such as modem, digital subscriber line (“DSL”) card, cable modem, network interface card, wireless network card, or other interface device capable of wired, fiber optic, or wireless data communications. One example of such a client 402 is a personal computer equipped with an operating system such as Microsoft Windows XP, UNIX, Linux, or Mac OS X, along with software support for Internet communication protocols. The personal computer may also include a browser program, such as Microsoft Internet Explorer or FireFox to provide a user interface for access to the internetwork 410. Although the personal computer is a typical client 402, the client 402 may also be a workstation, mobile computer, Web phone, VOIP device, television set-top box, interactive kiosk, personal digital assistant, wireless electronic mail device, or other device capable of communicating over the Internet. As used herein, the term “client” is intended to refer to any of the above-described clients 402 or other client devices, and the term “browser” is intended to refer to any of the above browser programs or other software or firmware providing a user interface for navigating an internetwork 410 such as the Internet.
An exemplary server 404 includes a processor, a memory (e.g. RAM), a bus which couples the processor and the memory, a mass storage device (e.g. a magnetic or optical disk) coupled to the processor and the memory through an I/O controller, and a network interface coupled to the processor and the memory. Servers may be clustered together to handle more client traffic, and may include separate servers for different functions such as a database server, an application server, and a Web presentation server. Such servers may further include one or more mass storage devices such as a disk farm or a redundant array of independent disk (“RAID”) system for additional storage and data integrity. Read-only devices such as compact disk drives and digital versatile disk drives may also be connected to the servers. Suitable servers and mass storage devices are manufactured by, for example, Hewlett-Packard, IBM, and Sun Microsystems. In addition to providing an interface for clients 402 visiting a Web site, the server 404 may provide back-end processing that includes, for example access to the simulation and diagnostic functions of the architecture 200 described above.
Focusing now on the internetwork 410, one embodiment is the Internet. The structure of the Internet 410 is well known to those of ordinary skill in the art and includes a network backbone with networks branching from the backbone. These branches, in turn, have networks branching from them, and so on. The backbone and branches are connected by routers, bridges, switches, and other switching elements that operate to direct data through the internetwork 410. For a more detailed description of the structure and operation of the Internet 410, one may refer to “The Internet Complete Reference,” by Harley Hahn and Rick Stout, published by McGraw-Hill, 1994. However, one may practice the present invention on a wide variety of communication networks. For example, the internetwork 410 can include interactive television networks, telephone networks, wireless voice or data transmission systems, two-way cable systems, customized computer networks, Asynchronous Transfer Mode networks, and so on. Clients 402 may access the internetwork 410 through an Internet Service Provider (“ISP”, not shown) or through a dedicated DSL service, ISDN leased lines, T1 lines, OC3 lines, digital satellite service, cable modem service, or any other suitable connection.
In an exemplary embodiment, a browser, executing on one of the clients 402, retrieves a Web document at an address (a Uniform Resource Locator (“URL”), an IP address, or other identifier) from one of the servers 404 via the internetwork 410, and displays the Web document on a viewing device, e.g., a screen. A user can retrieve and view the Web document by entering, or selecting a link to, a URL in the browser. The browser then sends an http request to the server 404 that has the Web document associated with the URL. The server 404 responds to the http request by sending the requested Web document to the client 402. The Web document may be an HTTP object that includes plain text (ASCII) conforming to the HyperText Markup Language (“HTML”). Other markup languages are known and may be used on appropriately enabled browsers and servers, including the Dynamic HyperText Markup Language (“DHTML”), the Extensible Markup Language (“XML”), the Extensible Hypertext Markup Language (“XHML”), and the Standard Generalized Markup Language (“SGML”).
To enhance functionality, a server 404 may execute programs associated with Web documents using programming or scripting languages, such as Perl, C, C++, C#, or Java, or a Common Gateway Interface (“CGI”) script to access applications on the server. A server 404 may also use server-side scripting languages such as ColdFusion from MacroMedia or PHP. These programs and languages may perform “back-end” functions such as order processing, database management, and content searching. A Web document may also contain, or include references to, small client-side applications, or applets, that are transferred from the server 404 to the client 402 along with a Web document and executed locally by the client 402. Java is one popular example of a programming language used for applets. The text within a Web document may further include (non-displayed) scripts that are executable by an appropriately enabled browser, using a scripting language such as JavaScript or Visual Basic Script. Browsers may further be enhanced with a variety of helper applications to interpret various media including still image formats such as JPEG and GIF, document formats such as PPT and PDF, motion picture formats such as AVI and MPEG, animated media such as Flash media, and sound formats such as MP3 and MIDI. These media formats, along with a growing variety of proprietary media formats, may be used to enrich a user's interactive and audio-visual experience as each Web document is presented through the browser. The term “page” as used herein is intended to refer to the Web document described above, as well as any of the above-described functional or multimedia content associated with the Web document.
In general operation, a server 404 may provide a web site including one or more web pages to a client 402. In an exemplary embodiment, the web site may include an environment for specifying and purchasing robotic systems as described below.
A Web site including the page 500 may use cookies to track users and user information. In particular, a client 402 accessing the site may be accessed to detect whether the client 402 has previously accessed the page or the site. If the client 402 has accessed the site, then some predetermined content may be presented to the client 402. If the client 402 does not include a cookie indicating that the client 402 has visited the site, then the client 402 may be directed to a registration page where information may be gathered to create a user profile. The client 402 may also be presented with a login page, so that a pre-existing user on a new client 402 may nonetheless bypass the registration page.
The site may provide options to the client 402. For example, the site may provide a search tool by which the client 402 may search for content within the site, or content external to the site but accessible through the internetwork 410. The site may include payment processing through banking and third party transaction systems including credit card processing, PayPal transaction processing, wire transfer processing, and the like.
As shown in step 604, a user may configure a system, such as a robotic semiconductor manufacturing system. This may include selection of individual robotic components, as well as pre-configured assemblies that include a number of different components. Features such as sensors, control software, and the like may be selected as options. The interface may permit pick-and-place arrangement of components into a working system. The interface may permit physical arrangement of components, as well as the specification of mechanical and electrical relationships among components of the system.
In an embodiment, a user may design custom mechanical components or electrical circuitry using a Computer Automated Design (“CAD”) system offered through the web site, or may upload custom components in a CAD format acceptable to the site, such as a format amenable to either direct simulation, or conversion to a simulation-ready format. Configuration may include physical arrangement of mechanical and electrical parts, as well as provision of control software which may be provided by the user or by the site, or some combination of these. More generally, the interface may permit a wide range of user customization, or may constrain a user to certain configuration parameters, such as component selections and physical arrangements, specific to an industrial application for which the site is adapted. Thus, for example, in a semiconductor manufacturing application, the interface may specify a discrete number of workstation shapes, sizes, and entry/exit modes, and a specific collection of robotics components, such as robotic arms, individual robotic arm links, conveyers, elevators, actuators, motors, sensors, controllers (including individual chips and integrated controller systems) and so forth, to be combined with the workstation(s) for wafer handling.
Once a system has been specified in simulation-ready detail, the site may simulate the system as shown in step 606. The simulation may use, for example, the simulation module 206 described above. For diagnostic purposes, a hardware module may be similarly simulated, or hardware module input/output may be obtained from, or derived from, historical data in a data repository, such as the data repository 304 described above. The user may specify operating conditions, duration, speed, work pieces, and the like, as well as selecting, for example, from an array of potential fault conditions (e.g., cracked silicon wafer, environmental vibration, faulty sensor, electro-magnetic noise, and the like). In an embodiment, fault conditions may be simulated within a hardware module, and a diagnostics module may be employed to compare the simulated fault to the non-faulted simulation module outputs.
As shown in step 608, the user may review results of the simulation. In addition to reviewing input/outputs for the system's software modules, a user may review a number of metrics for evaluating the design, such as cost per work piece, throughput, equipment purchase costs, total cost for life of equipment, maintenance cost, costs for tooling user-specified custom parts, and so forth. Side-by-side analysis may be performed of alternate configurations, or of a single configuration under different operating conditions. The site may also provide an analysis engine, such as the analysis engine 302 described above to evaluate other aspects of system performance, and compare performance to alternative configurations using historical data in the data repository 304.
As shown in step 610, a user may determine whether the results are acceptable. If the results are not acceptable, the process 600 may return to step 604 where the user may configure or reconfigure a system.
If the results are acceptable, a user may proceed to enter a purchase order as shown in step 612. The process 600 may also convert the user's configuration into a specification for a completed product including, for example, a parts list, operating specifications and capacity, suggested replacement parts, and the like. The purchase order itself may be executed in any manner, and may include elements of immediate payment, as well as terms and timing of additional payments due upon delivery and satisfactory operation of the system. As shown in step 614, the process 600 may then end.
It will be appreciated that the steps of the process 600 may be varied or supplemented, or their order modified, without departing from the concepts described herein. For example, a user may be provided with an option to save a configuration for subsequent review and modification, and a user may maintain a library of saved designs. A library of designs may also be provided to a user, from which a user may select designs for customization and simulation. As another example data such as cost data may be provided during the configuration step 604, and certain simulation results may be displayed in real time during a simulation. The purchasing step 612 may be omitted entirely from the computerized process 600, with an actual purchase being conducted off line with reference to a design configured and saved using the process 600. Thus the process 600 described with reference to
It will be appreciated that the process 600 may be realized in hardware, software, any some combination of these suitable for controlling a web-based design, simulation, and purchasing system. The server side and client side of the process 600 may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable device, along with internal and/or external memory. Either the server side or client side of process 600 may also, or instead, include an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device that may be configured to process electronic signals. It will further be appreciated that the server side or the client side of the above process 600 may be realized as computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including database programming languages and technologies) that may be compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software.
While the invention has been disclosed in connection with certain preferred embodiments, other embodiments will be recognized by those of ordinary skill in the art, and all such variations, modifications, and substitutions are intended to fall within the scope of this disclosure. Thus, the invention is to be understood with reference to the following claims, which are to be interpreted in the broadest sense allowable by law.
Claims
1. A system comprising:
- a simulation system for simulating a plurality of components;
- a user interface for specifying a manufacturing robotics system using one or more of the plurality of components, the user interface permitting a user to simulate the manufacturing robotics system in the simulation system and the user interface further permitting a user to purchase the manufacturing robotics system.
2. The system of claim 1 wherein the simulation system provides real time simulation.
3. The system of claim 1 wherein the user interface includes a web interface.
4. The system of claim 1 wherein the user interface provides cost information associated with the manufacturing robotics system.
5. The system of claim 1 wherein the user interface presents simulation results to the user.
6. The system of claim 5 wherein the user interface includes one or more tools for analyzing the simulation results.
7. The system of claim 5 wherein the user interface includes one or more tools for comparing simulation results from a plurality of simulations.
8. The system of claim 7 wherein the plurality of simulations include simulations of two or more different manufacturing robotics systems using different ones of the plurality of components.
9. The system of claim 7 wherein the user interface includes two or more different simulations of the same manufacturing robotics system under different conditions.
10. The system of claim 7 further comprising a purchasing engine that receives a purchase order from the user of the user interface and converts the order into a specification for a product.
11. The system of claim 7 wherein specifying the manufacturing robotics system includes providing a mechanical relationship among a plurality of robotic components.
12. The system of claim 11 wherein the plurality of robotic components includes one or more robotic arm links.
13. The system of claim 7 wherein specifying the manufacturing robotics system includes providing an electrical relationship among a plurality of robotic components.
14. The system of claim 13 wherein the plurality of robotic components includes one or more of a motor, a sensor, and a controller.
15. A method comprising:
- providing a simulation system for simulating a plurality of components;
- presenting the simulation system through a user interface adapted for specifying a manufacturing robotics system using one or more of the plurality of components, the user interface permitting a user to simulate the manufacturing robotics system in the simulation system and the user interface further permitting a user to purchase the manufacturing robotics system.
16. The method of claim 15 wherein the simulation system provides real time simulation.
17. The method of claim 15 wherein the user interface includes a web interface.
18. The method of claim 15 wherein the user interface provides cost information associated with the manufacturing robotics system.
19. The method of claim 15 wherein the user interface presents simulation results to the user.
20. The method of claim 19 wherein the user interface includes one or more tools for analyzing the simulation results.
21. The method of claim 19 wherein the user interface includes one or more tools for comparing simulation results from a plurality of simulations.
22. The method of claim 21 wherein the plurality of simulations include simulations of two or more different manufacturing robotics systems using different ones of the plurality of components.
23. The method of claim 21 wherein the user interface includes two or more different simulations of the same manufacturing robotics system under different conditions.
24. The method of claim 21 further comprising receiving a purchase order from the user of the user interface and converting the order into a specification for a product.
25. The method of claim 21 wherein specifying the manufacturing robotics system includes providing a mechanical relationship among a plurality of robotic components.
26. The method of claim 25 wherein the plurality of robotic components includes one or more robotic arm links.
27. The method of claim 21 wherein specifying the manufacturing robotics system includes providing an electrical relationship among a plurality of robotic components.
28. The method of claim 27 wherein the plurality of robotic components includes one or more of a motor, a sensor, and a controller.
29. A method comprising:
- specifying a robotic system through a web-based user interface;
- simulating the robotic system;
- reviewing simulation results through the web-based user interface; and
- purchasing the robotic system.
30. A method comprising:
- receiving a specification of a robotic system over a data network;
- simulating the robotic system;
- transmitting simulation results of the data network; and
- receiving a purchase order for the robotic system.
Type: Application
Filed: Mar 21, 2006
Publication Date: Jun 14, 2007
Inventors: Patrick Panesse (Lynnfield, MA), Peter van der Meulen (Newburyport, MA)
Application Number: 11/386,446
International Classification: G05B 11/01 (20060101);