Seal device and method for operating the same and substrate processing apparatus comprising a vacuum chamber
The present invention provides a seal device comprising a sealing passage which allows communication between a first space and a second space, and evacuation lines individually connected to the first space and the sealing passage. A gas feed line for feeding dry gas is connected to the sealing passage.
Latest EBARA CORPORATION Patents:
- Ultrasonic probe and method for measuring thickness of pipe being inspected using the same
- Plating method, insoluble anode for plating, and plating apparatus
- INFORMATION PROCESSING APPARATUS, INFERENCE APPARATUS, MACHINE-LEARNING APPARATUS, INFORMATION PROCESSING METHOD, INFERENCE METHOD, AND MACHINE-LEARNING METHOD
- Wetting method for substrate and plating apparatus
- Plating apparatus and air bubble removing method of plating apparatus
This application is a divisional of U.S. patent application Ser. No. 10/404,065, filed on Apr. 2, 2003, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTIONThe present invention relates to a seal device for providing a seal between two spaces having different pressures, and to a method for operating the same, and also relates to a substrate processing apparatus comprising a vacuum chamber. More specifically, the present invention relates to a non-contacting seal device capable of providing a suitable seal in a semiconductor manufacturing apparatus between two spaces having different pressures and method for operating the same, and also relates to a substrate processing apparatus comprising a vacuum chamber in which a stage device is provided, wherein a substrate for producing a semiconductor or a liquid crystal is loaded on the stage device and processed in the vacuum chamber. In the substrate processing apparatus of the present invention, the vacuum chamber is appropriately controlled so that a good vacuum environment produced in the vacuum chamber can be maintained.
Conventional non-contacting seal devices for providing a seal between spaces having different pressures are disclosed in U.S. Pat. Nos. 4,118,042, 4,191,385 and 4,425,508. The seal devices disclosed in the above documents are used in a clean environment, such as a vacuum environment, in which a movement (a rotary motion or a linear motion) of an object is effected. The purpose of using these seal devices is to effect a high-speed or smooth movement of the object without any risk of contamination of the clean environment.
Non-contacting seal devices tend to be used in the following two cases: when an object to be moved and a minimal structure are provided in a clean environment and a drive source and a guide mechanism for moving the object are provided outside the clean environment; and when a non-contact type bearing such as a static fluid bearing (e.g., an air bearing) is provided and a clean environment is sealed without reducing the merit of the non-contact type bearing. In the latter, (1) the static fluid bearing is provided within a clean environment, and the clean environment is sealed against fluid of the static fluid bearing, or (2) the bearing is provided outside a clean environment, and a non-contacting seal is provided between the clean environment and an external environment.
A characteristic of a non-contacting seal device is that it is able to separate two spaces in a non-contacting manner. In an individual apparatus to which a non-contacting seal device is applied (hereinafter, frequently referred to simply as “the apparatus”), such a characteristic of a non-contacting seal device is a merit when the seal device performs a sealing function in a normal operating condition. However, pressure conditions of the apparatus are subject to change at a time of starting or stopping the seal device or after stopping the seal device, depending on the method employed for operating the seal device. From the viewpoint of a time required for starting the individual apparatus, a risk of contamination when stopping the apparatus and maintaining a desired degree of cleanliness, it is necessary to take into account a way in which the apparatus is affected by the method for operating the seal device.
Referring to
[CASE 1]
In CASE 1, initially, a vacuum pump 41 in an evacuation line L1 is actuated and a valve 51 is opened, to thereby start evacuation through the evacuation line L1. Subsequently, a vacuum pump 42 in an evacuation line L2 is actuated and a valve 52 is opened, to thereby start evacuation through the evacuation line L2. In a normal operating condition of the seal device, the pressure relationship between the first space 1, the second space 2 and the sealing passage 3 is represented by P1<P3<P2 (in terms of a degree of vacuum, V1>V3>V2), wherein P1, P2 and P3 represent the pressures in the first space 1, the second space 2 and the sealing passage 3, respectively, and V1, V2 and V3 represent the degrees of vacuum in the first space 1, the second space 2 and the sealing passage 3, respectively. In a transient state after the start of evacuation through the evacuation line L1 by opening the valve 51, the relationship P1<P3<P2 or P1<P3=P2 (for example, P1 is several Torr, P3 is a value between atmospheric pressure and several hundred Torr and P2 is atmospheric pressure) is established. In this state, a considerable amount of gas flows from the second space 2 into the first space 1.
Thereafter, when evacuation through the evacuation line L2 is started by opening the valve 52, most of the gas flowing from the second space 2 is introduced into the evacuation line L2 and does not flow into the first space 1. Consequently, the pressure relationship P1<P3<P2 in a normal operating condition (for example, P1 is 1E-6 Torr, P3 is 1E-3 Torr and P2 is atmospheric pressure) is established, and the seal device starts to operate in a normal operating condition.
Thus, in the above operation for starting the seal device, a considerable amount of gas flows from the second space 2 into the first space 1. Therefore, the degree of cleanliness of the first space 1 lowers. For example, when air having a humidity of 50% flows from the second space 2 into the first space 1, the ultimate degree of vacuum in the first space 1 lowers. Further, if the second space 2 contains foreign matter, such matter will enter a small gap in the sealing passage 3, and clog the sealing passage 3. The gap provided in the sealing passage 3 is generally 1 mm or less. Recently, a high-performance seal device adapted for sealing a gap as small as 0.005 mm (=5 μm) has also been made available.
[CASE 2]
In CASE 2, the vacuum pump 42 is first actuated and the valve 52 is opened, to thereby start evacuation through the evacuation line L2. Subsequently, the vacuum pump 41 is actuated and the valve 51 is opened, to thereby start evacuation through the evacuation line L1. The pressure relationship in a normal operating condition is P1<P3<P2 (in terms of a degree of vacuum, V1>V3>V2). In a transient state after the start of evacuation through the evacuation line L2 by opening the valve 52, the relationship P1>P3<P2 (for example, P1 is several hundred Torr, P3 is several Torr and P2 is atmospheric pressure) is established. Therefore, a gas flows from the second space 2 into the sealing passage 3.
Subsequently, evacuation through the evacuation line L1 is started by opening the valve 51. In this instance, a slight amount of gas flows from the second space 2 into the first space 1. Then, the pressure relationship in a normal operating condition, that is, P1<P3<P2 (for example, P1 is 1E-6 Torr, P3 is 1E-3 Torr and P2 is atmospheric pressure), is established, thus completing the starting operation. During the starting operation, there is a possibility that foreign matter contained in the second space 2 may become mixed in the gas flow and clog the small gap in the sealing passage 3.
Next, explanation is made with regard to problems arising due to a sequence of steps conducted for stopping the seal device. Initially, a differential exhausting sealing function is performed in a normal operating condition. The pressure relationship in this condition is P1<P3<P2 (in terms of a degree of vacuum, V1>V3>V2) For example, P1 is 1E-6 Torr, P3 is 1E-3 Torr and P2 is atmospheric pressure.
[CASE 3]
In CASE 3, the valve 51 and the valve 52 are closed at the same time. In this case, the first space 1 is subject to a phenomenon that a crack such as a sealing passage 3 is created in a wall defining a vacuum chamber. That is, a gas in the second space 2 vigorously flows through the sealing passage 3 into the first space 1. Thus, a considerable amount of gas flows from the second space 2 into the first space 1, thus lowering a degree of cleanliness of the first space 1. For example, when air having a humidity of 50% flows from the second space 2 into the first space 1, the ultimate degree of vacuum in the first space 1 lowers. Further, if the second space 2 contains foreign matter, such matter will enter a small gap in the sealing passage 3, and clog the sealing passage 3.
[CASE 4]
In CASE 4, the valve 52 is first closed, and then the valve 51 is closed. In this case also, the first space 1 is subject to a phenomenon that a crack such as a sealing passage 3 is created in a wall defining the vacuum chamber. That is, a gas in the second space 2 vigorously flows through the sealing passage 3 into the first space 1. This imparts to the vacuum pump 41, which draws a high vacuum in the first space 1, an effect similar to that of entry of the atmosphere. When use is made of a turbomolecular pump, of which turbine blades are rotated at ultrahigh speed and strike molecules, an excessive amount of external force acts on the blades, thus resulting in the possibility of breakage of the blades.
Thus, in CASE 4, a considerable amount of gas flows from the second space 2 into the first space 1, thus lowering the degree of cleanliness of the first space 1. For example, when air having a humidity of 50% flows from the second space 2 into the first space 1, the ultimate degree of vacuum in the first space 1 lowers. Further, if the second space 2 contains foreign matter, such matter will enter a small gap in the sealing passage 3, and clog the sealing passage 3.
[CASE 5]
When the valve 51 is first closed and the valve 52 is then closed, a considerable amount of gas flows from the second space 2 into the first space 1 through the gap in the sealing passage 3 until the pressure relationship P1=P3 or P1>P3 is established. Therefore, the degree of cleanliness of the first space 1 lowers. For example, when air having a humidity of 50% flows from the second space 2 into the first space 1, the ultimate degree of vacuum in the first space 1 lowers. Further, if the second space 2 contains foreign matter, such matter will enter a small gap in the sealing passage 3, and clog the sealing passage 3.
Next, explanation will be made with regard to how the apparatus is affected by the sealing passage 3 after stopping the seal device.
[CASE 6]
In each of CASES 3, 4 and 5, a gas flows from the second space 2 into the first space 1. If such a state is permitted, the first space 1 will be brought into a state similar to that of a vacuum chamber opened and exposed to a gas in an external environment, such as air in a clean room. In this case, if the air in a clean room is a moist gas having a humidity of about 50%, an inner surface of a wall defining the first space 1 is exposed to such a moist gas. Therefore, the ultimate degree of vacuum in the first space 1 when reproducing a vacuum becomes low. In other words, it is difficult to achieve the degree of vacuum for which the apparatus is set, and therefore the time for restarting the apparatus is markedly prolonged.
[CASE 7]
When dry gas is fed into the first space 1 in order to maintain the pressures in the first space 1 and the second space 2 at the same level, because the first space 1 and the second space 2 are communicated through the sealing passage 3, if the gas in the second space 2 has a high humidity, the humidity of the entire space including the first space 1 and the second space 2 moves towards a state of equilibrium. That is, the gas in the first space 1 acts like a dry sponge absorbing a water component of the gas occupying the second space 2. Consequently, water is adsorbed on the inner wall surface defining the first space 1. Therefore, the ultimate degree of vacuum in the first space 1 when reproducing a vacuum becomes low. In other words, it is difficult to achieve the degree of vacuum for which the apparatus is set, and therefore a time for restarting the apparatus is markedly prolonged.
After stopping the seal device, if the first space 1 is filled with air having a humidity of 50% and the apparatus is restarted 1 day after stopping of the seal device, an operation for reproducing a vacuum must be conducted for 1 month to achieve a set degree of vacuum in the first space 1.
Generally, in a substrate processing apparatus, a substrate is loaded on a stage device, and moved so that a specific region on the substrate's surface is located at a predetermined position and processed.
The stage device includes a movable base and a stationary base, and a guide element and a drive element. To move a substrate loaded on the movable base, a control command is applied to the drive element, which imparts a thrust force to the movable base. Thus, the movable base is moved, while being guided by the guide element.
As a guide element, a rolling guide element has been conventionally used. The rolling guide element requires use of a lubricant, and an effective means to suppress generation of dust and a release of gas accompanying a rolling motion of the guide element is studied.
As a drive element, a rotary motor or a linear motor, which converts electric energy to kinetic energy, is employed. A rotary motor is used in combination with a magnetic fluid seal. This combination has a merit such that the motor can be provided outside a vacuum chamber in which a substrate is provided. That is, the motor can be used in an atmospheric environment, and the type of the motor can therefore be selected from a wide range.
However, the use of a rotary motor in combination with a magnetic fluid seal has a demerit such that (a) the life of the magnetic fluid seal becomes short. The life of the magnetic fluid seal is in inverse proportion to the degree of vacuum. That is, the higher the degree of vacuum created in the vacuum chamber, the shorter the life of the magnetic fluid seal. Another demerit is that (b) it is essential to provide a mechanism for converting a rotary motion to a linear motion. Thus, it is not possible to effect a smooth linear motion due to rattling or friction of the converting mechanism.
Therefore, in recent years, there has been an increasing tendency to use a linear motor, which does not require use of a converting mechanism, and therefore has no demerit (b). However, there is no vacuum seal suitable for use with a linear motor. Therefore, it has been desired to employ a linear motor which can be suitably used within a vacuum environment, that is, one which is free from problems, such as (c) a release of gas, (d) generation of heat and (e) generation of dust. However, the problems of a release of gas and generation of heat cannot be completely avoided in practice. Therefore, a conventional substrate processing apparatus such as that shown in
In
In this arrangement, however, when the non-contacting seal device 25 stops operating, atmospheric pressure is introduced into the first vacuum chamber 1 through the passage 3a, so that the pressure in the first vacuum chamber 1 becomes substantially equal to atmospheric pressure. That is, the vacuum of the first vacuum chamber 1 cannot be maintained. Therefore, when the apparatus stops operating in the event of emergency, for example, a power failure, a vacuum must be reproduced in the first vacuum chamber 1a, and the time required for reproducing a vacuum becomes considerably long, depending on the characteristics of the gas flowing into the first vacuum chamber 1.
Therefore, a substrate processing apparatus as shown in
In the above-mentioned arrangements, the movable base 13 of the stage device 11 is movably supported by the rolling mechanism 14. Theoretically, it is impossible to prevent generation of dust in the rolling mechanism 14.
Therefore, in a substrate processing apparatus shown in
In the arrangement of
In a substrate processing apparatus shown in
The drive device 15 is not limited to a linear motor. For example, a cylinder device may be used. When a cylinder device is used as the drive device 15, care must be taken to avoid 1) leakage of a differential fluid from a seal portion (a release of gas), 2) generation of dust in the seal portion and 3) a temperature change caused by compression and expansion of a fluid.
In a conventional technique shown in
However, leakage of gas inevitably occurs between two chambers having different pressures. That is, there is a possibility that part of a gas generated in the second vacuum chamber 2a flows into the first vacuum chamber 1a, which is required to be clean.
Further, in practice, there is a problem of a reverse flow or diffusion of gas derived from an oil component from an oil-sealed rotary vacuum pump, an oil component remaining in parts or ducts of a vacuum system, and a lubricant used for the vacuum pump. When the above pressure relationship P1<P2 (in terms of a degree of vacuum DV, DV2<DV1) is established in the apparatus of
In a conventional technique shown in
The same problem is encountered in the apparatus shown in
It is an object of the present invention to provide a seal device, which avoids the risk of contamination of a space required to have high cleanliness and deposition of water on an inner wall surface of the space, and which is capable of reducing a time required for reproducing a vacuum. It is another object of the present invention to provide a method for operating the seal device.
It is a further object of the present invention to provide a substrate processing apparatus comprising a first vacuum chamber in which a substrate loaded on a stage device is processed and a second vacuum chamber in which a drive device for driving the stage device is provided, wherein the pressure in the second vacuum chamber is controlled to be lower than that in the first vacuum chamber, to thereby solve the above-mentioned problems.
It is a further object of the present invention to provide a substrate processing apparatus comprising a first chamber in which a substrate loaded on a stage device is processed and a second chamber in which a drive device for driving the stage device is provided, wherein the first chamber is maintained in a vacuum and a non-contacting seal device is provided between the first chamber and the second chamber, and respective pressures in the first and second chambers are controlled in relation to an operating condition of the non-contacting seal device, to thereby solve the above-mentioned problems.
It is a still further object of the present invention to provide a substrate processing apparatus comprising a first chamber in which a substrate loaded on a stage device is processed and a second chamber in which a drive device for driving the stage device is provided, wherein the first chamber is maintained in a vacuum, and a differential vacuum seal device comprising a plurality of vacuum grooves is provided between the first chamber and the second chamber, to enable the pressures in the vacuum grooves to be appropriately controlled, thereby solving the above-described problems.
The present invention provides a seal device comprising a sealing passage which allows communication between a first space and a second space, and evacuation lines individually connected to the first space and the sealing passage, wherein a gas feed line for feeding dry gas is connected to the sealing passage.
In the above-mentioned seal device, a gas feed line for feeding dry gas may be connected to the sealing passage, and the timing of starting/stopping the feeding of dry gas through the gas feed line and the timing of starting/stopping evacuation through the evacuation lines connected to the first space and the sealing passage may be controlled. By this arrangement, it is possible to prevent a considerable amount of gas from flowing from the second space having a low degree of cleanliness to the first space having a high degree of cleanliness. It is also possible to suppress deposition of water on an inner wall surface of the first space, which is required to have high cleanliness, thus reducing the time required for regenerating a vacuum.
In the above-mentioned seal device, the degree of cleanliness or vacuum of the first space and the degree of cleanliness or vacuum of the second space may be different so that the first space has a high degree of cleanliness or vacuum and the second space has a low degree of cleanliness or vacuum, and the gas feed line may be connected to the sealing passage at a position between the second space and the evacuation line located closest to the second space.
As described above, in the present invention, the gas feed line may be connected to the sealing passage at a position between the second space and the evacuation line located closest to the second space. With this arrangement, a flow of gas from the second space having low cleanliness or vacuum to the first space having high cleanliness or vacuum can be effectively suppressed.
The present invention provides a method for operating the above-mentioned seal device, wherein the seal device is started using the following sequence of steps (1) to (4):
(1) feeding dry gas through the gas feed line;
(2) controlling a flow rate of the dry gas fed through the gas feed line so that a pressure at a gas feed port of the gas feed line formed in the sealing passage is maintained at a level equal to or higher than a pressure in the second space;
(3) starting evacuation through the evacuation line for the sealing passage; and
(4) starting evacuation through the evacuation line for the first space.
In the above-mentioned method, the seal device is started using the above sequence of steps (1) to (4), to thereby prevent a considerable amount of gas from flowing from the second space into the first space. Therefore, it is possible to prevent a lowering of cleanliness of the first space, which would otherwise result from a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid a situation that due to a high humidity of the gas flowing into the first space, water is deposited on an inner wall surface of the first space thereby lowering the ultimate degree of vacuum. Further, it is possible to prevent clogging of the sealing passage which would otherwise result from entry of foreign matter contained in the second space into a small gap in the sealing passage.
The present invention also provides a method for operating the above-mentioned seal device, wherein the seal device is stopped using the following sequence of steps (1) to (4):
(1) feeding dry gas through the gas feed line;
(2) controlling a flow rate of the dry gas fed through the gas feed line so that a pressure at a gas feed port of the gas feed line formed in the sealing passage is maintained at a level equal to or higher than a pressure in the second space;
(3) stopping evacuation through the evacuation line for the first space; and
(4) stopping evacuation through the evacuation line for the sealing passage.
In the above-mentioned method, the seal device is stopped using the above sequence of steps (1) to (4), to thereby prevent a considerable amount of gas from flowing from the second space into the first space. Therefore, it is possible to prevent a lowering of cleanliness of the first space, which would otherwise result from a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid a situation where water is deposited on an inner wall surface of the first space due to a high humidity of the gas flowing into the first space. Therefore, a time required for reproducing a vacuum can be made relatively short. Further, it is possible to prevent the sealing passage from becoming clogged due to entry of foreign matter contained in the second space into a small gap in the sealing passage.
The present invention further provides a method for operating the above-mentioned seal device, wherein after stopping the seal device, dry gas is fed through the gas feed line and a flow rate of the dry gas fed through the gas feed line is controlled so that a pressure at a gas feed port of the gas feed line formed in the sealing passage is maintained at a level equal to or higher than a pressure in the second space.
In the above-mentioned method, after stopping of the seal device, dry gas is fed through the gas feed line and a flow rate of the dry gas fed through the gas feed line is controlled so that a pressure at a gas feed port of the gas feed line formed in the sealing passage is maintained at a level equal to or higher than a pressure in the second space. By using this arrangement, it is possible to prevent a lowering of cleanliness of the first space due to a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid deposition of water on an inner wall surface of the first space due to a high humidity of the gas flowing into the first space. Therefore, the time required for regenerating a vacuum can be made relatively short.
In the above-mentioned method for operating the seal device, the dry gas fed through the gas feed line may be a gas comprising substantially the same components as air and having a humidity of 5% or less.
As described above, in the present invention, the dry gas fed through the gas feed line may comprise substantially the same components as air and have a humidity of 5% or less. With this arrangement, the amount of deposition of water on an inner wall surface of the first space is reduced. Further, workers can enter the second space without any difficulties.
The present invention further provides a substrate processing apparatus comprising a first vacuum chamber in which a stage device is provided and a substrate loaded on the stage device is processed, and a second vacuum chamber provided separately from the first vacuum chamber; a drive element for driving the stage device is provided in the second vacuum chamber; with a pressure P1 in the first vacuum chamber and a pressure P2 in the second vacuum chamber being controlled so as to maintain a relationship P1≧P2.
In the above-mentioned substrate processing apparatus, although a flow of gas from the first vacuum chamber into the second vacuum chamber occurs, gas generated in or released into the second vacuum chamber is prevented from flowing into the first vacuum chamber in which a substrate is processed. In this way, it is possible to prevent contamination of substrates, reflecting mirrors or marks.
The present invention further provides a substrate processing apparatus comprising a first chamber in which a stage device is provided, and in which a substrate loaded on the stage device is processed; with a second chamber being provided separately from the first chamber. A drive element for driving the stage device is provided in the second chamber, and the first chamber is maintained in a vacuum, with a non-contacting seal device being provided between the first chamber and the second chamber. The second chamber is capable of being selectively connected to a supply source of dry gas; and a pressure in the second chamber is controlled to be equal to or approximate to atmospheric pressure by supplying and discharging the dry gas.
In the above mentioned substrate processing apparatus according to the second embodiment of the present invention, even when the non-contacting seal device stops operating, there is no gas flow from an external environment, such as a clean room, into the vacuum chamber. Thus, the substrate processing apparatus is able to adapt in a case that an emergency stop of the seal device occurs, and the time for regenerating a vacuum in the vacuum chamber can thus be reduced. Further, there is no need to increase a wall-thickness of a cover or a housing for a chamber so as to maintain a predetermined small gap in the non-contacting seal portion. Consequently, the apparatus can be reduced in size, and made lightweight in construction.
The present invention further provides a substrate processing apparatus comprising a first chamber in which a stage device is provided and a substrate loaded on the stage device is processed, with a second chamber being provided separately from the first chamber. A drive element for driving the stage device is provided in the second chamber, and the first chamber is maintained in a vacuum, and a non-contacting seal device is provided between the first chamber and the second chamber. The second chamber is capable of being selectively connected to a supply source of dry gas. When the non-contacting seal device is operated while the stage device is being driven, a pressure in the second chamber is controlled to be equal to or approximate to atmospheric pressure by supplying and discharging the dry gas. During a period that the non-contacting seal device is not operated, the second chamber is disconnected from the supply source of dry gas, and discharge of the gas from the second chamber is stopped.
In the above above-mentioned substrate processing apparatus, it is possible to prevent a reverse flow or diffusion of gas from a vacuum system of the differential vacuum seal device, which would otherwise result in contamination of the first vacuum chamber. Consequently, cleanliness of the first vacuum chamber can be maintained at a satisfactory level, and the apparatus does not need frequent cleaning or maintenance.
The present invention further provides a substrate processing apparatus comprising a first chamber in which a stage device is provided and a substrate loaded on the stage device is processed, and a second chamber provided separately from the first chamber. A drive element for driving the stage device is provided in the second chamber. The first chamber is maintained in a vacuum and a differential vacuum seal device comprising a plurality of vacuum grooves is provided between the first chamber and the second chamber, with a vacuum groove located closest to the first chamber having an internal pressure lower than or equal to a pressure in the first chamber.
BRIEF DESCRIPTION OF THE DRAWINGS
Hereinbelow, embodiments of the present invention are explained, with reference to FIGS. 10 to 15. As has been described, the problems arising at the time of starting the seal device are such that: (1) a gas occupying the second space 2, which has a lower degree of cleanliness than the first space 1, flows into the first space 1, resulting in a lowering of cleanliness of the first space 1; (2) due to a high humidity of the gas flowing from the second space 2, water is deposited on an inner surface of a wall defining the first space 1, thus lowering the ultimate degree of vacuum in the first space 1; and (3) foreign matter enters a narrow gap in the sealing passage 3, and clogs the sealing passage 3.
The seal device is arranged by providing the sealing passage 3 between the first space 1 and the second space 2 and enabling the sealing passage 3 to perform a differential vacuum sealing function. This arrangement is employed because a non-contact type seal is required to be used for separating the first space 1 and the second space 2. The reason why use of a non-contact type seal is required is that a member connected to an object to be moved in the first space 1 extends in the sealing passage 3, and this member is moved in a longitudinal direction of the sealing passage 3 while a predetermined gap is maintained between the member and an inner wall surface defining the sealing passage 3. Therefore, the filter 9 in
In the seal device of
In an initial state of this seal device, the pressure relationship P1=P3=P4=P2 is established (wherein P3 represents a pressure at the vacuum port 3-1 in the sealing passage 3, which port is connected to the evacuation line L2, and P4 represents a pressure at a gas feed port 3-3 in the sealing passage 3, which port is connected to the gas feed line L4). To avoid entry of foreign matter into the sealing passage 3, which occurs in CASES 1 and 2, the seal device is started using the following sequence of steps.
The valve 54 is opened, and the dry gas DG2 is fed through the gas feed line L4 to the sealing passage 3. As a result, the feed rate of the dry gas DG2 is controlled so that the pressure relationship P4=P2, preferably P4>P2, is maintained. Thereafter, the valve 52 and/or the valve 51 is opened, to thereby start evacuation. In this instance, the feed rate of the dry gas DG2 through the gas feed line L4 is controlled so that the pressure relationship P4=P2 or P4>P2 is maintained. Preferably, the valve 52 is first opened to thereby start evacuation through the evacuation line L2. In the above sequence of steps for starting the seal device, it is possible to prevent a considerable amount of gas from flowing from the second space 2 into the first space 1. Needless to say, feeding of the dry gas 14 through the gas feed line L4 may be stopped when the sealing passage 3 performs a sealing function in a normal operating condition.
In an apparatus wherein foreign matter in the second space 2 does not cause any problem when it is carried by the gas flow into the sealing passage 3, it is preferred to start the seal device in the same operating sequence as indicated in CASE 2. That is, it is preferred to start the seal device by first actuating the vacuum pump 42 and opening the valve 52, to thereby start evacuation through the evacuation line L2, and then actuating the vacuum pump 41 and opening the valve 51, to thereby start evacuation through the evacuation line L1. By using this operating sequence, it is possible to prevent a considerable amount of gas from flowing from the second space 2 into the first space 1, without using the gas feed line L4 shown in
Next, explanation is made with regard to how the present invention solves the problems arising at the time of stopping the seal device. The problems are caused by a considerable amount of gas flowing from the second space 2 into the first space 1. This can be avoided by the arrangements shown in
The seal device in
To avoid a situation where a considerable amount of gas flows from the second space 2 into the first space 1, the seal device shown in
In a first step, the valve 54 is opened, to thereby feed the dry gas DG2 through the gas feed line L4 to the sealing passage 3. When the seal device is arranged such that feeding of dry gas DG2 through the gas feed line L4 is constantly conducted, it is confirmed whether feeding of the dry gas DG2 is satisfactorily conducted. In a second step, the feed rate of the dry gas DG2 through the gas feed line L4 is controlled so that the relationship P4=P2, preferably P4>P2, is maintained even when the pressures P-1, P5-1, P5-2 and P5-3 vary. The control of the feed rate of the dry gas DG2 is conducted by using a controller (not shown) capable of detecting pressure.
Next, explanation is made with regard to CASE 3 (the valves 51 and 52 are closed at the same time), CASE 4 (the valve 52 is first closed, and then the valve 61 is closed) and CASE 5 (the valve 51 is first closed, and then the valve 52 is closed). The seal device of
In
However, it is preferred to use the gas feed line L4 provided with the valve 54. In this case, as described above, the valve 54 is controlled so as to control the feed rate of dry gas through the gas feed line L4 so that a pressure relationship P4=P2, preferably P4>P2, is obtained. Thereafter, the above-mentioned steps (1) to (5) are conducted. Finally, the valve 54 is closed, to thereby stop the feeding of the dry gas DG2 through the gas feed line L4.
Next, description is made with regard to how the problem which arises after stopping the seal device is solved by the present invention. CASES 6 and 7 involve a problem caused by deposition of a water component of a gas from the second space 2 on an inner wall surface of the first space 1. When a water component is deposited on an inner wall surface of the first space 1, the ultimate degree of vacuum in the first space 1 is markedly reduced, thus increasing a time required for restarting the entire apparatus.
To solve this problem, preferably, as shown in
In a case that the gas feed line L4 provided with the valve 54 is not provided, the dry gas DG1 is fed through the gas feed line L3 provided with the valve 53, while the flow rate of the dry gas DG1 is controlled such that the pressure P1 in the first space 1 becomes slightly higher than the pressure P2 in the second space 2.
The substrate processing apparatus according to this embodiment is substantially the same as that of
The substrate processing apparatus in this embodiment is shown in
In
In the substrate processing apparatuses shown in
When the non-contacting seal device stops operating, the respective control valves 46 and 48 of the evacuation line 45 and the dry gas feed line 47 are closed, to thereby disconnect the second chamber 7 from the evacuation line 45 and the dry gas feed line 47. Consequently, only a gas in the space 7 of the pressure P7 flows into the first vacuum chamber 1a. In other words, the substrate in the first vacuum chamber 1a is confined to a limited space. The gas filling the space 7 of the pressure P7 comprises a dry gas (such as dry air, dry oxygen, dry nitrogen, dry helium, etc.), and therefore has an extremely low moisture content. Therefore, even when the gas in the space 7 flows into the first vacuum chamber 1, a time required for regenerating a vacuum is relatively short.
The control valve 46 may be replaced with a check valve which allows a gas flowing from the space 7 within the cover 8 to the outside area of the cover, but prevents the gas from flowing into the space. By using such a check valve, even if the pressure in the space becomes lower than the pressure in the outside area of the cover, the gas is prevented from flowing into the space.
In the substrate processing apparatuses shown in
As has been described above, the present invention has the following advantageous effects.
In the present invention, a gas feed line for feeding dry gas is connected to the sealing passage, and the timing of starting/stopping the feeding of dry gas through the gas feed line and the timing of starting/stopping evacuation through the evacuation lines connected to the first space and the sealing passage are controlled. By this arrangement, it is possible to prevent a considerable amount of gas from flowing from the second space having a low degree of cleanliness to the first space having a high degree of cleanliness. It is also possible to suppress deposition of water on an inner wall surface of the first space, which is required to have high cleanliness, thus reducing the time required for regenerating a vacuum.
In the present invention, the gas feed line may be connected to the sealing passage at a position between the second space and the evacuation line located closest to the second space. With this arrangement, a flow of gas from the second space having low cleanliness to the first space having high cleanliness can be effectively suppressed.
In the present invention, the seal device is started in a predetermined operating sequence as recited in claim 6, to thereby prevent a considerable amount of gas from flowing from the second space into the first space. Therefore, it is possible to prevent a lowering of cleanliness of the first space, which would otherwise result from a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid a situation that due to a high humidity of the gas flowing into the first space, water is deposited on an inner wall surface of the first space thereby lowering the ultimate degree of vacuum. Further, it is possible to prevent clogging of the sealing passage which would otherwise result from entry of foreign matter contained in the second space into a small gap in the sealing passage.
In the present invention, the seal device is stopped in a predetermined operating sequence as recited in claim 7, to thereby prevent a considerable amount of gas from flowing from the second space into the first space. Therefore, it is possible to prevent a lowering of cleanliness of the first space, which would otherwise result from a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid a situation where water is deposited on an inner wall surface of the first space due to a high humidity of the gas flowing into the first space. Therefore, a time required for reproducing a vacuum can be made relatively short. Further, it is possible to prevent the sealing passage from becoming clogged due to entry of foreign matter contained in the second space into a small gap in the sealing passage.
In the present invention, after stopping of the seal device, dry gas is fed through the gas feed line and a flow rate of the dry gas fed through the gas feed line is controlled so that a pressure at a gas feed port of the gas feed line formed in the sealing passage is maintained at a level equal to or higher than a pressure in the second space. By using this arrangement, it is possible to prevent a lowering of cleanliness of the first space due to a flow of gas from the second space having low cleanliness into the first space having high cleanliness. Further, it is possible to avoid deposition of water on an inner wall surface of the first space due to a high humidity of the gas flowing into the first space. Therefore, the time required for regenerating a vacuum can be made relatively short.
In the present invention, the dry gas fed through the gas feed line may comprise substantially the same components as air and have a humidity of 5% or less. With this arrangement, a problem of deposition of water on an inner wall surface of the first space does not arise. Further, workers can enter the second space without any difficulties.
In the substrate processing apparatus of the invention recited in claim 10, it is possible to prevent a gas released from the drive device and a reverse flow or diffusion of gas from the vacuum system from being introduced into the first vacuum chamber in which a substrate is provided. Thus, cleanliness of the first vacuum chamber can be maintained at a satisfactory level. Therefore, the apparatus does not need frequent cleaning or maintenance.
In the substrate processing apparatus according to the invention recited in claim 11, even when the non-contacting seal device stops operating, there is no gas flow from an external environment, such as a clean room, into the vacuum chamber. Thus, the substrate processing apparatus is able to adapt in a case that an emergency stop of the seal device occurs, and the time for regenerating a vacuum in the vacuum chamber can thus be reduced. Further, there is no need to increase a wall-thickness of a cover or a housing for a chamber so as to maintain a predetermined small gap in the non-contacting seal portion. Consequently, the apparatus can be reduced in size, and made lightweight in construction.
In the substrate processing apparatus according to the invention recited in claim 12, it is possible to prevent a reverse flow or diffusion of gas from a vacuum system of the differential vacuum seal device, which would otherwise result in contamination of the first vacuum chamber. Consequently, cleanliness of the first vacuum chamber can be maintained at a satisfactory level, and the apparatus does not need frequent cleaning or maintenance.
Although the present invention has been described above in detail with reference to the drawings, the foregoing description is for explanatory purposes and not intended to limit characteristics. It should be understood that the foregoing description merely illustrates and explains preferred embodiments, and all modifications and changes within the scope of the spirit of the present invention are protected.
The entire disclosure of Japanese Patent Application No. 2002-103947 filed on Apr. 5, 2002 and No. 2002-254082 filed on Aug. 30, 2002 including specification, claims, drawings and summary is incorporated herein by reference in its entirety.
Claims
1. A substrate processing apparatus comprising:
- a first vacuum chamber in which a stage device is provided and a substrate loaded on said stage device is processed; and
- a second vacuum chamber provided separately from said first vacuum chamber, a drive element for driving said stage device being provided in said second vacuum chamber,
- wherein a pressure P1 in said first vacuum chamber and a pressure P2 in said second vacuum chamber are controlled so as to maintain a relationship P1≧P2.
2. A substrate processing apparatus comprising:
- a first chamber in which a stage device is provided and a substrate loaded on said stage device is processed; and
- a second chamber provided separately from said first chamber, a drive element for driving said stage device being provided in said second chamber,
- said first chamber being maintained in a vacuum and a non-contacting seal device being provided between said first chamber and said second chamber,
- wherein said second chamber is capable of being selectively connected to a supply source of dry gas, and a pressure in said second chamber is controlled to be equal to or approximate to atmospheric pressure by supplying and discharging the dry gas.
3. A substrate processing apparatus comprising:
- a first chamber in which a stage device is provided and a substrate loaded on said stage device is processed; and
- a second chamber provided separately from said first chamber, a drive element for driving said stage device being provided in said second chamber,
- said first chamber being maintained in a vacuum and a non-contacting seal device being provided between said first chamber and said second chamber,
- wherein said second chamber is capable of being selectively connected to a supply source of dry gas, and wherein when said non-contacting seal device is operated while said stage device is being driven, a pressure in said second chamber is controlled to be equal to or approximate to atmospheric pressure by supplying and discharging the dry gas, and when said non-contacting seal device is not operated, said second chamber is disconnected from said supply source of dry gas, and discharge of the gas from said second chamber is stopped.
4. A substrate processing apparatus according to claim 1, wherein said first chamber and said second chamber are communicated through a passage in which a plurality of spaced exhausting grooves of said non-contacting seal device are formed.
5. A substrate processing apparatus according to claim 2, wherein said first chamber and said second chamber are communicated through a passage in which a plurality of spaced exhausting grooves of said non-contacting seal device are formed.
6. A substrate processing apparatus according to claim 3, wherein said first chamber and said second chamber are communicated through a passage in which a plurality of spaced exhausting grooves of said non-contacting seal device are formed.
7. A substrate processing apparatus according to claim 4, wherein a member connecting a stage device disposed in said first chamber and drive element disposed in said second chamber extends through said passage.
8. A substrate processing apparatus according to claim 5, wherein a member connecting a stage device disposed in said first chamber and drive element disposed in said second chamber extends through said passage.
9. A substrate processing apparatus according to claim 6, wherein a member connecting a stage device disposed in said first chamber and drive element disposed in said second chamber extends through said passage.
10. A substrate processing apparatus comprising:
- a first chamber in which a stage device is provided and a substrate loaded on said stage device is processed; and
- a second chamber provided separately from said first chamber, a drive element for driving said stage device being provided in said second chamber,
- said first chamber being maintained in a vacuum and a differential vacuum seal device comprising a plurality of vacuum grooves being provided between said first chamber and said second chamber,
- wherein of said plurality of vacuum grooves of said differential vacuum seal device, the vacuum groove which is located closest to said first chamber has an internal pressure lower than or equal to a pressure in said first chamber.
11. A substrate processing apparatus according to claim 10, wherein said differential exhausting seal is disposed in a passage communicating said first chamber with said second chamber, and a member connecting said stage device and said drive element extends through said passage.
Type: Application
Filed: Jan 26, 2007
Publication Date: Jun 21, 2007
Applicant: EBARA CORPORATION (Ohta-ku)
Inventor: Hiroyuki Shinozaki (Kamakura-shi)
Application Number: 11/698,061
International Classification: H01L 21/677 (20060101);