CROSS REFERENCE TO RELATED APPLICATIONS This application is a divisional of U.S. application Ser. No. 10/371,905, filed on Feb. 20, 2003 which claims the benefit of U.S. Provisional No. 60/358,873, filed on Feb. 22, 2002 and U.S. Provisional No. 60/358,875, filed on Feb. 22, 2002 and U.S. Provisional No. 60/363,020, filed on Mar. 8, 2002 and claims priority to GB0208404.4, filed Apr. 12, 2002, which are hereby incorporated by reference herein in their entireties.
BACKGROUND OF THE INVENTION The role of ubiquitin in protein degradation was discovered and the main enzymatic reactions of this system elucidated in biochemical studies in a cell-free system from reticulocytes. In this system, proteins are targeted for degradation by covalent ligation to ubiquitin, a 76-amino-acid-residue protein. Briefly, ubiquitin-protein ligation requires the sequential action of three enzymes. The C-terminal Gly residue of ubiquitin is activated in an ATP-requiring step by a specific activating enzyme, E1 (Step 1). This step consists of an intermediate formation of ubiquitin adenylate, with the release of PPi, followed by the binding of ubiquitin to a Cys residue of E1 in a thiolester linkage, with the release of AMP. Activated ubiquitin is next transferred to an active site Cys residue of a ubiquitin-carrier protein, E2 (Step 2). In the third step catalyzed by a ubiquitin-protein ligase or E3 enzyme, ubiquitin is linked by its C-terminus in an amide isopeptide linkage to an -amino group of the substrate protein's Lys residues (Step 3).
Proteins ligated to polyubiquitin chains are usually degraded by the 26S proteasome complex that requires ATP hydrolysis for its action. The 26S proteasome is formed by an ATP-dependent assembly of a 20S proteasome, a complex that contains the protease catalytic sites, with 19S “cap” or regulatory complexes. The 19S complexes contain several ATPase subunits and other subunits that are presumably involved in the specific action of the 26S proteasome on ubiquitinylated proteins. The roles of ATP in the assembly of the 26S proteasome complex and in its proteolytic action are not understood. The action of the 26S proteasome presumably generates several types of products: free peptides, short peptides still linked to ubiquitin via their Lys residues, and polyubiquitin chains (Step 4). The latter two products are converted to free and reusable ubiquitin by the action of ubiquitin-C-terminal hydrolases or isopeptidases (Steps 5 and 6). Some isopeptidases may also disassemble certain ubiquitin-protein conjugates (Step 7) and thus prevent their proteolysis by the 26S proteasome. The latter type of isopeptidase action may have a correction function to salvage incorrectly ubiquitinylated proteins or may have a regulatory role. Short peptides formed by the above processes can be further degraded to free amino acids by cytosolic peptidases (Step 8).
Ubiquitin-mediated degradation of protein is involved in various biological processes. The selective and programmed degradation of cell-cycle regulatory proteins, such as cyclins, inhibitors of cyclin-dependent kinases, and anaphase inhibitors are essential events in cell-cycle progression. Cell growth and proliferation are further controlled by ubiquitin-mediated degradation of tumor suppressors, protooncogenes, and components of signal transduction systems. The rapid degradation of numerous transcriptional regulators is involved in a variety of signal transduction processes and responses to environmental cues. The ubiquitin system is clearly involved in endocytosis and down-regulation of receptors and transporters, as well as in the degradation of resident or abnormal proteins in the endoplasmic reticulum. There are strong indications for roles of the ubiquitin system in development and apoptosis, although the target proteins involved in these cases have not been identified. Dysfunction in several ubiquitin-mediated processes causes pathological conditions, including malignant transformation.
Our knowledge of different signals in proteins that mark them for ubiquitinylation is also limited. Recent reports indicate that many proteins are targeted for degradation by phosphorylation. It was observed previously that many rapidly degraded proteins contain PEST elements, regions enriched in Pro, Glu, Ser, and Thr residues. More recently, it was pointed out that PEST elements are rich in S/TP sequences, which are minimum consensus phosphorylation sites for Cdks and some other protein kinases. Indeed, it now appears that in several (though certainly not all) instances, PEST elements contain phosphorylation sites necessary for degradation. Thus multiple phosphorylations within PEST elements are required for the ubiquitinylation and degradation of the yeast G1 cyclins Cln3 and Cln2, as well as the Gcn4 transcriptional activator. Other proteins, such as the mammalian G1 regulators cyclin E and cyclin D1, are targeted for ubiquitinylation by phosphorylation at specific, single sites. In the case of the IkBα inhibitor of the NF-kB transcriptional regulator, phosphorylation at two specific sites, Ser-32 and Ser-36, is required for ubiquitin ligation. β-cateinin, which is targeted for ubiquitin-mediated degradation by phosphorylation, has a sequence motif similar to that of IkBα around these phosphorylation sites. However, the homology in phosphorylation patterns of these two proteins is not complete, because phosphorylation of other sites of β-cateinin is also required for its degradation. Other proteins targeted for degradation by phosphorylation include the Cdk inhibitor Siclp and the STAT1 transcription factor. Though different patterns of phosphorylation target different proteins for degradation, a common feature appears to be that the initial regulatory event is carried out by a protein kinase, while the role of a ubiquitin ligase would be to recognize the phosphorylated form of the protein substrate. It further appears that different ubiquitin ligases recognize different phosphorylation patterns as well as additional motifs in the various protein substrates. However, the identity of such E3s is unknown, except for some PULC-type ubiquitin ligases that act on some phosphorylated cell-cycle regulators in the budding yeast. The multiplicity of signals that target proteins for ubiquitin-mediated degradation (and of ligases that have to recognize such signals) is underscored by observations that the phosphorylation of some proteins actually prevents their degradation. Thus the phosphorylation of the c-Mos protooncogene on Ser3 and the multiple phosphorylations of c-Fos and c-Jun protooncogenes at multiple sites by MAP kinases suppress their ubiquitinylation and degradation.
In addition to the families of enzymes involved in conjugation of ubiquitin, a very large family of deubiquitinating enzymes has recently been identified from various organisms. These enzymes have several possible functions. First, they may have peptidase activity and cleave the products of ubiquitin genes. Ubiquitin is encoded by two distinct classes of genes. One is a polyubiquitin gene, which encodes a linear polymer of ubiquitins linked through peptide bonds between the C-terminal Gly and N-terminal Met of contiguous ubiquitin molecules. Each copy of ubiquitin must be released by precise cleavage of the peptide bond between Gly-76-Met-1 of successive ubiquitin moieties. The other class of ubiquitin genes encodes ubiquitin C-terminal extension proteins, which are peptide bond fusions between the C-terminal Gly of ubiquitin and N-terminal Met of the extension protein. To date, the extensions described are ribosomal proteins consisting of 52 or 76-80 amino acids. These ubiquitin fusion proteins are processed to yield ubiquitin and the corresponding C-terminal extension proteins. Second, deubiquitinating enzymes may have isopeptidase activities. When a target protein is degraded, deubiquitinating enzymes can cleave the polyubiquitin chain from the target protein or its remnants. The polyubiquitin chain must also be disassembled by deubiquitinating enzymes during or after proteolysis by the 26 S proteasome, regenerating free monomeric ubiquitin. In this way, deubiquitinating enzymes can facilitate the ability of the 26 S proteasome to degrade ubiquitinated proteins. Third, deubiquitinating enzymes may hydrolyze ester, thiolester, and amide linkages to the carboxyl group of Gly-76 of ubiquitin. Such nonfunctional linkages may arise from reactions between small intracellular compounds such as glutathione and the E1-, E2-, or E3-ubiquitin thiolester intermediates. Fourth, deubiquitinating enzymes may compete with the conjugating system by removing ubiquitin from protein substrates, thereby rescuing them from degradation or any other function mediated by ubiquitination. Thus generation of ubiquitin by deubiquitinating enzymes from the linear polyubiquitin and ubiquitin fusion proteins and from the branched polyubiquitin ligated to proteins should be essential for maintaining a sufficient pool of free ubiquitin. Many deubiquitinating enzymes exist, suggesting that these deubiquitinating enzymes recognize distinct substrates and are therefore involved in specific cellular processes. Although there is recent evidence to support such specificity of these deubiquitinating enzymes, the structure-function relationships of these enzymes remain poorly studied.
Deubiquitinating enzymes can be divided broadly on the basis of sequence homology into two classes, the ubiquitin-specific processing protease (UBP or USP, also known as type 2 ubiquitin C-terminal hydrolase (type 2 UCH)) and the UCH, also known as type 1 UCH). UCH (type 1 UCH) enzymes hydrolyze primarily C-terminal esters and amides of ubiquitin but may also cleave ubiquitin gene products and disassemble polyubiquitin chains. They have in common a 210-amino acid catalytic domain, with four highly conserved blocks of sequences that identify these enzymes. They contain two very conserved motifs, the CYS and HIS boxes. Mutagenesis studies revealed that the two boxes play important roles in catalysis. Some UCH enzymes have significant C-terminal extensions. The functions of the C-terminal extensions are still unknown but appear to be involved in proper localization of the enzyme. The active site of these UCH enzymes contains a catalytic triad consisting of cysteine, histidine, and aspartate and utilizes a chemical mechanism similar to that of papain. The crystal structure of one of these, UCH-L3, has been solved at 1.8 Å resolution. The enzyme comprises a central antiparallel β-sheet flanked on both sides by helices. The β-sheet and one of the helices are similar to those observed in the thiol protease cathepsin B. The similarity includes the three amino acid residues that comprise the active site, Cys95, His169, and Asp184. The active site appears to fit the binding of ubiquitin that may anchor also at an additional site. The catalytic site in the free enzyme is masked by two different segments of the molecule that limit nonspecific hydrolysis and must undergo conformational rearrangement after substrate binding.
UBP (type 2 UCH) enzymes are capable of cleaving the ubiquitin gene products and disassembling polyubiquitin chains after hydrolysis. It appears that there is a core region of about 450 amino acids delimited by CYS and HIS boxes. Many of these isoforms have N-terminal extensions and a few have C-terminal extensions. In addition, there are variable sequences in the core region of many of the isoforms. The functions of these divergent sequences remain poorly characterized. Another interesting function of specific UBPs is the regulation of cell proliferation. It was observed that cytokines induced in T-cells specific de-ubiquitinating enzymes (DUBs), termed DUB-1 and DUB-2. DUB-1 is induced by stimulation of the cytokine receptors for IL-3, IL-5, and GM-CSF, suggesting a role in its induction for the β-common (betac) subunit of the interleukin receptors. Overexpression of a dominant negative mutant of JAK2 inhibits cytokine induction of DUB-1, suggesting that the regulation of the enzyme is part of the cell response to the JAK/STAT signal transduction pathway. Continued expression of DUB-1 arrests cells at G1; therefore, the enzyme appears to regulate cellular growth via control of the G0-G1 transition. The catalytic conserved Cys residue of the enzyme is required for its activity. DUB-2 is induced by IL-2 as an immediate early (IE) gene that is down-regulated shortly after the initiation of stimulation. The function of this enzyme is also obscure. It may stimulate or inhibit the degradation of a critical cell-cycle regulator.
Cytokines, such as interleukin-2 (IL-2), activate intracellular signaling pathways via rapid tyrosine phosphorylation of their receptors, resulting in the activation of many genes involved in cell growth and survival. The deubiquitinating enzyme DUB-2 is induced in response to IL-2 and is expressed in human T-cell lymphotropic virus-I (HTLV-1)-transformed T cells that exhibit constitutive activation of the IL-2 JAK/STAT (signal transducers and activators of transcription) pathway, and when expressed in Ba/F3 cells DUB-2 markedly prolonged IL-2-induced STAT5 phosphorylation. Although DUB-2 does not enhance IL-2-mediated proliferation, when withdrawn from growth factor, cells expressing DUB-2 had sustained STAT5 phosphorylation and enhanced expression of IL-2-induced genes cis and c-myc. DUB-2 expression markedly inhibited apoptosis induced by cytokine withdrawal allowing cells to survive. Therefore, DUB-2 has a role in enhancing signaling through the JAK/STAT pathway, prolonging lymphocyte survival, and, when constitutively expressed, may contribute to the activation of the JAK/STAT pathway observed in some transformed cells. (Migone, T.-S., et al., Blood. 2001; 98:1935-1941).
Protein ubiquitination is an important regulator of cytokine-activated signal transduction pathways and hematopoietic cell growth. Protein ubiquitination is controlled by the coordinate action of ubiquitin-conjugating enzymes and deubiquitinating enzymes. Recently a novel family of genes encoding growth-regulatory deubiquitinating enzymes (DUB-1 and DUB-2) has been identified. DUBs are immediate-early genes and are induced rapidly and transiently in response to cytokine stimuli. By means of polymerase chain reaction amplification with degenerate primers for the DUB-2 complementary DNA, 3 murine bacterial artificial chromosome (BAC) clones that contain DUB gene sequences were isolated. One BAC contained a novel DUB gene (DUB-2A) with extensive homology to DUB-2. Like DUB-1 and DUB-2, the DUB-2A gene consists of 2 exons. The predicted DUB-2A protein is highly related to other DUBs throughout the primary amino acid sequence, with a hypervariable region at its C-terminus. In vitro, DUB-2A had functional deubiquitinating activity; mutation of its conserved amino acid residues abolished this activity. The 5′ flanking sequence of the DUB-2A gene has a hematopoietic-specific functional enhancer sequence. It is proposed that there are at least 3 members of the DUB subfamily (DUB-1, DUB-2, and DUB-2A) and that different hematopoietic cytokines induce specific DUB genes, thereby initiating a cytokine-specific growth response. (Baek, K.-H., et al, Blood. 2001; 98:636-642).
Protein ubiquitination also serves regulatory functions in the cell that do not involve proteasome-mediated degradation. For example, Hicke and Riezman have recently demonstrated ligand-inducible ubiquitination of the Ste2 receptor in yeast. Ubiquitination of the Ste2 receptor triggers receptor endocytosis and receptor targeting to vacuoles, not proteasomes. Also, Chen et al. have demonstrated that activation of the IB kinase requires a rapid, inducible ubiquitination event. This ubiquitination event is a prerequisite for the specific phosphorylation of IB and does not result in subsequent proteolysis of the kinase complex. The ubiquitination of Ste2 and IB kinase appears reversible, perhaps resulting from the action of a specific deubiquitinating enzyme.
A large superfamily of genes encoding deubiquitinating enzymes, or UBPs, has recently been identified. UBPs are ubiquitin-specific thiol-proteases that cleave either linear ubiquitin precursor proteins or post-translationally modified proteins containing isopeptide ubiquitin conjugates. The large number of UBPs suggests that protein ubiquitination, like protein phosphorylation, is a highly reversible process that is regulated in the cell.
Interestingly, UBPs vary greatly in length and structural complexity, suggesting functional diversity. While there is little amino acid sequence similarity throughout their coding region, sequence comparison reveals two conserved domains. The Cys domain contains a cysteine residue that serves as the active enzymatic nucleophile. The His domain contains a histidine residue that contributes to the enzyme's active site. More recent evidence demonstrates six homology domains contained by all members of the ubp superfamily. Mutagenesis of conserved residues in the Cys and His domains has identified several residues that are essential for UBP activity.
Recently, a growth regulatory deubiquitinating enzyme, DUB-1, that is rapidly induced in response to cytokine receptor stimulation was identified. DUB-1 is specifically induced by the receptors for IL-3, granulocyte macrophage-colony-stimulating factor, and IL-5, suggesting a specific role for the c subunit shared by these receptors. In the process of cloning the DUB-1 gene, a family of related, cross-hybridizing DUB genes was identified. From this, other DUB genes might be induced by different growth factors. Using this approach, an IL-2-inducible DUB enzyme, DUB-2 and closely related DUB-2a were identified. DUB-1 and DUB-2 are more related to each other than to other members of the ubp superfamily and thereby define a novel subfamily of deubiquitinating enzymes.
Hematopoietic-specific, cytokine induced DUBs in murine system have shown to prolong cytokine receptor, see Migone, T. S., et al. (2001). The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood 98, 1935-41; Zhu, Y., et al., (1997). DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes, J Biol Chem 272, 51-7 and Zhu, Y., et al., (1996). The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor, Mol Cell Biol 16, 4808-17.). These effects are likely due to the deubiquitination of receptors or other signaling intermediates by DUB-1 or DUB-2, murine analogs of hDUBs. Inhibition of hDUBs may achieve downregulation of specific cytokine receptor signaling, thus modulating specific immune responses.
Cytokines regulate cell growth by inducing the expression of specific target genes. A recently identified a cytokine-inducible, immediate-early gene, DUB-1, encodes a deubiquitinating enzyme with growth regulatory activity. In addition, a highly related gene, DUB-2, that is induced by interleukin-2 was identified. The DUB-2 mRNA was induced in T cells as an immediate-early gene and was rapidly down-regulated. Like DUB-1, the DUB-2 protein had deubiquitinating activity in vitro. When a conserved cysteine residue of DUB-2, required for ubiquitin-specific thiol protease activity, was mutated to serine (C60S), deubiquitinating activity was abolished. DUB-1 and DUB-2 proteins are highly related throughout their primary amino acid sequence except for a hypervariable region at their COOH terminus. Moreover, the DUB genes co-localize to a region of mouse chromosome 7, suggesting that they arose by a tandem duplication of an ancestral DUB gene. Additional DUB genes co-localize to this region, suggesting a larger family of cytokine-inducible DUB enzymes. We propose that different cytokines induce specific DUB genes. Each induced DUB enzyme thereby regulates the degradation or the ubiquitination state of an unknown growth regulatory factor, resulting in a cytokine-specific growth response.
On the basis of these structural criteria, additional members of the DUB subfamily can be identified in the GenBank™. The highest degree of homologyis in the Cys and His domains. Additionally, this putative human DUB protein contains a Lys domain (amino acids 400-410) and a hypervariable region (amino acids 413-442).
Murine DUB (mDUB) subfamily members differ from other UBPs by functional criteria as well. mDUB subfamily members are cytokine-inducible, immediate-early genes and may therefore play regulatory roles in cellular growth or differentiation. Also, DUB proteins are unstable and are rapidly degraded by ubiquitin-mediated proteolysis shortly after their induction.
mDUB reports demonstrate that specific cytokines, such as IL-2 and IL-3, induce specific deubiquitinating enzymes (DUBs). The DUB proteins may modify the ubiquitin-proteolytic pathway and thereby mediate specific cell growth or differentiation signals. These modifications are temporally regulated. The DUB-2 protein, for instance, is rapidly but transiently induced by IL-2. Interference of DUB enzymes with specific isopeptidase inhibitors may block specific cytokine signaling events.
Defensins constitute a major family of antimicrobial peptides in mammals. Depending on the distribution of the cysteines and the linkages of the disulfide bonds, human defensins can be divided into two categories: α-defensins, which can be found in granulocytes and in epithelial cells of the small intestine, and β-defensins, which are expressed by epithelial cells and leukocytes including macrophages. Some defensins are expressed constitutive manner in granulocytes and epithelial cells where as others are induces by either exposure to microbial pathogens or pro-inflammatory cytokines such as IL-1β, TNF-α and interferon-γ. The genes coding for human defensins are clustered within 1 Mb segment on chromosome 8P23, and it has been suggested that β-defensins may predate the a-defensin family during recent gene amplification since α-defensin cannot be detected even in many mammalians including cow. Cow has at least 13 β-defensins but no α-defensin. β-defensins contribute to early host defense against several bacterial and fungal pathogens, as an important mechanism of innate immune response. Beside this antimicrobial activity, a chemoattractant activity on both immature dentritic cells and memory T cells, as well as monocytes, has been recently described, demonstrating that β-defensins may promote both innate and adaptive immune response.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: Proposed enzyme reaction mechanism of DUB-
SUMMARY OF THE INVENTION The present invention is directed to analogs of murine DUBs, hematopoietic-specific, cytokine-inducible deubiquitinating proteases found as a cluster of genes on chromosomes 4 and 8 and respective regulatory regions. Eleven novel human DUBs and four potential genes that express truncated form of DUBs not previously reported in public databases were identified by searching human genome database using murine DUB-1 and DUB-2 sequences. These genes share open reading frames (ORFs) that are 88 to 99% amino acid identity to each other, when gaps caused by deletion and N-terminal and/or C-terminal extension was not counted as mismatch, and exhibit approximately 50% identity to murine DUBs. Eight of eleven ORFs generate a protein of 530 amino acids. Two ORFs (hDUB8.3 and hDUB8.11) have internal in-frame deletions such that the genes are capable of generating 497 and 417 amino acid long polypeptides, respectively. One ORF (hDUB4.5) exhibits extension at both 5′ and 3′ end of the ORF so that the gene is capable of expressing 574 amino acid long polypeptide. Surprisingly, this 5′ extension results in specific pro-polypeptide sequence that can direct polypeptide targeting to the mitochondria. Furthermore, the respective regulatory regions, putative promoters, of these genes also share close to 90% identity each other suggesting that their expression is coordinated. In addition, we found that two of these genes can be expressed under the control of separate promoters that can be controlled independently and expressing potentially distinctive protein products.
Manipulation of these gene products by small molecular compounds can (1) reduce inflammation by regulating proinflammatory cytokine signaling, (2) modulate autoimmune diseases by regulating cytokine receptor signaling that are critical for lymphocytes proliferation, and (3) immune over-reaction during infection using above mechanisms.
Two of cluster genes (hDUB4.1 and hDUB4.2) possesses two distinctive promoter domains in front of their ORFs such that they can be regulated independently in their transcription potential. The longer transcripts of these ORFs (called hDUB4.1a and hDUB4.2a) has 12 and 4 exons respectively and capable of generating 1016 and 1021 amino acid long polypeptides, respectively. These polypeptides share C-terminal 530 amino acids with their shorter form that can be expressed separately from independent promoters (called hDUB4.1b and hDUB4.2b, respectively). In addition, two other ORFs are capable of generating longer than 530 amino acid polypeptides (hDUB4.10 and hDUB4.11). Remarkably, these two deduced polypeptides shares significant homology within portion of N-terminal portions (I added alignment file of these at the end of sequence file). Three of the ORFs (hDUB4.5, 4.8, and 8.2) has N-terminal insertion that is typical for mitochondria targeting sequence. An alignment of these sequences is provide in the Tables. The promoter sequences defined as upstream of initiation ATG of the ORF exhibit remarkable level of homology each other except that of hDUB4.1a. The sequence identity among all promoter sequences except that of hDUB4.1a is approximately 90% in 2000 base pair span upstream of initiation ATG. Two of the promoter sequences (hDUB8.3 and 8.11) have 334 nucleotides insertion at approximately 1000 base pair upstream of initiation ATG. Interestingly, hDUB8.3 and hDUB8.11 are the only ones with shorter ORFs due to the internal deletions. In addition to these ORFs, there are 5 ORFs that are capable of expressing polypeptides (hDUB4.4, hDUB4.9, hDUB8.2, hDUB8.9, and hDUB8.10) that share initiation codon with other 530 amino acid long polypeptides but terminate prematurely due to the in frame termination sequences. These also shares significant homology upstream of ATG initiation codon suggesting they may expressed as truncated proteins, potential regulatory functions. All 11 hDUB8 genes are clustered with the defensin clusters within 2 Mb region in 8P23, implying that both acquisition and amplification are relatively recent event, perhaps during mammalian evolution. It is of interest that hDUB4 gene cluster is also in highly amplified cluster region of chromosome 4P16 that is yet to be assigned in chromosome location. These data suggest that hDUB4s and hDUB8s are within very dynamic region of the human chromosomes (both 4p 16 and 8p23) that are undergoing volatile amplifications. The data also suggest that expression of hDUB8 may also be coordinated in conjunction with defensins that are critical components of innate immune response and inflammation.
Search Methods for Identifying Human Analogs of mDUBs:
In order to identify human analogs of mDUB1, -2, -2A, mDUB1 (U41636), mDUB2 (NM—010089), and mDUB2A (AF393637) DNA sequences were used to search against Ensembl entire “golden path” (as contigs) using Ensembl blast search engine (http://www.ensembl.org/perl/blastview). All three mDUBs have significant alignments with contig AC083981, AF252831, AF228730, AF252830, AC068974 on chromosome 8 with the high score above 2000 and the probability less than e-87. In order to find all the homolog genes in the genome, exhaust search was performed using genomic aligned sequence to search against the “golden path” contigs. Two more contigs were found to have significant alignment that has probability less than e-100: one is AC074340 on chromosome 8 and the other is AC022770 on chromosome 4.
DNA sequences for contig AC083981, AF252831, AF228730, AF252830, AC068974, AC074340 and AC022770 were downloaded from Ensembl and gene annotation for each contig was performed using GenScan gene annotation program. Genes having homolog with mDUBs were named in sequence based on their locations on chromosomes.
For example, hDUB8.1 was derived from AF228730, 8.2, 8.3 were derived from AF252830, 8.5 were derived from AC074340, 8.6 were derived from AF252831, 8.7, 8.8 and 8.9 were derived from AC083981, and 8.10 and 8.11 were derived from AC068974. hDUB4.1, 4.2, 4.3, 4.4, 4.5 were derived from AC022770 on chromosome 4.
Using these hDUB4s and hDUB8s, both Ensemble and NCBI blast search was performed. Further contig NT—028165 that covers chromosome 4 was identified. From this and already assembled chromosome 4p16.1 region, further annotation was performed using GenScan gene annotation program. From this we identified hDUB4.6, 4.7, 4.8, 4.9, 4.10, and 4.11.
Analysis of the hDUB gene clusters in chromosome 4 reveals that at least five ORFs in an unmapped cOntig (AC022770) were identified by nucleotide homology search with murine DUB1 and 2. At least four out of five ORFs share core 530 amino acid sequences. Two ORFs (hDUB4.1 and hDUB4.2) are multi-exon ORFs that extend N-terminal part of polypeptides that shares minimal sequence identity. However, there is a conserved putative promoter sequences that encompass over 2,000 bases in the intron region proximal to the last exon that is conserved among all 5 genes. Three of the ORFs (hDUB4.5, 4.8, and 8.2) has N-terminal insertion that is typical for mitochondria targeting sequence. The hDUB genes cluster in 4P16 of the human chromosome, which is an unmapped part of the human chromosome.
Analysis of the hDUB gene clusters in chromosome 8 reveals that at least eleven ORFs in six different contigs (AC068974, AC074340, AC083981, AF228730, AF252830, and AF252831) were identified by nucleotide homology search with murine DUB1 and 2. At least seven out of eleven ORFs share significant identities with similar length. There are conserved putative promoter sequences that encompass over 2,000 bases in all 11 genes. The hDUB genes cluster in 8P23.1 of the human chromosome and clustered with defensin molecules (at lease 9 defensins are clustered with hDUB8s) and the whole domain belongs the olfactory GPCR cluster.
Analysis of the deduced amino acid sequences of the hDUBs reveals polypeptides consistent with mDUBs, which contain highly conserved Cys and His domains that are likely to form the enzyme's active site. The putative active site nucleophile of mDUB-2 is a cysteine residue (Cys−60) in the Cys domain. Both mDUB-1 and mDUB-2 have a lysine rich region (Lys domain; amino acids 374-384 of mDUB-2) and a short hypervariable region (amino acids 385-451 of mDUB-2), in which the mDUB-1 and mDUB-2 sequences diverge considerably. The hypervariable (HV) region of mDUB-2 contains a duplication of the eight-amino acid sequence: PQEQNHQK (Seq ID No. 55).
The protein and nucleotide sequences named in this invention and their corresponding Sequence ID No are set forth as following:
Nucleotide Sequence for hDUB4.1a: Seq ID No. 3
hDUB4.1a deduced polypeptide sequence: Seq ID No. 4
Nucleotide Sequence for hDUB4.1b: Seq ID No. 5
hDUB4.1b deduced polypeptide sequence: Seq ID No. 6
Nucleotide Sequence for hDUB4.2a: Seq ID No. 7
hDUB4.2a deduced polypeptide sequence: Seq ID No. 8
Nucleotide Sequence for hDUB4.2b: Seq ID No. 9
hDUB4.2b deduced polypeptide sequence: Seq ID No. 10
Nucleotide Sequence for hDUB4.3: Seq ID No. 11
hDUB4.3 deduced polypeptide sequence: Seq ID No. 12
Nucleotide Sequence for hDUB4.5: Seq ID No. 13
hDUB4.5 deduced polypeptide sequence: Seq ID No. 14
Nucleotide Sequence for hDUB4.6: Seq ID No. 15
hDUB4.6 deduced polypeptide sequence: Seq ID No. 16
Nucleotide Sequence for hDUB4.7: Seq ID No. 17
hDUB4.7 deduced polypeptide sequence: Seq ID No. 18
Nucleotide Sequence for hDUB4.8: Seq ID No. 19
hDUB4.8 deduced polypeptide sequence: Seq ID No. 20
Nucleotide Sequence for hDUB4.10: Seq ID No. 21
hDUB4.10 deduced polypeptide sequence: Seq ID No. 22
Nucleotide Sequence for hDUB4.11: Seq ID No. 23
hDUB4.11 deduced polypeptide sequence: Seq ID No. 24
Nucleotide Sequence for hDUB8.1: Seq ID No. 25
hDUB8.1 deduced polypeptide sequence: Seq ID No. 26
Nucleotide Sequence for hDUB8.3: Seq ID No. 27
hDUB8.3 deduced polypeptide sequence: Seq ID No. 28
Nucleotide Sequence for hDUB8.5: Seq ID No. 29
hDUB8.5 deduced polypeptide sequence: Seq ID No. 30
Nucleotide Sequence for hDUB8.6: Seq ID No. 31
hDUB8.6 deduced polypeptide sequence: Seq ID No. 32
Nucleotide Sequence for hDUB8.7: Seq ID No. 33
hDUB8.7 deduced polypeptide sequence: Seq ID No. 34
Nucleotide Sequence for hDUB8.8: Seq ID No. 35
hDUB8.8 deduced polypeptide sequence: Seq ID No. 36
Nucleotide Sequence for hDUB8.11: Seq ID No. 37
hDUB8.11 deduced polypeptide sequence: Seq ID No. 38
Nucleotide Sequence for hDUB4.4: Seq ID No. 39
hDUB4.4 deduced polypeptide sequence: Seq ID No. 40
Nucleotide Sequence for hDUB4.9: Seq ID No. 41
hDUB4.9 deduced polypeptide sequence: Seq ID No. 42
Nucleotide Sequence for hDUB8.2: Seq ID No. 43
hDUB8.2 deduced polypeptide sequence: Seq ID No. 44
Nucleotide Sequence for hDUB8.9: Seq ID No. 45
hDUB8.9 deduced polypeptide sequence: Seq ID No. 46
Nucleotide Sequence for hDUB8.10: Seq ID No. 47
hDUB8.10 deduced polypeptide sequence: Seq ID No. 48
Promoter sequence for hDUB4.6: Seq ID No. 49
Promoter sequence for hDUB4.7: Seq ID No. 50
Promoter sequence for hDUB4.8: Seq ID No. 51
Promoter sequence for hDUB4.9: Seq ID No. 52
Promoter sequence for hDUB4.10: Seq ID No. 53
Promoter sequence for hDUB4.11: Seq ID No. 54
TaqMan Real Time PCR Analysis of Expression of hDUB4s and hDUB8s in Human Immunocytes Upon Various Stimulation
Protocol of reverse transcription (RT) from total cellular RNA using random hexamer as primer (using TaqMan Reverse Transcription Reagents Cat# N808-0234)
1 ug of total RNA preparation in 100 ul of 1×TaqMan RT Buffer Mix, 5.5 mM MgCl2, 0.5 mM dNTPs, 2.5 uM Random Hexamers, 40 U RNAse inhibitor, 125U Multiscribe Reverse Transcriptase. Mix by pipeting up and down. Incubate 25° C. for 10 minutes (annealing step), 48° C. for 30 minutes (reverse transcription), and 95° C. for 5 minutes (heat killing of the enzyme). The samples can be left at the machine at 4° C., or alternatively, can be stored at −20° C. Yield of cDNA synthesis can be measured by incorporation of small portion of radioactive dATP (or dCTP). Average efficiency for this protocol is between 60-80% of conversion of RNA to cDNA.
Protocol of TaqMan Real-Time Quantitative PCR
1 ul of TaqMan RT product in 12.5 ul of 1× master Mix (Applied Biosystems Cat# 4304437) containing all necessary reaction components except primers and probes, 0.9 uM forward primer, 0.9 uM reverse primer, 0.2 uM probe. Mix by pipetting up and down. Samples containing GADPH primer pair and probe were also prepared as control. Thermal cycling and detection of the real-time amplification were performed using the ABI PRISM 7900HT Sequence Detection System. The quantity of target gene is given relative to the GADPH control based on Ct values determined during the exponential phase of PCR.
Primer-Probe Sets Used and their Specificities:
Primer 4.1 is unique for hDUB 4.1
Primer 4.2 covers hDUB 4.2, 4.3, 4.5 and 8.1
Primer 8.3 covers hDUB 8.3 and 8.11
Primer 8.5 is unique for hDUB 8.5
Primer 8.6 covers hDUB 8.6, 8.7 and 8.8 TABLE 1
Expression of hDUBs in PBMC stimulated with LPS (100 ng/ml) and
PHA (5 μg/ml) for 7 hours.
Donor 1
Fold- Donor 2
Upregulation Relative Fold-Upregulation Relative
Primer upon stimulation expression upon stimulation expression
4.1 2.2 1 3.8 1
4.2 2.0 21000 2.0 16400
8.3 1.8 5560 1.8 5500
8.5 2.1 80 3.1 310
8.6 2.6 19200 3.0 23000
TABLE 2
Expression of hDUBS in PBMC stimulated with LPS
(100 ng/ml) for 1.5, 7 and 24 hours (DONOR 4)
1.5 hours 7 hours 24 hours
Fold- Fold- Fold-
Upregulation Upregulation Upregulation
upon Relative upon Relative upon Relative
Primer stimulation expression stimulation expression stimulation expression
4.2 2.4 64 336 35.2 1.8 12.5
8.3 0.4 1 13.1 1 1.7 1
8.5 1.6 11 65.9 4.8 1.5 1.8
TABLE 3
Expression of DUBs in PBMC stimulated with LPS (100 ng/ml)
and/or PHA (5 ug/ml) for 1.5, 7, 24 hours (donor 4)
1.5 hours 7 hours 24 hours
Fold- Fold- Fold-
Upregulation Upregulation Upregulation
upon Relative upon Relative upon Relative
Stimuli stimulation expression stimulation expression stimulation expression
LPS 4.2 0.4 39 2.5 54 1.6 48
8.3 0.5 5 1.6 6 1.1 7
8.5 0.9 1 1.5 1.7 1.4 2
8.6 0.6 26 1.7 57 1.0 21
PHA 4.2 3.5 367 4.4 94 0.9 26
8.3 1.5 13 1.7 6 0.7 5
8.5 1.9 2 0.9 1 0.7 1
8.6 2.3 103 2.5 23 0.8 17
LPS + PHA 4.2 1.2 129 3.4 73 0.8 23
8.3 1.0 9 2.2 8 0.7 5
8.5 1.0 1 0.9 1.3 0.9 1.2
8.6 1.3 56 2.5 33 0.8 18
There is no increase of expression in T lymphocytes (donor 5) and B lymphocytes (donor 6) when stimulated with anti-CD4/CD28 and anti-CD40/IL-4, respectively. TABLE 4
Expression of hDUB 4.2, 4.3, 4.5 and 8.1 examined by primer 4.2 in
different human organ panel by TaqMan analysis.
β2
Tissue Type Mean Mean ∂∂ Ct Expression
Adrenal Gland 29.72 20.00 10.08 0.92
Bone marrow 34.02 20.49 13.89 0.07
Brain 26.92 22.73 4.54 42.84
Colon 32.03 19.97 12.42 0.18
Fetal Brain 27.59 24.23 3.71 76.15
Fetal Liver 33.22 22.58 10.99 0.49
Heart 33.09 21.60 11.85 0.27
Kidney 29.93 21.97 8.32 3.13
Lung 32.10 19.31 13.15 0.11
Mammary Gland 30.00 21.74 8.61 2.56
Pancreas 34.83 24.07 11.11 0.45
Placenta 36.60 23.77 13.19 0.00
Prostate 29.14 20.93 8.55 2.66
Salivary Gland 32.11 21.39 11.07 0.46
Skeletal Muscle 28.27 20.44 8.18 3.45
Small Intestine 34.33 21.00 13.69 0.08
Spinal Cord 27.04 21.91 5.47 22.48
Spleen 32.45 19.02 13.78 0.07
Stomach 32.15 21.66 10.84 0.55
Testis 28.57 23.07 5.87 17.16
Thymus 31.01 20.68 10.69 0.61
Thyroid 28.84 20.80 8.39 2.97
Trachea 31.39 19.63 12.11 0.23
Uterus 30.37 21.09 9.64 1.25
PBMC/Control 33.98 18.82 15.52 0.02
PBMC/PMA 33.62 18.81 15.17 0.03
PBMC/PHA 34.20 18.77 15.78 0.02
PBMC/HDM 34.23 17.81 16.77 0.01
A549 Cells 31.98 21.57 10.77 0.57
THP-1 35.48 20.75 15.09 0.00
Ovary 31.84 21.55 10.65 0.62
(+ve) Positive Control 29.61 21.86 8.11 3.62
TABLE 5
Expression of hDUB 4.2, 4.3, 4.5 and 8.1 examined by primer 4.2
in human immunocytes panel:
Cell Type and stimulation β2
condition Mean Mean ∂∂ Ct Expression
Granulocyte resting 34.18 17.22 17.50 0.005
Granulocyte TNF-4/24 hr 32.39 17.16 15.76 0.018
CD19 (tonsillar - CD40L) 28.7 19.92 9.32 1.565
CD19 (tonsillar - LPS) 31.14 20.67 11.00 0.488
FLS-REST 34.67 20.43 14.78 0.036
FLS-IL1 4/24 hr 34.26 20.41 14.38 0.047
FLS-TNF-4/24 hr 34.91 20.15 15.31 0.025
Monocyte resting (pool 1.5, 7, 33.63 18.29 15.89 0.017
24 hr)
Monocyte LPS (pool 1.5, 7, 24 hr) 34.55 18.03 17.06 0.007
Monocyte INF-g (pool 1.5, 7, 34.62 17.27 17.88 0.004
24 hr)
Monocyte LPS & IFN-(pool 34.87 17.38 18.03 0.004
1.5, 7, 24 hr)
DCs progenitors (CD14+) 35.87 19.73 16.67 0.000
DCs immature 35.48 18.18 17.84 0.000
DCs mature 37.46 17.92 20.07 0.000
TH0 resting 31.11 17.63 14.02 0.060
TH0 activated 31.29 18.23 13.60 0.081
Th1 resting 33.88 18.27 16.15 0.014
Th1 CD28/CD3 32.15 19.31 13.38 0.094
Th2 resting 33.94 18.07 16.40 0.012
Th2 CD28/CD3 33.27 18.78 15.02 0.030
BSMC 35.33 21.64 14.22 0.000
BSMC IL-4 + TNF-24 hr 36.44 21.52 15.45 0.000
BSMC IL-13 + TNF-24 hr 35.94 21.41 15.07 0.000
BSMC IL-4 + IL-13 36.28 22.09 14.73 0.000
NHBE d0 36.63 22.24 14.92 0.000
NHBE IL-4 + TNF-d0 35.72 21.42 14.83 0.000
NHBE IL-13 + TNF-d0 36.35 21.37 15.52 0.000
NHBE resting d7 + d14 34.89 22.41 13.01 0.121
NHBE IL-4 + TNF-d7 + d14 38.59 22.02 17.11 0.000
NHBE IL-13 + TNF-d7 + d14 37.62 21.93 16.23 0.000
CD8 T cell O hour 30.15 19.52 11.16 0.437
CD8 T cell a-CD3/CD28 4 hour 32.08 19.6 13.01 0.121
CD8 T cell a-CD3/CD28 24 30.94 18.64 12.84 0.137
hour
HMVEC resting 35.09 20.25 15.38 0.000
HMVEC TNF-+ IL-4 24 hr 35.91 20.86 15.59 0.000
HMVEC TNF-24 hr 35.57 21.06 15.05 0.000
HMVEC TNF-+ IL-13 24 hr 36.38 20.61 16.31 0.000
Normal synovium pool 34.92 21.16 14.3 0.050
RA synovium pool 33.65 20.88 13.3 0.099
Normal colon 32.5 21.68 11.36 0.381
Colitis Colon 33.17 21.32 12.39 0.187
Crohns colon pooled 32.91 22.06 11.39 0.374
Normal Lung 31.01 20.5 11.05 0.472
COPD Lung 35.09 22.14 13.49 0.000
Positive control 28.4 22.29 6.64 9.992
Cloning of hDUB4, 8s by PCR
Following primer set was used to clone 530 amino acid open reading frame portion of single exon hDUB4s and 8s from human genomic DNA:
N-terminal primer:
5′-atggaggacgactcactct-3′ (19 mer, Seq ID No.1)
C-terminal primer:
5′-ctggcacacaagcaga-3′ (19 mer, Seq ID No.2)
Underlined triplet nucleotides in each primer represent translational initiation and termination codon. This primer set can amplify most of hDUB4s and hDUB8s as well as potentially yet to be identified hDUBs that are similar enough to hDUB4s and hDUB8s due to the high homology in nucleotide sequences in this part of the ORF. 1593 base pair fragment was successfully amplified from genomic DNA from two healthy human subjects and cloned into pCR2.1 vector and transformed into TOP10 strain of E. coli. Over 300 independent clones with appropriate size insert were obtained and sequences are obtained by ABI automated DNA sequencers.
Deubiqititination Assay
Confirmation that the DUB is a deubiquitinating enzyme may be shown using previously identified deubiquitination assay of ubiquitin—galactosidase fusion proteins, as described previously in the literature. Briefly, a fragment of the DUB, of approximately 1,500 nucleotides, based on the wild-type DUB cDNA (corresponding to amino acids 1 to about 500) and a cDNA containing a missense mutation are generated by PCR and inserted, in frame, into pGEX (Pharmacia), downstream of the glutathione S-transferase (GST) coding element. Ub-Met—gal is expressed from a pACYC184-based plasmid. Plasmids are co-transformed as indicated into MC 1061 Escherichia coli. Plasmid-bearing E. coli MC 1061 cells are lysed and analyzed by immunoblotting with a rabbit anti—gal antiserum (Cappel), arabbit anti-GST antiserum (Santa Cruz), and the ECL system (Amersham Corp.). in vitro deubiquitinating enzyme activity may be shown from purified hDUB fusion protein using commercial polyubiquitinated protein as substrate.
HDUB4s and hDUB8s are Potential Inflammatory Cytokines Specific Immediate-Early Genes
mDUB-1 was originally cloned as an IL-3-inducible immediate-early gene. Similarly, in DUB-2 was cloned as an IL-2-inducible immediate-early gene. We examined inducibility as well as cell-type specific expression of these genes using multiple TaqMan analysis from human organ RNA samples and human immunocytes RNA samples. Our data suggest that expression of hDUBs are not apparent in lymphocytes and granulocytes but high in fresh human PBMC from several donor. This strongly suggest that expression may be limited to the monocytes/macrophages and potentially NK cells. hDUB4s and hDUB8s are upregulated in PBMC stimulated with stimuli (LPS and/or PHA) that is known to upregulate various inflammatory cytokines such as TNF-alpha, IL-1 beta etc. This increase of expression is almost completely disappeared 20 to 24 hours after stimulation suggesting this is an early gene. The fact that there is only weak expression upregulation at 1.5 hours after stimulation suggests that stimuli by themselves may not upregulate hDUB4s and hDUB8s, but cytokines that are upregulated within couple of hours after stimulation may be responsible for upregulation of the hDUB4s and hDUB8s.
The DUB Subfamily of the ubp Superfamily
From these data we propose that hDUB4s and hDUB8s are members of a discrete subfamily of deubiquitinating enzymes that shows the strongest similarity to mDUB subfamily including mDUB1, mDUB2, and mDUB2A, called the DUB subfamily. DUB subfamily members contain distinct structural features that distinguish them from other ubps. First, DUB subfamily members are comparatively small enzymes of approximately 500-550 amino acids. Second, DUB subfamily members share amino acid similarity not only in the Cys and His domains but also throughout their primary amino acid sequence. For instance, DUB proteins contain a lysine-rich region (Lys domain) and a HV domain near their carboxyl terminus.
The regulatory regions, or promoter regions, of each of the DUBs was analyzed for putative transcription factor binding motifs using TRANSFACFind, a dynamic programming method, see Heinemeyer, T., et al., “Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms” Nucleic Acids Res. 27, 318-322, (1999). The Transfac database provides eukaryotic cis- and trans-acting regulatory elements. TABLE 6
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.1a. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00271 729 . . . 724(100) AML-1a runt-factor AML-1
M00148 296 . . . 302(100) SRY sex-determining region Y gene product
1016 . . . 1010(96)
958 . . . 964(94)
474 . . . 480(94)
1982 . . . 1988(92)
129 . . . 123(90)
857 . . . 863(90)
776 . . . 782(90)
1919 . . . 1913(90)
1227 . . . 1233(90)
276 . . . 282(90)
1741 . . . 1735(90)
193 . . . 199(90)
105 . . . 111(90)
M00240 1600 . . . 1606(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
700 . . . 694(100)
M00083 892 . . . 899(100) MZF1 MZF1
M00101 162 . . . 156(100) CdxA CdxA
1008 . . . 1002(100)
423 . . . 429(100)
153 . . . 147(99)
359 . . . 353(98)
1388 . . . 1394(98)
1644 . . . 1650(97)
1702 . . . 1696(97)
250 . . . 256(97)
231 . . . 237(97)
617 . . . 611(94)
509 . . . 503(93)
432 . . . 426(92)
307 . . . 313(92)
153 . . . 159(92)
1832 . . . 1838(92)
1366 . . . 1372(92)
494 . . . 500(92)
1450 . . . 1456(91)
1456 . . . 1450(91)
722 . . . 716(90)
991 . . . 985(90)
986 . . . 992(90)
1646 . . . 1640(90)
M00253 1142 . . . 1149(97) cap cap signal for transcription initiation
1344 . . . 1351(96)
639 . . . 632(95)
1313 . . . 1320(94)
1872 . . . 1879(93)
269 . . . 262(92)
257 . . . 250(91)
1103 . . . 1110(91)
745 . . . 752(91)
1589 . . . 1596(90)
M00099 978 . . . 993(96) S8 S8
1637 . . . 1652(94)
995 . . . 980(93)
M00100 162 . . . 156(96) CdxA CdxA
1008 . . . 1002(96)
423 . . . 429(96)
1774 . . . 1768(96)
415 . . . 421(92)
860 . . . 854(91)
1026 . . . 1020(91)
494 . . . 500(91)
94 . . . 100(91)
M00285 725 . . . 713(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
982 . . . 970(92)
M00347 531 . . . 522(95) GATA-1 GATA-binding factor 1
M00135 1642 . . . 1660(95) Oct-1 octamer factor 1
M00075 217 . . . 226(94) GATA-1 GATA-binding factor 1
M00278 530 . . . 522(94) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins,
and GATA-1, half-site 2
900 . . . 908(90)
M00157 990 . . . 978(94) RORalpha2 RAR-related orphan receptor alpha2
M00127 533 . . . 520(93) GATA-1 GATA-binding factor 1
M00109 1933 . . . 1920(93) C/EBPbeta CCAAT/enhancer binding protein beta
M00190 1656 . . . 1643(93) C/EBP CCAAT/enhancer binding factor
M00137 1193 . . . 1205(93) Oct-1 octamer factor 1
248 . . . 260(90)
1652 . . . 1640(90)
M00302 1501 . . . 1512(92) NF-AT Nuclear factor of activated T-cells
M00077 900 . . . 908(91) GATA-3 GATA-binding factor 3
530 . . . 522(90)
M00126 533 . . . 520(91) GATA-1 GATA-binding factor 1
M00159 1231 . . . 1219(91) C/EBP CCAAT/enhancer binding protein
M00074 1280 . . . 1292(91) c-Ets-1(p54) c-Ets-1(p54)
M00042 192 . . . 201(91) Sox-5 Sox-5
M00241 1650 . . . 1643(91) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00116 138 . . . 125(91) C/EBPalpha CCAAT/enhancer binding protein alpha
M00138 1640 . . . 1662(91) Oct-1 octamer factor 1
M00128 532 . . . 520(90) GATA-1 GATA-binding factor 1
M00248 1645 . . . 1656(90) Oct-1 octamer factor 1
M00289 1009 . . . 1021(90) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
TABLE 7
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.1b. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00254 1831 . . . 1820(99) CCAAT cellular and viral CCAAT box
M00101 832 . . . 826(98) CdxA CdxA
727 . . . 721(92)
70 . . . 64(92)
570 . . . 564(92)
523 . . . 529(92)
425 . . . 431(92)
1682 . . . 1688(91)
1409 . . . 1415(91)
1415 . . . 1409(91)
1688 . . . 1682(91)
M00054 470 . . . 461(97) NF-kappaB NF-kappaB
643 . . . 634(95)
MM00148 946 . . . 940(96) SRY sex-determining region Y gene product
1564 . . . 1570(92)
1528 . . . 1534(92)
1092 . . . 1098(92)
1048 . . . 1054(90)
708 . . . 714(90)
655 . . . 661(90)
1360 . . . 1354(90)
1824 . . . 1818(90)
396 . . . 390(90)
749 . . . 743(90)
1016 . . . 1010(90)
302 . . . 308(90)
M00053 470 . . . 461(95) c-Rel c-Rel
643 . . . 634(94)
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1111 . . . 1123(91)
17 . . . 5(90)
M00052 470 . . . 461(95) NF-kappaB NF-kappaB (p65)
643 . . . 634(94)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00253 485 . . . 492(95) cap cap signal for transcription initiation
1893 . . . 1886(95)
749 . . . 756(94)
834 . . . 841(93)
1484 . . . 1477(92)
511 . . . 504(92)
1194 . . . 1201(91)
163 . . . 170(91)
321 . . . 328(91)
340 . . . 347(91)
1815 . . . 1808(90)
563 . . . 570(90)
M00096 652 . . . 660(95) Pbx-1 Pbx-1
M00194 472 . . . 459(95) NF-kappaB NF-kappaB
M00209 1818 . . . 1831(94) NF-Y NF-Y binding site
M00116 1238 . . . 1225(94) C/EBPalpha CCAAT/enhancer binding protein alpha
M00203 1699 . . . 1689(94) GATA-X GATA binding site
1227 . . . 1217(90)
M00241 535 . . . 542(94) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00033 759 . . . 746(94) p300 p300
333 . . . 320(90)
M00127 1703 . . . 1690(93) GATA-1 GATA-binding factor 1
M00158 323 . . . 310(93) COUP-TF COUP/HNF-4 heterodimer
M00075 1889 . . . 1898(93) GATA-1 GATA-binding factor 1
142 . . . 133(90)
1736 . . . 1745(90)
M00286 963 . . . 976(93) GKLF gut-enriched Krueppel-like factor
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins,
and GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
983 . . . 992(92)
M00208 471 . . . 460(93) NF-kappaB NF-kappaB binding site
M00185 1829 . . . 1819(92) NF-Y nuclear factor Y (Y-box binding factor)
M00302 232 . . . 243(92) NF-AT Nuclear factor of activated T-cells
M00348 98 . . . 107(92) GATA-2 GATA-binding factor 2
M00134 308 . . . 326(92) HNF-4 hepatic nuclear factor 4
M00223 548 . . . 540(92) STATx signal transducers and activators of transcription
M00039 1046 . . . 1039(92) CREB cAMP-responsive element binding protein
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00074 231 . . . 243(91) c-Ets-1(p54) c-Ets-1(p54)
252 . . . 264(91)
M00289 385 . . . 397(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00199 1722 . . . 1714(91) AP-1 AP-1 binding site
M00032 254 . . . 263(91) c-Ets-1(p54) c-Ets-1(p54)
M00147 782 . . . 773(91) HSF2 heat shock factor 2
M00100 1101 . . . 1095(91) CdxA CdxA
M00042 650 . . . 659(90) Sox-5 Sox-5
M00183 1026 . . . 1035(90) c-Myb c-Myb
M00240 963 . . . 957(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
1272 . . . 1266(90)
M00190 1238 . . . 1225(90) C/EBP CCAAT/enhancer binding factor
M00083 49 . . . 42(90) MZF1 MZF1
M00184 275 . . . 284(90) MyoD myoblast determining factor
M00087 980 . . . 991(90) Ik-2 Ikaros 2
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00137 1388 . . . 1376(90) Oct-1 octamer factor 1
TABLE 8
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.2a. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 992 . . . 986(100) SRY sex-determining region Y gene product
942 . . . 948(100)
919 . . . 913(96)
1544 . . . 1550(92)
1505 . . . 1511(92)
815 . . . 809(90)
1068 . . . 1074(90)
1196 . . . 1190(90)
1337 . . . 1331(90)
680 . . . 686(90)
1697 . . . 1691(90)
1802 . . . 1796(90)
368 . . . 362(90)
721 . . . 715(90)
274 . . . 280(90)
M00100 1077 . . . 1071(100) CdxA CdxA
M00271 1933 . . . 1938(100) AML-1a runt-factor AML-1
2204 . . . 2209(92)
M00101 1077 . . . 1071(99) CdxA CdxA
805 . . . 799(98)
699 . . . 693(92)
1384 . . . 1390(92)
936 . . . 942(92)
495 . . . 501(92)
1660 . . . 1666(91)
1666 . . . 1660(91)
M00076 716 . . . 707(98) GATA-2 GATA-binding factor 2
1910 . . . 1919(95)
959 . . . 968(92)
1679 . . . 1670(91)
M00285 1712 . . . 1724(96) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1087 . . . 1099(91)
M00272 1242 . . . 1251(96) p53 tumor suppressor p53
M00253 135 . . . 142(96) cap cap signal for transcription initiation
457 . . . 464(95)
1871 . . . 1864(95)
721 . . . 728(94)
1461 . . . 1454(92)
312 . . . 319(92)
1989 . . . 1996(92)
1855 . . . 1848(91)
770 . . . 777(90)
1793 . . . 1786(90)
295 . . . 302(90)
1274 . . . 1281(90)
M00106 627 . . . 636(95) CDP cut-like homeodomain protein
634 . . . 625(93)
M00116 1215 . . . 1202(95) C/EBPalpha CCAAT/enhancer binding protein alpha
M00254 1809 . . . 1798(95) CCAAT cellular and viral CCAAT box
M00249 1117 . . . 1105(95) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00054 442 . . . 433(95) NF-kappaB NF-kappaB
M00147 2182 . . . 2173(94) HSF2 heat shock factor 2
2173 . . . 2182(92)
754 . . . 745(91)
141 . . . 132(90)
M00104 634 . . . 625(94) CDP cut-like homeodomain protein
2 . . . 11(92)
M00134 280 . . . 298(94) HNF-4 hepatic nuclear factor 4
M00052 442 . . . 433(94) NF-kappaB NF-kappaB (p65)
M00053 442 . . . 433(94) c-Rel c-Rel
785 . . . 794(90)
M00033 731 . . . 718(94) p300 p300
M00158 295 . . . 282(93) COUP-TF COUP/HNF-4 heterodimer
M00032 225 . . . 216(93) c-Ets-1(p54) c-Ets-1(p54)
226 . . . 235(93)
M00172 1851 . . . 1861(92) AP-1 activator protein 1
M00223 520 . . . 512(92) STATx signal transducers and activators of transcription
M00075 1679 . . . 1670(92) GATA-1 GATA-binding factor 1
1867 . . . 1876(91)
716 . . . 707(91)
316 . . . 307(90)
M00184 1463 . . . 1472(91) MyoD myoblast determining factor
1472 . . . 1463(91)
247 . . . 256(90)
2057 . . . 2048(90)
M00289 357 . . . 369(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00109 1202 . . . 1215(91) C/EBPbeta CCAAT/enhancer binding protein beta
2036 . . . 2023(90)
M00268 937 . . . 950(91) XFD-2 Xenopus fork head domain factor 2
M00208 443 . . . 432(90) NF-kappaB NF-kappaB binding site
M00173 1851 . . . 1861(90) AP-1 activator protein 1
M00183 1002 . . . 1011(90) c-Myb c-Myb
2020 . . . 2011(90)
M00240 217 . . . 211(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00188 1851 . . . 1861(90) AP-1 activator protein 1
M00099 1086 . . . 1101(90) S8 S8
M00302 813 . . . 802(90) NF-AT Nuclear factor of activated T-cells
M00083 21 . . . 14(90) MZF1 MZF1
M00190 1215 . . . 1202(90) C/EBP CCAAT/enhancer binding factor
M00221 1838 . . . 1828(90) SREBP-1 sterol regulatory element-binding protein 1
M00294 949 . . . 937(90) HFH-8 HNF-3/Fkh Homolog-8
M00137 1365 . . . 1353(90) Oct-1 octamer factor 1
M00077 1911 . . . 1919(90) GATA-3 GATA-binding factor 3
M00194 444 . . . 431(90) NF-kappaB NF-kappaB
TABLE 9
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.2b. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00100 1102 . . . 1096(100) CdxA CdxA
M00148 1017 . . . 1011(100) SRY sex-determining region Y gene product
967 . . . 973(100)
944 . . . 938(96)
1566 . . . 1572(92)
1530 . . . 1536(92)
840 . . . 834(90)
1093 . . . 1099(90)
705 . . . 711(90)
1362 . . . 1356(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
393 . . . 387(90)
746 . . . 740(90)
299 . . . 305(90)
M00253 1120 . . . 1127(99) cap cap signal for transcription initiation
160 . . . 167(96)
482 . . . 489(95)
1893 . . . 1886(95)
746 . . . 753(94)
1486 . . . 1479(92)
337 . . . 344(92)
1877 . . . 1870(91)
795 . . . 802(90)
1815 . . . 1808(90)
320 . . . 327(90)
1299 . . . 1306(90)
M00101 1102 . . . 1096(99) CdxA CdxA
830 . . . 824(98)
1231 . . . 1225(98)
1409 . . . 1415(92)
724 . . . 718(92)
520 . . . 526(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00076 741 . . . 732(98) GATA-2 GATA-binding factor 2
1932 . . . 1941(95)
984 . . . 993(92)
1701 . . . 1692(91)
M00285 1734 . . . 1746(96) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1112 . . . 1124(91)
M00272 1267 . . . 1276(96) p53 tumor suppressor p53
M00106 652 . . . 661(95) CDP cut-like homeodomain protein
659 . . . 650(93)
M00116 1240 . . . 1227(95) C/EBPalpha CCAAT/enhancer binding protein alpha
M00254 1831 . . . 1820(95) CCAAT cellular and viral CCAAT box
M00249 1142 . . . 1130(95) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00054 467 . . . 458(95) NF-kappaB NF-kappaB
M00104 659 . . . 650(94) CDP cut-like homeodomain protein
27 . . . 36(92)
M00134 305 . . . 323(94) HNF-4 hepatic nuclear factor 4
M00052 467 . . . 458(94) NF-kappaB NF-kappaB (p65)
M00053 467 . . . 458(94) c-Rel c-Rel
M00033 756 . . . 743(94) p300 p300
M00158 320 . . . 307(93) COUP-TF COUP/HNF-4 heterodimer
M00075 1889 . . . 1898(93) GATA-1 GATA-binding factor 1
1701 . . . 1692(92)
741 . . . 732(91)
341 . . . 332(90)
641 . . . 632(90)
M00160 965 . . . 976(93) SRY sex-determining region Y gene product
M00032 250 . . . 241(93) c-Ets- c-Ets-1(p54)
1(p54)
251 . . . 260(93)
M00172 1873 . . . 1883(92) AP-1 activator protein 1
M00223 545 . . . 537(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00184 1488 . . . 1497(91) MyoD myoblast determining factor
1497 . . . 1488(91)
272 . . . 281(90)
M00289 382 . . . 394(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00109 1227 . . . 1240(91) C/EBPbeta CCAAT/enhancer binding protein beta
M00147 779 . . . 770(91) HSF2 heat shock factor 2
166 . . . 157(90)
M00208 468 . . . 457(90) NF-kappaB NF-kappaB binding site
M00183 1027 . . . 1036(90) c-Myb c-Myb
M00173 1873 . . . 1883(90) AP-1 activator protein 1
M00240 242 . . . 236(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00188 1873 . . . 1883(90) AP-1 activator protein 1
M00302 838 . . . 827(90) NF-AT Nuclear factor of activated T-cells
M00083 46 . . . 39(90) MZF1 MZF1
M00190 1240 . . . 1227(90) C/EBP CCAAT/enhancer binding factor
M00096 1115 . . . 1123(90) Pbx-1 Pbx-1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 469 . . . 456(90) NF-kappaB NF-kappaB
M00077 1933 . . . 1941(90) GATA-3 GATA-binding factor 3
TABLE 10
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.3. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 1015 . . . 1009(100) SRY sex-determining region Y gene product
965 . . . 971(100)
942 . . . 936(96)
1566 . . . 1572(92)
1528 . . . 1534(92)
838 . . . 832(90)
1091 . . . 1097(90)
1219 . . . 1213(90)
703 . . . 709(90)
1360 . . . 1354(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
391 . . . 385(90)
744 . . . 738(90)
297 . . . 303(90)
M00100 1100 . . . 1094(100) CdxA CdxA
M00101 1100 . . . 1094(99) CdxA CdxA
828 . . . 822(98)
1407 . . . 1413(92)
722 . . . 716(92)
959 . . . 965(92)
518 . . . 524(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00076 739 . . . 730(98) GATA-2 GATA-binding factor 2
1932 . . . 1941(95)
982 . . . 991(92)
1701 . . . 1692(91)
M00285 1734 . . . 1746(96) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1110 . . . 1122(91)
M00272 1265 . . . 1274(96) p53 tumor suppressor p53
M00253 158 . . . 165(96) cap cap signal for transcription initiation
480 . . . 487(95)
1893 . . . 1886(95)
744 . . . 751(94)
1484 . . . 1477(92)
335 . . . 342(92)
1877 . . . 1870(91)
793 . . . 800(90)
318 . . . 325(90)
1297 . . . 1304(90)
M00106 650 . . . 659(95) CDP cut-like homeodomain protein
657 . . . 648(93)
M00116 1238 . . . 1225(95) C/EBPalpha CCAAT/enhancer binding protein alpha
M00254 1831 . . . 1820(95) CCAAT cellular and viral CCAAT box
M00249 1140 . . . 1128(95) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00054 465 . . . 456(95) NF-kappaB NF-kappaB
M00104 657 . . . 648(94) CDP cut-like homeodomain protein
25 . . . 34(92)
M00134 303 . . . 321(94) HNF-4 hepatic nuclear factor 4
M00052 465 . . . 456(94) NF-kappaB NF-kappaB (p65)
M00053 465 . . . 456(94) c-Rel c-Rel
M00033 754 . . . 741(94) p300 p300
M00158 318 . . . 305(93) COUP-TF COUP/HNF-4 heterodimer
M00075 1889 . . . 1898(93) GATA-1 GATA-binding factor 1
1701 . . . 1692(92)
739 . . . 730(91)
339 . . . 330(90)
M00160 963 . . . 974(93) SRY sex-determining region Y gene product
M00032 248 . . . 239(93) c-Ets- c-Ets-1(p54)
249 . . . 258(93) 1(p54)
M00172 1873 . . . 1883(92) AP-1 activator protein 1
M00223 543 . . . 535(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00173 1873 . . . 1883(91) AP-1 activator protein 1
M00184 1486 . . . 1495(91) MyoD myoblast detennining factor
1495 . . . 1486(91)
270 . . . 279(90)
M00289 380 . . . 392(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00109 1225 . . . 1238(91) C/EBPbeta CCAAT/enhancer binding protein beta
M00147 777 . . . 768(91) HSF2 heat shock factor 2
164 . . . 155(90)
M00208 466 . . . 455(90) NF-kappaB NF-kappaB binding site
M00183 1025 . . . 1034(90) c-Myb c-Myb
M00240 240 . . . 234(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00099 1109 . . . 1124(90) S8 S8
M00302 836 . . . 825(90) NF-AT Nuclear factor of activated T-cells
M00083 44 . . . 37(90) MZF1 MZF1
M00190 1238 . . . 1225(90) C/EBP CCAAT/enhancer binding factor
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00174 1873 . . . 1883(90) AP-1 activator protein 1
M00077 1933 . . . 1941(90) GATA-3 GATA-binding factor 3
M00194 467 . . . 454(90) NF-kappaB NF-kappaB
TABLE 11
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.4. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00100 1101 . . . 1095(100) CdxA CdxA
M00148 1016 . . . 1010(100) SRY sex-determining region Y gene product
966 . . . 972(100)
944 . . . 938(96)
1566 . . . 1572(92)
1529 . . . 1535(92)
840 . . . 834(90)
1092 . . . 1098(90)
705 . . . 711(90)
1361 . . . 1355(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
393 . . . 387(90)
746 . . . 740(90)
299 . . . 305(90)
M00101 1101 . . . 1095(99) CdxA CdxA
830 . . . 824(98)
1230 . . . 1224(98)
1408 . . . 1414(92)
724 . . . 718(92)
520 . . . 526(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00076 741 . . . 732(98) GATA-2 GATA-binding factor 2
1932 . . . 1941(95)
983 . . . 992(92)
1701 . . . 1692(91)
M00350 876 . . . 867(96) GATA-3 GATA-binding factor 3
M00285 1734 . . . 1746(96) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1111 . . . 1123(91)
M00272 1266 . . . 1275(96) p53 tumor suppressor p53
M00253 160 . . . 167(96) cap cap signal for transcription initiation
482 . . . 489(95)
1893 . . . 1886(95)
746 . . . 753(94)
1485 . . . 1478(92)
337 . . . 344(92)
1877 . . . 1870(91)
795 . . . 802(90)
1815 . . . 1808(90)
320 . . . 327(90)
1298 . . . 1305(90)
M00106 652 . . . 661(95) CDP cut-like homeodomain protein
659 . . . 650(93)
M00116 1239 . . . 1226(95) C/EBPalpha CCAAT/enhancer binding protein alpha
M00254 1831 . . . 1820(95) CCAAT cellular and viral CCAAT box
M00249 1141 . . . 1129(95) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00349 876 . . . 867(95) GATA-2 GATA-binding factor 2
M00054 467 . . . 458(95) NF-kappaB NF-kappaB
M00104 659 . . . 650(94) CDP cut-like homeodomain protein
27 . . . 36(92)
M00134 305 . . . 323(94) HNF-4 hepatic nuclear factor 4
M00052 467 . . . 458(94) NF-kappaB NF-kappaB (p65)
M00053 467 . . . 458(94) c-Rel c-Rel
M00033 756 . . . 743(94) p300 p300
M00348 876 . . . 867(93) GATA-2 GATA-binding factor 2
M00158 320 . . . 307(93) COUP-TF COUP/HNF-4 heterodimer
M00075 1889 . . . 1898(93) GATA-1 GATA-binding factor 1
1701 . . . 1692(92)
741 . . . 732(91)
341 . . . 332(90)
M00160 964 . . . 975(93) SRY sex-determining region Y gene product
M00347 876 . . . 867(93) GATA-1 GATA-binding factor 1
M00032 250 . . . 241(93) c-Ets-1(p54) c-Ets-1(p54)
251 . . . 260(93)
M00172 1873 . . . 1883(92) AP-1 activator protein 1
M00223 545 . . . 537(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00184 1487 . . . 1496(91) MyoD myoblast determining factor
1496 . . . 1487(91)
272 . . . 281(90)
M00289 382 . . . 394(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00109 1226 . . . 1239(91) C/EBPbeta CCAAT/enhancer binding protein beta
M00208 468 . . . 457(90) NF-kappaB NF-kappaB binding site
M00183 1026 . . . 1035(90) c-Myb c-Myb
M00173 1873 . . . 1883(90) AP-1 activator protein 1
M00240 242 . . . 236(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00188 1873 . . . 1883(90) AP-1 activator protein 1
M00099 1110 . . . 1125(90) S8 S8
M00302 838 . . . 827(90) NF-AT Nuclear factor of activated T-cells
M00083 46 . . . 39(90) MZF1 MZF1
M00190 1239 . . . 1226(90) C/EBP CCAAT/enhancer binding factor
M00147 166 . . . 157(90) HSF2 heat shock factor 2
M00080 874 . . . 864(90) Evi-1 ectopic viral integration site 1 encoded factor
M00082 874 . . . 864(90) Evi-1 ectopic viral integration site 1 encoded factor
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 469 . . . 456(90) NF-kappaB NF-kappaB
M00077 1933 . . . 1941(90) GATA-3 GATA-binding factor 3
TABLE 12
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 4.5. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 963 . . . 969(100) SRY sex-determining region Y gene product
1013 . . . 1007(100)
940 . . . 934(96)
1526 . . . 1532(92)
1089 . . . 1095(90)
836 . . . 830(90)
701 . . . 707(90)
1358 . . . 1352(90)
1720 . . . 1714(90)
1825 . . . 1819(90)
389 . . . 383(90)
742 . . . 736(90)
295 . . . 301(90)
M00100 1098 . . . 1092(100) CdxA CdxA
M00101 1098 . . . 1092(99) CdxA CdxA
826 . . . 820(98)
1405 . . . 1411(92)
720 . . . 714(92)
957 . . . 963(92)
516 . . . 522(92)
1683 . . . 1689(91)
1689 . . . 1683(91)
M00076 737 . . . 728(98) GATA-2 GATA-binding factor 2
980 . . . 989(92)
1702 . . . 1693(91)
1299 . . . 1308(90)
M00285 1735 . . . 1747(96) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1108 . . . 1120(91)
M00272 1263 . . . 1272(96) p53 tumor suppressor p53
M00253 156 . . . 163(96) cap cap signal for transcription initiation
478 . . . 485(95)
742 . . . 749(94)
1482 . . . 1475(92)
333 . . . 340(92)
791 . . . 798(90)
1816 . . . 1809(90)
316 . . . 323(90)
M00106 648 . . . 657(95) CDP cut-like homeodomain protein
655 . . . 646(93)
M00116 1236 . . . 1223(95) C/EBPalpha CCAAT/enhancer binding protein alpha
M00254 1832 . . . 1821(95) CCAAT cellular and viral CCAAT box
M00249 1138 . . . 1126(95) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00054 463 . . . 454(95) NF-kappaB NF-kappaB
M00183 1493 . . . 1484(94) c-Myb c-Myb
1023 . . . 1032(90)
M00104 655 . . . 646(94) CDP cut-like homeodomain protein
23 . . . 32(92)
M00134 301 . . . 319(94) HNF-4 hepatic nuclear factor 4
M00052 463 . . . 454(94) NF-kappaB NF-kappaB (p65)
M00053 463 . . . 454(94) c-Rel c-Rel
806 . . . 815(90)
M00033 752 . . . 739(94) p300 p300
M00158 316 . . . 303(93) COUP-TF COUP/HNF-4 heterodimer
M00032 246 . . . 237(93) c-Ets- c-Ets-1(p54)
247 . . . 256(93) 1(p54)
M00278 1300 . . . 1308(92) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00223 541 . . . 533(92) STATx signal transducers and activators of transcription
M00075 1702 . . . 1693(92) GATA-1 GATA-binding factor 1
737 . . . 728(91)
337 . . . 328(90)
M00077 1300 . . . 1308(91) GATA-3 GATA-binding factor 3
M00289 378 . . . 390(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00109 1223 . . . 1236(91) C/EBPbeta CCAAT/enhancer binding protein beta
M00268 958 . . . 971(91) XFD-2 Xenopus fork head domain factor 2
M00147 775 . . . 766(91) HSF2 heat shock factor 2
162 . . . 153(90)
M00208 464 . . . 453(90) NF-kappaB NF-kappaB binding site
M00240 238 . . . 232(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00099 1107 . . . 1122(90) S8 S8
M00302 834 . . . 823(90) NF-AT Nuclear factor of activated T-cells
M00083 42 . . . 35(90) MZF1 MZF1
M00184 268 . . . 277(90) MyoD myoblast determining factor
M00190 1236 . . . 1223(90) C/EBP CCAAT/enhancer binding factor
M00221 1861 . . . 1851(90) SREBP-1 sterol regulatory element-binding protein 1
M00294 970 . . . 958(90) HFH-8 HNF-3/Fkh Homolog-8
M00137 1386 . . . 1374(90) Oct-1 octamer factor 1
M00194 465 . . . 452(90) NF-kappaB NF-kappaB
TABLE 13
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 8.1. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 1015 . . . 1009(100) SRY sex-determining region Y gene product
965 . . . 971(100)
942 . . . 936(96)
1544 . . . 1550(92)
838 . . . 832(90)
702 . . . 708(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
390 . . . 384(90)
1384 . . . 1390(90)
1356 . . . 1350(90)
296 . . . 302(90)
63 . . . 69(90)
M00100 1100 . . . 1094(100) CdxA CdxA
724 . . . 730(96)
1547 . . . 1541(91)
M00349 93 . . . 102(100) GATA-2 GATA-binding factor 2
M00350 93 . . . 102(100) GATA-3 GATA-binding factor 3
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00348 93 . . . 102(100) GATA-2 GATA-binding factor 2
M00101 1100 . . . 1094(99) CdxA CdxA
828 . . . 822(98)
1229 . . . 1223(98)
1203 . . . 1209(94)
721 . . . 715(92)
959 . . . 965(92)
1386 . . . 1380(92)
65 . . . 59(92)
517 . . . 523(92)
419 . . . 425(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00203 95 . . . 105(98) GATA-X GATA binding site
M00347 93 . . . 102(97) GATA-1 GATA-binding factor 1
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1701 . . . 1692(95)
137 . . . 128(92)
1483 . . . 1492(92)
1889 . . . 1898(91)
1736 . . . 1745(90)
M00158 317 . . . 304(96) COUP- COUP/HNF-4 heterodimer
TF
M00253 158 . . . 165(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
479 . . . 486(95)
1297 . . . 1304(93)
337 . . . 344(93)
48 . . . 55(93)
1484 . . . 1477(92)
1324 . . . 1317(91)
557 . . . 564(91)
1893 . . . 1886(91)
1877 . . . 1870(91)
793 . . . 800(90)
1356 . . . 1363(90)
1815 . . . 1808(90)
317 . . . 324(90)
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1110 . . . 1122(91)
13 . . . 1(90)
M00134 302 . . . 320(95) HNF-4 hepatic nuclear factor 4
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00096 1827 . . . 1819(95) Pbx-1 Pbx-1
M00141 451 . . . 459(94) Lyf-1 LyF-1
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00076 1483 . . . 1492(93) GATA-2 GATA-binding factor 2
1932 . . . 1941(93)
1701 . . . 1692(92)
982 . . . 991(92)
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00099 1813 . . . 1798(92) S8 S8
1109 . . . 1124(90)
M00294 1551 . . . 1539(92) HFH-8 HNF-3/Fkh Homolog-8
M00223 542 . . . 534(92) STATx signal transducers and activators of transcription
M00073 36 . . . 46(92) deltaEF1 deltaEF1
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
132 . . . 127(92)
M00137 335 . . . 323(91) Oct-1 octamer factor 1
M00042 644 . . . 653(91) Sox-5 Sox-5
1829 . . . 1820(90)
M00289 379 . . . 391(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00183 1025 . . . 1034(90) c-Myb c-Myb
M00240 239 . . . 233(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00302 836 . . . 825(90) NF-AT Nuclear factor of activated T-cells
M00128 92 . . . 104(90) GATA-1 GATA-binding factor 1
M00184 269 . . . 278(90) MyoD myoblast determining factor
M00147 164 . . . 155(90) HSF2 heat shock factor 2
M00087 979 . . . 990(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
TABLE 14
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.2. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00241 1804 . . . 1811(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00240 556 . . . 562(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
1354 . . . 1360(90)
301 . . . 307(90)
M00096 1342 . . . 1350(100) Pbx-1 Pbx-1
1831 . . . 1823(96)
M00271 702 . . . 707(100) AML-1a runt-factor AML-1
1955 . . . 1960(92)
170 . . . 175(92)
M00050 104 . . . 111(100) E2F E2F
M00148 1271 . . . 1277(100) SRY sex-determining region Y gene product
1572 . . . 1578(92)
1345 . . . 1351(90)
1719 . . . 1713(90)
1828 . . . 1822(90)
1634 . . . 1628(90)
M00272 472 . . . 463(97) p53 tumor suppressor p53
463 . . . 472(97)
295 . . . 286(91)
M00075 1842 . . . 1851(97) GATA-1 GATA-binding factor 1
1893 . . . 1902(93)
1380 . . . 1371(92)
1740 . . . 1749(90)
M00253 1072 . . . 1065(96) cap cap signal for transcription initiation
1798 . . . 1805(95)
1897 . . . 1890(95)
769 . . . 776(92)
1701 . . . 1708(92)
1881 . . . 1874(91)
497 . . . 504(90)
1819 . . . 1812(90)
21 . . . 28(90)
M00285 1738 . . . 1750(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
366 . . . 378(93)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00147 148 . . . 139(94) HSF2 heat shock factor 2
139 . . . 148(92)
M00199 1801 . . . 1793(94) AP-1 AP-1 binding site
1037 . . . 1029(94)
1793 . . . 1801(91)
1029 . . . 1037(90)
M00174 1792 . . . 1802(94) AP-1 activator protein 1
1038 . . . 1028(92)
M00074 1247 . . . 1259(93) c-Ets- c-Ets-1(p54)
1(p54)
M00211 702 . . . 710(93) Poly Retroviral Poly A downstream element
1531 . . . 1539(91)
M00124 1339 . . . 1353(93) Pbx1b homeo domain factor Pbx-1
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00052 1261 . . . 1252(93) NF- NF-kappaB (p65)
kappaB
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
837 . . . 828(90)
M00099 1817 . . . 1802(92) S8 S8
M00101 987 . . . 981(92) CdxA CdxA
M00042 1635 . . . 1626(92) Sox-5 Sox-5
M00254 1835 . . . 1824(91) CCAAT cellular and viral CCAAT box
M00008 252 . . . 243(91) Sp1 stimulating protein 1
1323 . . . 1314(91)
M00227 933 . . . 941(90) v-Myb v-Myb
M00141 1328 . . . 1320(90) Lyf-1 LyF-1
M00183 1033 . . . 1042(90) c-Myb c-Myb
M00001 654 . . . 665(90) MyoD myoblast determination gene product
M00188 1792 . . . 1802(90) AP-1 activator protein 1
M00184 23 . . . 14(90) MyoD myoblast determining factor
M00172 1792 . . . 1802(90) AP-1 activator protein 1
M00221 1864 . . . 1854(90) SREBP-1 sterol regulatory element-binding protein 1
M00037 871 . . . 861(90) NF-E2 NF-E2 p45
M00053 1261 . . . 1252(90) c-Rel c-Rel
M00249 823 . . . 835(90) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00302 1248 . . . 1259(90) NF-AT Nuclear factor of activated T-cells
TABLE 15
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.3. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00348 71 . . . 80(100) GATA-2 GATA-binding factor 2
M00349 71 . . . 80(100) GATA-2 GATA-binding factor 2
M00148 990 . . . 984(100) SRY sex-determining region Y gene product
1654 . . . 1648(100)
813 . . . 807(96)
917 . . . 911(96)
1848 . . . 1854(92)
1840 . . . 1846(92)
1826 . . . 1832(92)
1504 . . . 1498(92)
1391 . . . 1397(90)
680 . . . 686(90)
2094 . . . 2088(90)
368 . . . 362(90)
721 . . . 715(90)
1002 . . . 996(90)
1900 . . . 1894(90)
274 . . . 280(90)
M00350 71 . . . 80(100) GATA-3 GATA-binding factor 3
M00100 595 . . . 589(100) CdxA CdxA
1400 . . . 1394(100)
M00101 595 . . . 589(99) CdxA CdxA
1400 . . . 1394(99)
803 . . . 797(98)
1527 . . . 1521(98)
1705 . . . 1711(92)
699 . . . 693(92)
934 . . . 940(92)
43 . . . 37(92)
495 . . . 501(92)
397 . . . 403(92)
M00141 1274 . . . 1266(98) Lyf-1 LyF-1
M00347 71 . . . 80(97) GATA-1 GATA-binding factor 1
M00272 1563 . . . 1572(96) p53 tumor suppressor p53
M00253 1128 . . . 1135(96) cap cap signal for transcription initiation
136 . . . 143(96)
2064 . . . 2071(95)
457 . . . 464(95)
2163 . . . 2156(95)
721 . . . 728(94)
660 . . . 653(94)
1782 . . . 1775(92)
312 . . . 319(92)
1622 . . . 1615(91)
535 . . . 542(91)
2085 . . . 2078(91)
2147 . . . 2140(91)
1350 . . . 1357(91)
768 . . . 775(90)
295 . . . 302(90)
M00285 2004 . . . 2016(95) TCF11 TCF11/KCR-F1/Nrfl homodimers
1410 . . . 1422(91)
M00254 2101 . . . 2090(95) CCAAT cellular and viral CCAAT box
M00130 1647 . . . 1658(95) HFH-2 HNF-3/Fkh Homolog 2
M00054 442 . . . 433(95) NF-kappaB NF-kappaB
M00077 2203 . . . 2211(95) GATA-3 GATA-binding factor 3
M00052 442 . . . 433(94) NF-kappaB NF-kappaB (p65)
M00203 73 . . . 83(94) GATA-X GATA binding site
M00199 2067 . . . 2059(94) AP-1 AP-1 binding site
2059 . . . 2067(91)
1984 . . . 1992(90)
M00174 2058 . . . 2068(94) AP-1 activator protein 1
M00075 895 . . . 886(94) GATA-1 GATA-binding factor 1
2159 . . . 2168(93)
1082 . . . 1073(93)
1971 . . . 1962(92)
2006 . . . 2015(90)
M00053 442 . . . 433(94) c-Rel c-Rel
M00241 2070 . . . 2077(94) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00076 716 . . . 707(94) GATA-2 GATA-binding factor 2
1599 . . . 1608(92)
957 . . . 966(92)
895 . . . 886(91)
1971 . . . 1962(91)
M00106 627 . . . 636(94) CDP cut-like homeodomain protein
M00033 731 . . . 718(94) p300 p300
M00227 2139 . . . 2131(94) v-Myb v-Myb
M00158 295 . . . 282(93) COUP-TF COUP/HNF-4 heterodimer
M00162 2070 . . . 2083(93) Oct-1 octamer-binding factor 1
M00134 280 . . . 298(93) HNF-4 hepatic nuclear factor 4
M00032 226 . . . 235(93) c-Ets-1(p54) c-Ets-1(p54)
M00117 1080 . . . 1067(92) C/EBPbeta CCAAT/enhancer binding protein beta
M00223 520 . . . 512(92) STATx signal transducers and activators of transcription
M00042 1901 . . . 1892(92) Sox-5 Sox-5
622 . . . 631(91)
M00073 13 . . . 23(92) deltaEF1 deltaEF1
M00099 2083 . . . 2068(91) S8 S8
2066 . . . 2081(90)
1409 . . . 1424(90)
M00289 1647 . . . 1659(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
357 . . . 369(91)
M00147 752 . . . 743(91) HSF2 heat shock factor 2
142 . . . 133(90)
M00208 443 . . . 432(90) NF-kappaB NF-kappaB binding site
M00217 115 . . . 108(90) USF USF binding site
M00183 1325 . . . 1334(90) c-Myb c-Myb
M00240 217 . . . 211(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00188 2058 . . . 2068(90) AP-1 activator protein 1
M00184 1955 . . . 1964(90) MyoD myoblast determining factor
247 . . . 256(90)
M00087 954 . . . 965(90) Ik-2 Ikaros 2
M00128 70 . . . 82(90) GATA-1 GATA-binding factor 1
M00172 2058 . . . 2068(90) AP-1 activator protein 1
M00145 1339 . . . 1354(90) Brn-2 POU factor Brn-2
M00062 1217 . . . 1205(90) IRF-1 interferon regulatory factor 1
M00194 444 . . . 431(90) NF-kappaB NF-kappaB
TABLE 16
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.4. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00100 1105 . . . 1099(100) CdxA CdxA
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00148 1020 . . . 1014(100) SRY sex-determining region Y gene product
970 . . . 976(100)
947 . . . 941(96)
1550 . . . 1556(92)
843 . . . 837(90)
707 . . . 713(90)
1362 . . . 1356(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
395 . . . 389(90)
748 . . . 742(90)
300 . . . 306(90)
M00101 1105 . . . 1099(99) CdxA CdxA
833 . . . 827(98)
1385 . . . 1379(98)
1409 . . . 1415(92)
964 . . . 970(92)
726 . . . 720(92)
424 . . . 430(92)
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1889 . . . 1898(93)
925 . . . 916(93)
1736 . . . 1745(90)
M00272 1267 . . . 1276(96) p53 tumor suppressor p53
M00253 161 . . . 168(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
484 . . . 491(95)
1893 . . . 1886(95)
1452 . . . 1459(94)
798 . . . 805(94)
748 . . . 755(94)
957 . . . 964(94)
1486 . . . 1479(92)
338 . . . 345(92)
1697 . . . 1704(92)
562 . . . 569(91)
1877 . . . 1870(91)
1815 . . . 1808(90)
321 . . . 328(90)
1326 . . . 1319(90)
1299 . . . 1306(90)
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrfl homodimers
1115 . . . 1127(91)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00054 469 . . . 460(95) NF-kappaB NF-kappaB
M00141 456 . . . 464(94) Lyf-1 LyF-1
M00134 306 . . . 324(94) HNF-4 hepatic nuclear factor 4
M00052 469 . . . 460(94) NF-kappaB NF-kappaB (p65)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00053 469 . . . 460(94) c-Rel c-Rel
M00033 758 . . . 745(94) p300 p300
808 . . . 795(92)
M00158 321 . . . 308(93) COUP-TF COUP/HNF-4 heterodimer
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
1303 . . . 1312(92)
743 . . . 734(92)
987 . . . 996(92)
925 . . . 916(90)
M00099 1813 . . . 1798(92) S8 S8
1114 . . . 1129(90)
M00104 28 . . . 37(92) CDP cut-like homeodomain protein
M00223 547 . . . 539(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00042 649 . . . 658(91) Sox-5 Sox-5
M00289 384 . . . 396(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00302 1384 . . . 1395(91) NF-AT Nuclear factor of activated T-cells
841 . . . 830(90)
M00155 367 . . . 382(91) ARP-1 apolipoprotein AI regulatory protein 1
M00208 470 . . . 459(90) NF-kappaB NF-kappaB binding site
M00183 1030 . . . 1039(90) c-Myb c-Myb
M00240 243 . . . 237(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
1454 . . . 1448(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00083 47 . . . 40(90) MZF1 MZF1
M00184 273 . . . 282(90) MyoD myoblast determining factor
M00147 167 . . . 158(90) HSF2 heat shock factor 2
M00087 984 . . . 995(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 471 . . . 458(90) NF-kappaB NF-kappaB
TABLE 17
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.5. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00100 1105 . . . 1099(100) CdxA CdxA
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00271 27 . . . 32(100) AML-1a runt-factor AML-1
1955 . . . 1960(92)
M00148 1020 . . . 1014(100) SRY sex-determining region Y gene product
970 . . . 976(100)
947 . . . 941(96)
1553 . . . 1559(92)
100 . . . 106(92)
141 . . . 135(90)
843 . . . 837(90)
1365 . . . 1359(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
M00101 1105 . . . 1099(99) CdxA CdxA
833 . . . 827(98)
1234 . . . 1228(98)
1388 . . . 1382(98)
1300 . . . 1294(93)
1412 . . . 1418(92)
964 . . . 970(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00278 618 . . . 610(98) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
1933 . . . 1941(93)
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
619 . . . 610(97)
1701 . . . 1692(95)
1889 . . . 1898(93)
903 . . . 894(91)
1736 . . . 1745(90)
M00054 442 . . . 451(96) NF- NF-kappaB
451 . . . 442(91) kappaB
M00253 175 . . . 168(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
1893 . . . 1886(95)
1455 . . . 1462(94)
798 . . . 805(94)
629 . . . 636(94)
1489 . . . 1482(92)
433 . . . 426(92)
1329 . . . 1322(91)
1877 . . . 1870(91)
921 . . . 928(91)
957 . . . 964(90)
1815 . . . 1808(90)
1302 . . . 1309(90)
M00272 1270 . . . 1279(96) p53 tumor suppressor p53
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1115 . . . 1127(91)
1490 . . . 1478(91)
M00076 619 . . . 610(95) GATA-2 GATA-binding factor 2
1932 . . . 1941(93)
1701 . . . 1692(92)
1306 . . . 1315(92)
987 . . . 996(92)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
618 . . . 610(92)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00083 566 . . . 559(93) MZF1 MZF1
M00099 1813 . . . 1798(92) S8 S8
1114 . . . 1129(90)
M00208 441 . . . 452(92) NF- NF-kappaB binding site
kappaB
M00033 808 . . . 795(92) p300 p300
M00227 1677 . . . 1669(91) v-Myb v-Myb
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00183 166 . . . 157(91) c-Myb c-Myb
1030 . . . 1039(90)
M00267 102 . . . 89(91) XFD-1 Xenopus fork head domain factor 1
M00240 1457 . . . 1451(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
296 . . . 302(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00302 841 . . . 830(90) NF-AT Nuclear factor of activated T-cells
M00087 984 . . . 995(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00003 965 . . . 956(90) v-Myb v-Myb
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00053 441 . . . 450(90) c-Rel c-Rel
TABLE 18
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.6. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00100 1105 . . . 1099(100) CdxA CdxA
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
M00148 1020 . . . 1014(100) SRY sex-determining region Y gene product
970 . . . 976(100)
947 . . . 941(96)
1550 . . . 1556(92)
843 . . . 837(90)
707 . . . 713(90)
1362 . . . 1356(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
395 . . . 389(90)
748 . . . 742(90)
300 . . . 306(90)
M00101 1105 . . . 1099(99) CdxA CdxA
833 . . . 827(98)
1385 . . . 1379(98)
1409 . . . 1415(92)
964 . . . 970(92)
726 . . . 720(92)
424 . . . 430(92)
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1889 . . . 1898(93)
925 . . . 916(93)
1736 . . . 1745(90)
M00272 1267 . . . 1276(96) p53 tumor suppressor p53
M00253 161 . . . 168(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
484 . . . 491(95)
1893 . . . 1886(95)
1452 . . . 1459(94)
798 . . . 805(94)
748 . . . 755(94)
957 . . . 964(94)
1486 . . . 1479(92)
338 . . . 345(92)
1697 . . . 1704(92)
562 . . . 569(91)
1877 . . . 1870(91)
1815 . . . 1808(90)
321 . . . 328(90)
1326 . . . 1319(90)
1299 . . . 1306(90)
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1115 . . . 1127(91)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00054 469 . . . 460(95) NF-kappaB NF-kappaB
M00141 456 . . . 464(94) Lyf-1 LyF-1
M00134 306 . . . 324(94) HNF-4 hepatic nuclear factor 4
M00052 469 . . . 460(94) NF-kappaB NF-kappaB (p65)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00053 469 . . . 460(94) c-Rel c-Rel
M00033 758 . . . 745(94) p300 p300
808 . . . 795(92)
M00158 321 . . . 308(93) COUP-TF COUP/HNF-4 heterodimer
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins,
and GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
1303 . . . 1312(92)
743 . . . 734(92)
987 . . . 996(92)
925 . . . 916(90)
M00099 1813 . . . 1798(92) S8 S8
1114 . . . 1129(90)
M00104 28 . . . 37(92) CDP cut-like homeodomain protein
M00223 547 . . . 539(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00042 649 . . . 658(91) Sox-5 Sox-5
M00289 384 . . . 396(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00302 1384 . . . 1395(91) NF-AT Nuclear factor of activated T-cells
841 . . . 830(90)
M00155 367 . . . 382(91) ARP-1 apolipoprotein AI regulatory protein 1
M00208 470 . . . 459(90) NF-kappaB NF-kappaB binding site
M00183 1030 . . . 1039(90) c-Myb c-Myb
M00240 243 . . . 237(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman
homolog
1454 . . . 1448(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00083 47 . . . 40(90) MZF1 MZF1
M00184 273 . . . 282(90) MyoD myoblast determining factor
M00147 167 . . . 158(90) HSF2 heat shock factor 2
M00087 984 . . . 995(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 471 . . . 458(90) NF-kappaB NF-kappaB
TABLE 19
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.7. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00349 94 . . . 103(100) GATA-2 GATA-binding factor 2
M00348 94 . . . 103(100) GATA-2 GATA-binding factor 2
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00100 1102 . . . 1096(100) CdxA CdxA
M00148 1017 . . . 1011(100) SRY sex-determining region Y gene product
967 . . . 973(100)
704 . . . 710(100)
944 . . . 938(96)
1550 . . . 1556(92)
840 . . . 834(90)
1362 . . . 1356(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
392 . . . 386(90)
745 . . . 739(90)
298 . . . 304(90)
M00350 94 . . . 103(100) GATA-3 GATA-binding factor 3
M00101 1102 . . . 1096(99) CdxA CdxA
830 . . . 824(98)
1231 . . . 1225(98)
1385 . . . 1379(98)
1297 . . . 1291(93)
1409 . . . 1415(92)
723 . . . 717(92)
961 . . . 967(92)
66 . . . 60(92)
421 . . . 427(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00203 96 . . . 106(98) GATA-X GATA binding site
M00347 94 . . . 103(97) GATA-1 GATA-binding factor 1
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1701 . . . 1692(95)
1889 . . . 1898(93)
900 . . . 891(91)
138 . . . 129(90)
1736 . . . 1745(90)
M00158 319 . . . 306(96) COUP-TF COUP/HNF-4 heterodimer
M00272 1267 . . . 1276(96) p53 tumor suppressor p53
M00134 304 . . . 322(96) HNF-4 hepatic nuclear factor 4
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1112 . . . 1124(91)
1487 . . . 1475(91)
13 . . . 1(90)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00253 1794 . . . 1801(95) cap cap signal for transcription initiation
481 . . . 488(95)
1893 . . . 1886(95)
1452 . . . 1459(94)
795 . . . 802(94)
656 . . . 649(93)
1486 . . . 1479(92)
1326 . . . 1319(91)
559 . . . 566(91)
1877 . . . 1870(91)
745 . . . 752(91)
918 . . . 925(91)
954 . . . 961(90)
1815 . . . 1808(90)
1299 . . . 1306(90)
M00054 466 . . . 457(95) NF-kappaB NF-kappaB
M00146 165 . . . 156(94) HSF1 heat shock factor 1
M00147 165 . . . 156(94) HSF2 heat shock factor 2
156 . . . 165(94)
M00141 453 . . . 461(94) Lyf-1 LyF-1
M00052 466 . . . 457(94) NF-kappaB NF-kappaB (p65)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00053 466 . . . 457(94) c-Rel c-Rel
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
1701 . . . 1692(92)
1303 . . . 1312(92)
984 . . . 993(92)
M00099 1813 . . . 1798(92) S8 S8
1111 . . . 1126(90)
M00184 271 . . . 280(92) MyoD myoblast determining factor
M00223 544 . . . 536(92) STATx signal transducers and activators of transcription
M00073 36 . . . 46(92) deltaEF1 deltaEF1
M00033 805 . . . 792(92) p300 p300
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00277 281 . . . 270(91) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 1
M00289 381 . . . 393(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00208 467 . . . 456(90) NF-kappaB NF-kappaB binding site
M00183 1027 . . . 1036(90) c-Myb c-Myb
M00240 241 . . . 235(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
1454 . . . 1448(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00302 838 . . . 827(90) NF-AT Nuclear factor of activated T-cells
M00128 93 . . . 105(90) GATA-1 GATA-binding factor 1
M00087 981 . . . 992(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00042 69 . . . 78(90) Sox-5 Sox-5
M00003 962 . . . 953(90) v-Myb v-Myb
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 468 . . . 455(90) NF-kappaB NF-kappaB
TABLE 20
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.8. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 1020 . . . 1014(100) SRY sex-determining region Y gene product
970 . . . 976(100)
947 . . . 941(96)
1550 . . . 1556(92)
843 . . . 837(90)
707 . . . 713(90)
1362 . . . 1356(90)
1719 . . . 1713(90)
1824 . . . 1818(90)
395 . . . 389(90)
748 . . . 742(90)
300 . . . 306(90)
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00100 1105 . . . 1099(100) CdxA CdxA
M00101 1105 . . . 1099(99) CdxA CdxA
833 . . . 827(98)
1385 . . . 1379(98)
1409 . . . 1415(92)
964 . . . 970(92)
726 . . . 720(92)
424 . . . 430(92)
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1889 . . . 1898(93)
925 . . . 916(93)
1736 . . . 1745(90)
M00272 1267 . . . 1276(96) p53 tumor suppressor p53
M00253 161 . . . 168(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
484 . . . 491(95)
1893 . . . 1886(95)
1452 . . . 1459(94)
798 . . . 805(94)
748 . . . 755(94)
957 . . . 964(94)
1486 . . . 1479(92)
338 . . . 345(92)
1697 . . . 1704(92)
562 . . . 569(91)
1877 . . . 1870(91)
1815 . . . 1808(90)
321 . . . 328(90)
1326 . . . 1319(90)
1299 . . . 1306(90)
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1115 . . . 1127(91)
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00054 469 . . . 460(95) NF-kappaB NF-kappaB
M00141 456 . . . 464(94) Lyf-1 LyF-1
M00134 306 . . . 324(94) HNF-4 hepatic nuclear factor 4
M00052 469 . . . 460(94) NF-kappaB NF-kappaB (p65)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00053 469 . . . 460(94) c-Rel c-Rel
M00033 758 . . . 745(94) p300 p300
808 . . . 795(92)
M00158 321 . . . 308(93) COUP-TF COUP/HNF-4 heterodimer
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
1303 . . . 1312(92)
743 . . . 734(92)
925 . . . 916(90)
M00099 1813 . . . 1798(92) S8 S8
1114 . . . 1129(90)
M00104 28 . . . 37(92) CDP cut-like homeodomain protein
M00223 547 . . . 539(92) STATx signal transducers and activators of transcription
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00042 649 . . . 658(91) Sox-5 Sox-5
M00289 384 . . . 396(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00302 1384 . . . 1395(91) NF-AT Nuclear factor of activated T-cells
841 . . . 830(90)
M00155 367 . . . 382(91) ARP-1 apolipoprotein AI regulatory protein 1
M00208 470 . . . 459(90) NF-kappaB NF-kappaB binding site
M00183 1030 . . . 1039(90) c-Myb c-Myb
M00240 243 . . . 237(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
1454 . . . 1448(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00083 47 . . . 40(90) MZF1 MZF1
M00184 273 . . . 282(90) MyoD myoblast determining factor
M00147 167 . . . 158(90) HSF2 heat shock factor 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00194 471 . . . 458(90) NF-kappaB NF-kappaB
TABLE 21
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.9. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 991 . . . 997(100) SRY sex-determining region Y gene product
1040 . . . 1034(100)
967 . . . 961(96)
1576 . . . 1582(92)
1550 . . . 1556(92)
1385 . . . 1379(90)
1824 . . . 1818(90)
13 . . . 19(90)
415 . . . 409(90)
727 . . . 733(90)
M00101 1125 . . . 1119(100) CdxA CdxA
1254 . . . 1248(98)
1167 . . . 1161(97)
542 . . . 548(97)
884 . . . 878(94)
1432 . . . 1438(93)
743 . . . 737(92)
89 . . . 83(92)
592 . . . 586(92)
1280 . . . 1286(92)
444 . . . 450(92)
1682 . . . 1688(91)
1688 . . . 1682(91)
M00083 779 . . . 772(100) MZF1 MZF1
68 . . . 61(90)
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00272 1290 . . . 1299(96) p53 tumor suppressor p53
M00253 182 . . . 189(96) cap cap signal for transcription initiation
1794 . . . 1801(95)
1893 . . . 1886(95)
1475 . . . 1482(94)
768 . . . 775(94)
1506 . . . 1499(93)
1349 . . . 1342(91)
582 . . . 589(91)
351 . . . 358(90)
1815 . . . 1808(90)
342 . . . 349(90)
1877 . . . 1870(90)
504 . . . 511(90)
1322 . . . 1329(90)
M00100 1125 . . . 1119(96) CdxA CdxA
M00042 742 . . . 751(96) Sox-5 Sox-5
669 . . . 678(92)
726 . . . 735(92)
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00077 1933 . . . 1941(95) GATA-3 GATA-binding factor 3
M00045 1877 . . . 1888(95) E4BP4 E4BP4
M00054 489 . . . 480(95) NF-kappaB NF-kappaB
M00141 476 . . . 484(94) Lyf-1 LyF-1
M00052 489 . . . 480(94) NF-kappaB NF-kappaB (p65)
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00053 489 . . . 480(94) c-Rel c-Rel
M00278 1933 . . . 1941(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00076 1932 . . . 1941(93) GATA-2 GATA-binding factor 2
1007 . . . 1016(92)
1701 . . . 1692(91)
M00285 1734 . . . 1746(92) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1135 . . . 1147(91)
M00099 1813 . . . 1798(92) S8 S8
1134 . . . 1149(90)
M00104 49 . . . 58(92) CDP cut-like homeodomain protein
M00223 567 . . . 559(92) STATx signal transducers and activators of transcription
M00075 1701 . . . 1692(92) GATA-1 GATA-binding factor 1
161 . . . 152(90)
1736 . . . 1745(90)
M00348 316 . . . 325(92) GATA-2 GATA-binding factor 2
M00109 873 . . . 886(91) C/EBPbeta CCAAT/enhancer binding protein beta
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00203 318 . . . 328(91) GATA-X GATA binding site
M00350 316 . . . 325(91) GATA-3 GATA-binding factor 3
M00289 404 . . . 416(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00113 833 . . . 822(90) CREB cAMP-responsive element binding protein
M00249 1165 . . . 1153(90) CHOP- heterodimers of CHOP and C/EBPalpha
C/EBPalpha
M00208 490 . . . 479(90) NF-kappaB NF-kappaB binding site
M00190 1263 . . . 1250(90) C/EBP CCAAT/enhancer binding factor
M00349 316 . . . 325(90) GATA-2 GATA-binding factor 2
M00116 1263 . . . 1250(90) C/EBPalpha CCAAT/enhancer binding protein alpha
M00183 1050 . . . 1059(90) c-Myb c-Myb
M00240 263 . . . 257(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
1477 . . . 1471(90)
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00302 1407 . . . 1418(90) NF-AT Nuclear factor of activated T-cells
M00184 293 . . . 302(90) MyoD myoblast determining factor
M00147 188 . . . 179(90) HSF2 heat shock factor 2
M00087 1004 . . . 1015(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
M00033 778 . . . 765(90) p300 p300
M00194 491 . . . 478(90) NF-kappaB NF-kappaB
TABLE 22
putative transcription factor binding motifs within the DUB regulatory or
promoter, region of hDUB 8.10. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00148 1038 . . . 1032(100) SRY sex-determining region Y gene product
965 . . . 959(96)
1550 . . . 1556(92)
725 . . . 731(90)
1382 . . . 1376(90)
310 . . . 316(90)
1715 . . . 1709(90)
1824 . . . 1818(90)
12 . . . 18(90)
413 . . . 407(90)
1630 . . . 1624(90)
319 . . . 325(90)
M00241 1800 . . . 1807(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00100 1123 . . . 1117(100) CdxA CdxA
M00240 1240 . . . 1234(100) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
262 . . . 256(90)
M00141 474 . . . 482(100) Lyf-1 LyF-1
M00101 1123 . . . 1117(99) CdxA CdxA
540 . . . 546(97)
1429 . . . 1435(94)
982 . . . 988(92)
88 . . . 82(92)
741 . . . 735(92)
442 . . . 448(92)
M00075 1838 . . . 1847(97) GATA-1 GATA-binding factor 1
1889 . . . 1898(93)
1736 . . . 1745(90)
M00253 766 . . . 773(96) cap cap signal for transcription initiation
181 . . . 188(96)
1794 . . . 1801(95)
1893 . . . 1886(95)
1210 . . . 1217(94)
816 . . . 823(94)
1506 . . . 1499(92)
357 . . . 364(92)
1697 . . . 1704(92)
1090 . . . 1097(91)
1346 . . . 1339(91)
1877 . . . 1870(91)
71 . . . 78(90)
580 . . . 587(90)
1815 . . . 1808(90)
340 . . . 347(90)
502 . . . 509(90)
1319 . . . 1326(90)
M00096 1827 . . . 1819(96) Pbx-1 Pbx-1
M00285 1734 . . . 1746(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1133 . . . 1145(91)
35 . . . 23(91)
1089 . . . 1101(90)
M00134 325 . . . 343(94) HNF-4 hepatic nuclear factor 4
M00199 1797 . . . 1789(94) AP-1 AP-1 binding site
1789 . . . 1797(91)
M00174 1788 . . . 1798(94) AP-1 activator protein 1
M00042 740 . . . 749(94) Sox-5 Sox-5
1631 . . . 1622(92)
667 . . . 676(91)
M00106 672 . . . 681(94) CDP cut-like homeodomain protein
M00158 340 . . . 327(93) COUP-TF COUP/HNF-4 heterodimer
M00076 761 . . . 752(93) GATA-2 GATA-binding factor 2
1323 . . . 1332(92)
1005 . . . 1014(92)
M00099 1813 . . . 1798(92) S8 S8
1132 . . . 1147(90)
M00104 48 . . . 57(92) CDP cut-like homeodomain protein
M00223 565 . . . 557(92) STATx signal transducers and activators of transcription
M00033 826 . . . 813(92) p300 p300
M00271 1955 . . . 1960(92) AML-1a runt-factor AML-1
M00254 1831 . . . 1820(91) CCAAT cellular and viral CCAAT box
M00289 402 . . . 414(91) HFH-3 HNF-3/Fkh Homolog 3 (=Freac-6)
M00217 160 . . . 153(90) USF USF binding site
M00183 1048 . . . 1057(90) c-Myb c-Myb
M00188 1788 . . . 1798(90) AP-1 activator protein 1
M00083 67 . . . 60(90) MZF1 MZF1
M00184 292 . . . 301(90) MyoD myoblast determining factor
M00147 187 . . . 178(90) HSF2 heat shock factor 2
M00087 1002 . . . 1013(90) Ik-2 Ikaros 2
M00172 1788 . . . 1798(90) AP-1 activator protein 1
M00221 1860 . . . 1850(90) SREBP-1 sterol regulatory element-binding protein 1
TABLE 23
putative transcription factor binding motifs within the DUB regulatory or promoter,
region of hDUB 8.11. The position is indicated by nucleotides.
Transfac Position(Score) Name Description
M00348 71 . . . 80(100) GATA-2 GATA-binding factor 2
M00350 71 . . . 80(100) GATA-3 GATA-binding factor 3
M00349 71 . . . 80(100) GATA-2 GATA-binding factor 2
M00148 990 . . . 984(100) SRY sex-determining region Y gene product
1664 . . . 1658(100)
813 . . . 807(96)
917 . . . 911(96)
1858 . . . 1864(92)
1850 . . . 1856(92)
1836 . . . 1842(92)
1399 . . . 1405(90)
1514 . . . 1508(90)
680 . . . 686(90)
2104 . . . 2098(90)
368 . . . 362(90)
721 . . . 715(90)
1002 . . . 996(90)
1910 . . . 1904(90)
274 . . . 280(90)
M00100 595 . . . 589(100) CdxA CdxA
1408 . . . 1402(100)
1474 . . . 1480(96)
M00101 595 . . . 589(99) CdxA CdxA
1408 . . . 1402(99)
803 . . . 797(98)
1537 . . . 1531(98)
1715 . . . 1721(92)
699 . . . 693(92)
934 . . . 940(92)
43 . . . 37(92)
495 . . . 501(92)
M00141 1282 . . . 1274(98) Lyf-1 LyF-1
M00347 71 . . . 80(97) GATA-1 GATA-binding factor 1
M00272 1573 . . . 1582(96) p53 tumor suppressor p53
M00253 1137 . . . 1144(96) cap cap signal for transcription initiation
136 . . . 143(96)
2074 . . . 2081(95)
457 . . . 464(95)
2173 . . . 2166(95)
721 . . . 728(94)
1444 . . . 1437(94)
660 . . . 653(94)
1792 . . . 1785(92)
312 . . . 319(92)
1632 . . . 1625(91)
535 . . . 542(91)
2095 . . . 2088(91)
1358 . . . 1365(91)
768 . . . 775(90)
295 . . . 302(90)
2157 . . . 2150(90)
M00096 2107 . . . 2099(96) Pbx-1 Pbx-1
M00285 2014 . . . 2026(95) TCF11 TCF11/KCR-F1/Nrf1 homodimers
1418 . . . 1430(91)
M00130 1657 . . . 1668(95) HFH-2 HNF-3/Fkh Homolog 2
M00077 2213 . . . 2221(95) GATA-3 GATA-binding factor 3
M00054 442 . . . 433(95) NF-kappaB NF-kappaB
M00052 442 . . . 433(94) NF-kappaB NF-kappaB (p65)
M00203 73 . . . 83(94) GATA-X GATA binding site
M00199 2077 . . . 2069(94) AP-1 AP-1 binding site
2069 . . . 2077(91)
1994 . . . 2002(90)
M00174 2068 . . . 2078(94) AP-1 activator protein 1
1436 . . . 1446(90)
M00075 895 . . . 886(94) GATA-1 GATA-binding factor 1
2169 . . . 2178(93)
1091 . . . 1082(93)
1981 . . . 1972(92)
2016 . . . 2025(90)
M00053 442 . . . 433(94) c-Rel c-Rel
M00241 2080 . . . 2087(94) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00076 716 . . . 707(94) GATA-2 GATA-binding factor 2
2212 . . . 2221(93)
1609 . . . 1618(92)
957 . . . 966(92)
895 . . . 886(91)
1981 . . . 1972(91)
M00106 627 . . . 636(94) CDP cut-like homeodomain protein
M00033 731 . . . 718(94) p300 p300
M00227 2149 . . . 2141(94) v-Myb v-Myb
M00158 295 . . . 282(93) COUP-TF COUP/HNF-4 heterodimer
M00162 2080 . . . 2093(93) Oct-1 octamer-binding factor 1
M00278 2213 . . . 2221(93) Lmo2 complex of Lmo2 bound to Tal-1, E2A proteins, and
GATA-1, half-site 2
M00134 280 . . . 298(93) HNF-4 hepatic nuclear factor 4
M00032 226 . . . 235(93) c-Ets-1(p54) c-Ets-1(p54)
M00172 1436 . . . 1446(92) AP-1 activator protein 1
2068 . . . 2078(90)
M00117 1089 . . . 1076(92) C/EBPbeta CCAAT/enhancer binding protein beta
M00223 520 . . . 512(92) STATx signal transducers and activators of transcription
M00042 1911 . . . 1902(92) Sox-5 Sox-5
622 . . . 631(91)
M00073 13 . . . 23(92) deltaEF1 deltaEF1
M00188 1436 . . . 1446(91) AP-1 activator protein 1
2068 . . . 2078(90)
M00254 2111 . . . 2100(91) CCAAT cellular and viral CCAAT box
M00099 2093 . . . 2078(91) S8 S8
2076 . . . 2091(90)
1417 . . . 1432(90)
M00289 1657 . . . 1669(91) HFH-3 HNF-3/Fkh Homolog 3 (= Freac-6)
357 . . . 369(91)
M00147 752 . . . 743(91) HSF2 heat shock factor 2
142 . . . 133(90)
M00208 443 . . . 432(90) NF-kappaB NF-kappaB binding site
M00217 115 . . . 108(90) USF USF binding site
M00183 1333 . . . 1342(90) c-Myb c-Myb
M00173 1436 . . . 1446(90) AP-1 activator protein 1
M00240 217 . . . 211(90) Nkx-2.5 homeo domain factor Nkx-2.5/Csx, tinman homolog
M00184 1965 . . . 1974(90) MyoD myoblast determining factor
247 . . . 256(90)
M00087 954 . . . 965(90) Ik-2 Ikaros 2
M00128 70 . . . 82(90) GATA-1 GATA-binding factor 1
M00145 1347 . . . 1362(90) Brn-2 POU factor Brn-2
M00194 444 . . . 431(90) NF-kappaB NF-kappaB
REFERENCES
- 1. Baek, K. H., Mondoux, M. A., Jaster, R., Fire-Levin, E., and D'Andrea, A. D. (2001). DUB-2A, a new member of the DUB subfamily of hematopoietic deubiquitinating enzymes, Blood 98, 636-42.
- 2. Jaster, R., Baek, K. H., and D'Andrea, A. D. (1999). Analysis of cis-acting sequences and trans-acting factors regulating the interleukin-3 response element of the DUB-1 gene, Biochim Biophys Acta 1446, 308-16.
- 3. Jaster, R., Zhu, Y., Pless, M., Bhattacharya, S., Mathey-Prevot, B., and D'Andrea, A. D. (1997). JAK2 is required for induction of the murine DUB-1 gene, Mol Cell Biol 17, 3364-72.
- 4. Migone, T. S., Humbert, M., Rascle, A., Sanden, D., D'Andrea, A., Johnston, J. A., Baek, K. H., Mondoux, M. A., Jaster, R., Fire-Levin, E., et al. (2001). The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood 98, 1935-41.
- 5. Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M., and D'Andrea, A. D. (1996a). DUB-1, a deubiquitinating enzyme with growth-suppressing activity, Proc Natl Acad Sci USA 93, 3275-9.
- 6. Zhu, Y., Lambert, K., Corless, C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and D'Andrea, A. D. (1997). DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes, J Biol Chem 272, 51-7.
7. Zhu, Y., Pless, M., Inhom, R., Mathey-Prevot, B., and D'Andrea, A. D. (1996b). The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor, Mol Cell Biol 16, 4808-17.
Nucleotide sequence for hDUB4.1a
atgaccctgcaacagagcatgcccttctgcattgagcatgcaatcatgaa
tcacaggcggaggaactgcgagagtgcctacgttagcccaaggcctgacc
cgacgatcccagggaccctcgacctaactggccccgcctcccgggcccca
aacccggactcggcccccccgaagctccggatcctggggcccgcccctgg
ccccgcgtcggaagaccatgggctcgctcctgggccttcctcaaaccctc
cgcagtccaggcccggcttcctccaggtctccaggcaacgctgcggctcc
gcccacgtcatggcgcccgaggagaacgcggggacagaactctggctgca
gggtttcgagcgccgcttcctggcggcgcgctcactgcgctccttcccct
ggcagagcttagaggcaaagttaagagactcatcagattctgagctgctg
cgggatattttgcagaagactgtgaagcatcccgtgtgtgtgaagcaccc
gccatcagtcaagtatgcccggtgctttctctcagaactcatcaaaaagg
gtgcatctgtggtcaccagcagcacgagggctgtccacacggagcctttg
gacgagctgtacgaggtgctggcggagactctgatggccaaggagtccac
ccagggccaccggagctatttgctgccctcgggaggctcgttcacacttt
ccgagatcacagccatcatctcccatggtactacaggcctggtcacatgg
gacgccaccctctaccttgcagaatgggccatcgagaacccagcagcctt
cactaacaggggtgtcctagagcttggcagtggcgctggcctcacaggcc
tggccatctgcaagatgtgtcgcccccaggcatacatcttcagcgactgt
cacagccgggtcctcgagcagctccgagggaatgtccttctcaatggcct
ctcattagaggcagacatcactgccaacttagacgccccaggagaccaca
ggagaaaaacaaccacttctgggacgaggacagggcccttgagaaaaggt
ggtgtttggctgggccaccgaaaacccctcacccctgccagcacactcag
tcccctctctggtggaacagagctctgcctgtggccctgggtcccagccc
tgaaacccacaggtccagcggtggccagggacacaggcccacccctgcaa
gccagcagaccaaacggcagacacctgaaacaagaagttcacgacgtgct
gtattgcccagaagccatcgtgtcactggtcggggtcctgcggaggctgg
ctgcctgccgggagcacaagcaggctcctgaggtctacctggcctttacc
gtccgcaacccagagacgtgccagctgttcaccaccgagctagagatagc
gtctttctgcaacctgcggtcccagcagaaaaaccttgtgatccttgttc
cagtcgacatggaggacgactcactctacttgggaggtgagtggcagttc
aaccacttttcaaaactcacatcttctcggccagatgcagcttttgctga
aatccagcgtacttctctccctgagaagtcaccactctcatgtgagaccc
gtgtcgacctctgtgatgatttggctcctgtggcaagacagcttgctccc
agggagaagcctcctctgagtagcaggagacctgctgcggtgggggctgg
gctccagaatatgggaaatacctgctacgtgaacgcttccctgcagtgcc
tgacatacaaaccgccacttgccaactacatgctgttccgggagcactct
caaacgtgtcatcgtcacaagggctgcatgctctgtactatgcaagctca
catcacaagggccctccacattcctggccatgtcatccagccctcacagg
cattggctgctggcttccatagaggcaagcaggaagatgcccatgaattt
ctcatgttcactgtggatgccatgagaaaggcatgccttcccgggcacaa
gcaggtagatcgtcactctaaggacaccaccctcatccaccaaatatttg
gaggctactggagatctcaaatcaagtgtctccactgccacggcatttca
gacacttttgacccttacctggacatcgccctggatatccaggcagctca
gagtgtccagcaagctttggaacagttggtgaagcccgaagaactcaatg
gagagaatgcctatcattgtggtgtttgtctccagagggcgccggcctcc
aagacgttaactttacacaactctgccaaggtcctcatccttgtattgaa
gagattccccgatgtcacaggcaacaaaattgccaagaatgtgcaatatc
ctgagtgccttgacatgcagccatacatgtctcagcagaacacaggacct
ctcgtctatgtcctctatgctgtgctggtccacgctgggtggagttgtca
caacggacattactcctcttatgtcaaagctcaagaaggccagtggtata
aaatggatgatgccgaggtcaccgcctctagcatcacttctgtcctgagt
caacaggcctacgtcctcttttacatccagaagagtgaatgggaaagaca
cagtgagagtgtgtcaagaggcagggaaccaagagcccttggcgtagaag
acacagacaggcgagcaacgcaaggagagctcaagagagaccacccctgc
ctccaggcccccgagttggacgagcacttggtggaaagagccactcagga
aagcaccttagaccactggaaattccttcaagagcaaaacaaaacgaagc
ctgagttcaacgtcagaagagtcgaaggtacggtgcctcccgacgtactt
gtgattcatcaatcaaaatacaagtgtcggatgaagaaccatcatcctga
acagcaaagctccctgctaaacctctcttcgacgaccccgacagatcagg
agtccatgaacactggcacactcgcttccctacgagggaggaccaggaga
tccaaagggaagaacaaacacagcaagagggctctgcttgtgtgccagtg
a
hDUB4.1a deduced polypeptide sequence
MTLQQSMPFCIEHAIMNHRRRNCESAYVSPRPDPTIPGTLDLTGPASRAP
NPDSAPPKLRILGPAPGPASEDHGLAPGPSSNPPQSRPGFLQVSRQRCGS
AHVMAPEENAGTELWLQGFERRFLAARSLRSFPWQSLEAKLRDSSDSELL
RDILQKTVKHPVCVKHPPSVKYARCFLSELIKKGASVVTSSTRAVHTEPL
DELYEVLAETLMAKESTQGHRSYLLPSGGSFTLSEITAIISHGTTGLVTW
DATLYLAEWAIENPAAFTNRGVLELGSGAGLTGLAICKMCRPQAYIFSDC
HSRVLEQLRGNVLLNGLSLEADITANLDAPGDHRRKTTTSGTRTGPLRKG
GVWLGHRKPLTPASTLSPLSGGTELCLWPWVPALKPTGPAVARDTGPPLQ
ASRPNGRHLKQEVHDVLYCPEAIVSLVGVLRRLAACREHKQAPEVYLAFT
VRNPETCQLFTTELEIASFCNLRSQQKNLVILVPVDMEDDSLYLGGEWQF
NHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVARQLAP
REKPPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYKPPLANYMLFREHS
QTCHRHKGCMLCTMQAHITRALHIPGHVIQPSQALAAGFHRGKQEDAHEF
LMFTVDAMRKACLPGHKQVDRHSKDTTLIHQIFGGYWRSQIKCLHCHGIS
DTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGENAYHCGVCLQRAPAS
KTLTLHNSAKVLILVLKRFPDVTGNKIAKNVQYPECLDMQPYMSQQNTGP
LVYVLYAVLVHAGWSCHNGHYSSYVKAQEGQWYKMDDAEVTASSITSVLS
QQAYVLFYIQKSEWERHSESVSRGREPRALGVEDTDRRATQGELKRDHPC
LQAPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRRVEGTVPPDVL
VIHQSKYKCRMKNHHPEQQSSLLNLSSTTPTDQESMNTGTLASLRGRTRR
SKGKNKHSKRALLVCQ
Nucleotide sequence for hDUB4.1b
atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcttttgctgaaatccagc
gtacttctctccctgagaagtcaccactctcatgtgagacccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccagggagaa
gcctcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgtgaacgcttccctgcagtgcctgacatac
aaaccgccacttgccaactacatgctgttccgggagcactctcaaacgtg
tcatcgtcacaagggctgcatgctctgtactatgcaagctcacatcacaa
gggccctccacattcctggccatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgcccatgaatttctcatgtt
cactgtggatgccatgagaaaggcatgccttcccgggcacaagcaggtag
atcgtcactctaaggacaccaccctcatccaccaaatatttggaggctac
tggagatctcaaatcaagtgtctccactgccacggcatttcagacacttt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtcc
agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgtggtgtttgtctccagagggcgccggcctccaagacgtt
aactttacacaactctgccaaggtcctcatccttgtattgaagagattcc
ccgatgtcacaggcaacaaaattgccaagaatgtgcaatatcctgagtgc
cttgacatgcagccatacatgtctcagcagaacacaggacctctcgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacaacggac
attactcctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccgaggtcaccgcctctagcatcacttctgtcctgagtcaacaggc
ctacgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagcccttggcgtagaagacacagac
aggcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggc
ccccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
tagaccactggaaattccttcaagagcaaaacaaaacgaagcctgagttc
aacgtcagaagagtcgaaggtacggtgcctcccgacgtacttgtgattca
tcaatcaaaatacaagtgtcggatgaagaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgacgaccccgacagatcaggagtccatg
aacactggcacactcgcttccctacgagggaggaccaggagatccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
hDUB4.1b deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVD
LCDDLAPVARQLAPREKPPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTY
KPPLANYMLFREHSQTCHRHKGCMLCTMQAHITRALHIPGHVIQPSQALA
AGFHRGKQEDAHEFLMFTVDAMRKACLPGHKQVDRHSKDTTLIHQIFGGY
WRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGEN
AYHCGVCLQRAPASKTLTLHNSAKVLILVLKRFPDVTGNKIAKNVQYPEC
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYSSYVKAQEGQWYKMD
DAEVTASSITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGVEDTD
RRATQGELKRDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNKTKPEF
NVRRVEGTVPPDVLVIHQSKYKCRMKNHHPEQQSSLLNLSSTTPTDQESM
NTGTLASLRGRTRRSKGKNKHSKRALLVCQ
Nucleotide sequence for hDUB4.2a
atgggaaatacctgctacgtgaacgcttccttgcagtgcctgacatacac
accgccccttgccaactacatgctgtcccgggagcactctcaaacgtgtc
atcgtcacaagggctgcatgctctgtactatgcaagctcacatcacacgg
gccctccacaatcctggccacgtcatccagccctcacaggcattggctgc
tggcttccatagaggcaagcaggaagatgcccatgaatttctcatgttca
ctgtggatgccatgaaaaaggcatgccttcccaggcacaagcaggtagat
catcactctaaggacaccaccctcatccaccaaatatttggaggctactg
gagatctcaaatcaagtgtctccactgccacggcatttcagacacttttg
acccttacctggacatcgccctggatatccaggcagctcagagtgtccag
caagctttggaacagttggtgaagcccgaagaactcaatggagagaatgc
ctatcattgtggtgtttgtctccagagggcgccggcctccaagacgttaa
ctttacacacctctgccaaggtcctcatccttgtattgaagagattctcc
gatgtcacaggcaacaagattgccaagaatgtgcaatatcctgagtgcct
tgacatgcagccatacatgtctcagcagaacacaggacctcttgtctatg
tcctctatgctgtgctggtccacgctgagtggagttgtcacaacggacat
tacttctcttatgtcaaagctcaagaaggccagtggtataaaatggatga
tgccgaggtcaccgccgctagcatcacttctgtcctgagtcaacaggcct
acgtcctcttttacatccagaagagtgaatgggaaagacatagtgagagt
gtgtcaagaggcagggaaccaagagcccttggcgcagaagacacagacag
gcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggccc
ccgagttggacgagcacttggtggaaagagccactcaggaaagcacctta
gaccactggaaattccttcaagagcaaaacaaaacgaagcctgagttcaa
cgtcagaaaagtcaaaggtacagtgatcaaagttgaccagccccagagga
aagctgcccagggcacaactcagggctccgtagaaccacagaatcttggg
cgcaaccctgctcaagcacccaaatgtgcatacgaacagggtctccgtgt
gacggaacatgtccactttcggcagcattacaattttggcaccaaatgtg
ctaactgcaattccaccatacaatgcgtaactggaaatggaggcaacatc
gccgatcctgaacgatcgatgcgagaatccaggatatgcacggcttattt
tggccttttcccactgaaacaagggccagtattaaaaatgcagaaaaacc
ttgtgatcctcgttccagtcgacatggaggacgactcactctacttggga
ggtgagtggcagttcaaccacttttcaaaactcacatcttctcggcccga
tgcagcttttgctgaaatccagcggacttctctccctgagaagtcaccac
tctcatgtgagacccgtgtcgacctctgtgatgatttggctcctgtggca
agacagcttgctcccagggagaagcttcctctgagtagcaggagacctgc
tgcggtgggggctgggctccagaatatgggaaatacctgctacgtgaacg
cttccttgcagtgcctgacatacacaacgccccttgccaactacatgctg
tcccgggagcactctcaaacgtgtcatcgtcacaagggctgcatgctctg
tactatgcaagctcacatcacacgggccctccacaatcctggccacgtca
tccagccctcacaggcattggctgctggcttccatagaggcaagcaggaa
gatgcccatgaatttctcatgttcactgtggatgccatgaaaaaggcatg
ccttcccgggcacaagcaggtagatcatcactctaaggacaccaccctca
tccaccaaatatttggaggctactggagatctcaaatcaagtgtctccac
tgccacggcatttcagacacttttgacccttacctggacatcgccctaga
tatccaggcagctcagagtgtccagcaagctttggaacagttggtgaagc
ccgaagaactcaatggagagaatgcctatcattctggtgtttgtctccag
agggcgccggcctccaagacgttaactttacacacctctgccaaggtcct
catccttgtattgaagagattctccgatgtcacaggcaacaagattgcca
agaatgtgcaatatcctgagtgccttgacatgcagccatacatgtctcag
cagaacacaggacctcttgtctatgtcctctatgctgtgctggtccacgc
tgggtggagttgtcacaacggacattacttctcttatgtcaaagctcaag
aaggccagtggtataaaatggatgatgccgaggtcaccgccgctagcatc
acttctgccctgagtcaacaggcctacgtcctcttttacatccagaagag
tgaatgggaaagacacagtgagagtgtgtcaagaggcagggaaccaagag
cccttggcacagaagacacagacaggcgagcaacgcaaggagagctcaag
agagaccacccctgcctccaggcccccgagttggacgagcacttggtgga
aagagccactcaggaaagcaccttagaccactggaaattccttcaagagc
aaaacaaaacgaagcctgagttcaacgtcagaaaagtcgaaggtaccctg
cctcccgacgtacttgtgattcatcaatcaaaatacaagtgtgggatgaa
gaaccatcatcctgaacagcaaagctccctgctaaacctctcttcgtcga
ccccgacacatcaggagtccatgaacactggcacactcgcttccctgcga
gggagggccaggagatccaaagggaagaacaaacacagcaagagggctct
gcttgtgtgccagtga
hDUB4.2a deduced polypeptide sequence
MGNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRHKGCMLCTMQAHITR
ALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPRHKQVD
HHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQ
QALEQLVKPEELNGENAYHCGVCLQRAPASKTLTLHTSAKVLILVLKRFS
DVTGNKIAKNVQYPECLDMQPYMSQQNTGPLVYVLYAVLVHAEWSCHNGH
YFSYVKAQEGQWYKMDDAEVTAASITSVLSQQAYVLFYIQKSEWERHSES
VSRGREPRALGAEDTDRRATQGELKRDHPCLQAPELDEHLVERATQESTL
DHWKFLQEQNKTKPEFNVRKVKGTVIKVDQPQRKAAQGTTQGSVEPQNLG
RNPAQAPKCAYEQGLRVTEHVHFRQHYNFGTKCANCNSTIQCVTGNGGNI
ADPERSMRESRICTAYFGLFPLKQGPVLKMQKNLVILVPVDMEDDSLYLG
GEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVA
RQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTTPLANYML
SREHSQTCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQE
DAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGYWRSQIKCLH
CHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGENAYHSGVCLQ
RAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNVQYPECLDMQPYMSQ
QNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTAASI
TSALSQQAYVLFYIQKSEWERHSESVSRGREPRALGTEDTDRRATQGELK
RDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVEGTL
PPDVLVIHQSKYKCGMKNHHPEQQSSLLNLSSSTPTHQESMNTGTLASLR
GRARRSKGKNKHSKRALLVCQ
Nucleotide sequence for hDUB4.2b
atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggcccgatgcagcttttgctgaaatccagc
ggacttctctccctgagaagtcaccactctcatgtgagacccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccagggagaa
gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgtgaacgcttccttgcagtgcctgacatac
acaacgccccttgccaactacatgctgtcccgggagcactctcaaacgtg
tcatcgtcacaagggctgcatgctctgtactatgcaagctcacatcacac
gggccctccacaatcctggccacgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgcccatgaatttctcatgtt
cactgtggatgccatgaaaaaggcatgccttcccgggcacaagcaggtag
atcatcactctaaggacaccaccctcatccaccaaatatttggaggctac
tggagatctcaaatcaagtgtctccactgccacggcatttcagacacttt
tgacccttacctggacatcgccctagatatccaggcagctcagagtgtcc
agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattctggtgtttgtctccagagggcgccggcctccaagacgtt
aactttacacacctctgccaaggtcctcatccttgtattgaagagattct
ccgatgtcacaggcaacaagattgccaagaatgtgcaatatcctgagtgc
cttgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacaacggac
attacttctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccgaggtcaccgccgctagcatcacttctgccctgagtcaacaggc
ctacgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagcccttggcacagaagacacagac
aggcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggc
ccccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
tagaccactggaaattccttcaagagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagtcgaaggtaccctgcctcccgacgtacttgtgattca
tcaatcaaaatacaagtgtgggatgaagaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgtcgaccccgacacatcaggagtccatg
aacactggcacactcgcttccctgcgagggagggccaggagatccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
hDUB4.2b deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVD
LCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTY
TTPLANYMLSREHSQTCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALA
AGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGY
WRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGEN
AYHSGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNVQYPEC
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMD
DAEVTAASITSALSQQAYVLFYIQKSEWERHSESVSRGREPRALGTEDTD
RRATQGELKRDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNKTKPEF
NVRKVEGTLPPDVLVIHQSKYKCGMKNHHPEQQSSLLNLSSSTPTHQESM
NTGTLASLRGRARRSKGKNKHSKRALLVCQ
Nucleotide sequence for hDUB4.3
atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggcccgatgcagcttttgctgaaatccagc
ggacttctctccctgagaagtcaccactctcatgtgagacccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccagggagaa
gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgtgaacgcttccttgcagtgcctgacatac
acaccgccccttgccaactacatgctgtcccgggagcactctcaaacgtg
tcatcgtcacaagggctgcatgctctgtacgatgcaagctcacatcacac
gggccctccacaatcctggccacgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgcccatgaatttctcatgtt
cactgtggatgccatgaaaaaggcatgccttcccgggcacaagcaggtag
atcatcactctaaggacaccaccctcatccaccaaatatttggaggctac
tggagatctcaaatcaagtgtctccactgccacggcatttcagacacttt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtcc
agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgtggtgtttgtctccagagggcgccggcctccaagacgtt
aactttacacacctctgccaaggtcctcatccttgtattgaagagattct
ccgatgtgacaggcaacaagattgccaagaatgtgcaatatcctgagtgc
cttgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacaacggac
attacttctcttatgtcaaagctcaagaaggccaatggtataaaatggat
gatgccgaggtcaccgccgctagcatcacttctgtcctgagtcaacaggc
ctacgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagcccttggcgcagaagacacagac
aggcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggc
ccccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
tagaccgctggaaattccttcaagagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagtcgaaggtaccctgcctcccgacgtacttgtgattca
tcaatcaaaatacaagtgtgggatgaagaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgtcgaccccgacacatcaggagtccatg
aacactggcacactcgcttccctgcgagggagggccaggagatccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
hDUB4.3 deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVD
LCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTY
TPPLANYMLSREHSQTCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALA
AGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGY
WRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGEN
AYHCGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNVQYPEC
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMD
DAEVTAASITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RRATQGELKRDHPCLQAPELDEHLVERATQESTLDRWKFLQEQNKTKPEF
NVRKVEGTLPPDVLVIHQSKYKCGMKNHHPEQQSSLLNLSSSTPTHQESM
NTGTLASLRGRARRSKGKNKHSKRALLVCQ
Nucleotide sequence for hDUB4.5
atgcgccagagagctcgtcatttgaagactctctcggaagggatagcgtc
tttctgcaacctgcggtcccagcagaaaaaccttgtgatccttgttccag
tcgacatggaggaagactcactctacttgggaggtgagtggcagttcaac
cacttttcaaaactcacatcttctcggcccgatgcagcttttgctgaaat
ccagcggacttctctccctgagaagtcaccactctcatgtgagacccgtg
tcgacctctgtgatgatttggctcctgtggcaagacagcttgctcccagg
gagaagcttcctctgagtaacaggagacctgctgcggtgggggctgggct
ccagaatatgggaaatacctgctacgtgaacgcttccttgcagtgcctga
catacacaccgccccttgccaactacatgctgtcccgggagcactctcaa
acgtgtcatcgtcacaagggctgcatgctctgtacgatgcaagctcacat
cacacgggccctccacaatcctggccacgtcatccagccctcacaggcat
tggctgctggcttccatagaggcaagcaggaagatgcccatgaatttctc
atgttcactgtggatgccatgaaaaaggcatgccttcccgggcacaagca
ggtggatcatcactctaaggacaccaccctcatccaccaaatatttggag
gctactggagatctcaaatcaagtgtctccactgccacggcatttcagac
acttttgacccttacctggacatcgccctggatatccaggcagctcagag
tgtccagcaagctttggaacagttggtgaagcccgaagaactcaatggag
agaatgcctatcattgtggtgtttgtctccagagggcgccggcctccaag
acgttaactttacacacctctgccaaggtcctcatccttgtattgaagag
attctccgatgtcacaggcaacaagattgacaagaatgtgcaatatcctg
agtgccttgacatgaagctatacatgtctcagacgaactcaggacctctc
gtctatgtcctctatgctgtgctggtccacgctgggtggagttgtcacaa
cggacattacttctcttatgtcaaagctcaagaaggccagtggtataaaa
tggatgatgccgaggtcaccgcctctagcatcacttctgtcctgagtcaa
caggcctacgtcctcttttacatccagaagagtgaatgggaaagacacag
tgagagtgtgtcaagaggcagggaaccaagagcccttggcgcagaagaca
cagacaggcgagcaacgcaaggagagctcaagagagaccacccctgcctc
caggcccccgagttggacgagcacttggtggaaagagccactcaggaaag
caccttagaccactggaaattccttcaagagcaaaacaaaacgaagcctg
agttcaacgtcagaaaagtcgaaggtaccctgcctcccgacgtacttgtg
attcatcaatcaaaatacaagtgtgggatgaagaaccatcatcctgaaca
gcaaagctccctgctaaacctctcttcgacgaccccgacacatcaggagt
ccatgaacactggcacactcgcttccctgcgagggagggccaggagatcc
aaagggaagaacaaacacagcaagagggctctgcttgtgtgccagtggtc
tcagtggaagtaccgacccaca
hDUB4.5 deduced polypeptide sequence
MRQRARHLKTLSEGIASFCNLRSQQKNLVILVPVDMEEDSLYLGGEWQFN
HFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVARQLAPR
EKLPLSNRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQ
TCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFL
MFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISD
TFDPYLDIALDIQAAQSVQQALEQLVKPEELNGENAYHCGVCLQRAPASK
TLTLHTSAKVLILVLKRFSDVTGNKIDKNVQYPECLDMKLYMSQTNSGPL
VYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASSITSVLSQ
QAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCL
QAPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVEGTLPPDVLV
IHQSKYKCGMKNHHPEQQSSLLNLSSTTPTHQESMNTGTLASLRGRARRS
KGKNKHSKRALLVCQWSQWKYRPT
Nucleotide sequence for hDUB4.6
atggaggacg actcactcta cttgggaggt gagtggcagt
tcaaccactt ttcaaaactc acatcttctc ggcccgatgc
agcttttgct gaaatccagc ggacttctct ccctgagaag
tcaccactct catgtgagac ccgtgtcgac ctctgtgatg
atttggctcc tgtggcaaga cagcttgctc ccagggagaa
gcttcctctg agtagcagga gacctgctgc ggtgggggct
gggctccaga atatgggaaa tacctgctac gtgaacgctt
ccttgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc cgggagcact ctcaaacgtg tcatcgtcac
aagggctgta tgctctgtac gatgcaagct cacatcacac
gggccctcca caatcctggc cacgtcatcc agccctcaca
ggcattggct gctggcttcc atagaggcaa gcaggaagat
gcccatgaat ttctcatgtt cactgtggat gccatgaaaa
aggcatgcct tcccgggcac aagcaggtgg atcatcactc
taaggacacc accctcatcc accaaatatt tggaggctac
tggagatctc aaatcaagtg tctccactgc cacggcattt
cagacacttt tgacccttac ctggacatcg ccctggatat
ccaggcagct cagagtgtcc agcaagcttt ggaacagttg
gtgaagcccg aagaactcaa tggagagaat gcctatcatt
gtggtgtttg tctccagagg gcgccggcct ccaagacgtt
aactttacac acctctgcca aggtcctcat ccttgtattg
aagagattct ccgatgtcac aggcaacaag attgccaaga
atgtgcaata tcctgagtgc cttgacatgc agccatacat
gtctcagacg aacacaggac ctctcgtcta tgtcctctat
gctgtgctgg tccacgctgg gtggagttgt cacaacggac
attacttctc ttatgtcaaa gctcaagaag gccagtggta
taaaatggat gatgccgagg tcaccgcctc tagcatcact
tctgtcctga gtcaacaggc ctacgtcctc ttttacatcc
agaagagtga atgggaaaga cacagtgaga gtgtgtcaag
aggcagggaa ccaagagccc ttggcgcaga agacacagac
aggcgagcaa cgcaaggaga gctcaagaga gaccacccct
gcctccaggc ccccgagttg gacgagcact tggtggaaag
agccactcag gaaagcacct tagaccactg gaaattcctt
caagagcaaa acaaaacgaa gcctgagttc aacgtcagaa
aagtcgaagg taccctgcct cccgacgtac ttgtgattca
tcaatcaaaa tacaagtgtg ggatgaagaa ccatcatcct
gaacagcaaa gctccctgct aaacctctct tcgacgaccc
cgacacatca ggagtccatg aacactggca cactcgcttc
cctgcgaggg agggccagga gatccaaagg gaagaacaaa
cacagcaaga gggctctgct tgtgtgccag tga
hDUB4.6 deduced polypeptide sequence
MEDDSLYLGG EWQFNHFSKL TSSRPDAAFA EIQRTSLPEK
SPLSCETRVD LCDDLAPVAR QLAPREKLPL SSRRPAAVGA
GLQNMGNTCY VNASLQCLTY TPPLANYMLS REHSQTCHRH
KGCMLCTMQA HITRALHNPG HVIQPSQALA AGFHRGKQED
AHEFLMFTVD AMKKACLPGH KQVDHHSKDT TLIHQIFGGY
WRSQIKCLHC HGISDTFDPY LDIALDIQAA QSVQQALEQL
VKPEELNGEN AYHCGVCLQR APASKTLTLH TSAKVLILVL
KRFSDVTGNK IAKNVQYPEC LDMQPYMSQT NTGPLVYVLY
AVLVHAGWSC HNGHYFSYVK AQEGQWYKMD DAEVTASSIT
SVLSQQAYVL FYIQKSEWER HSESVSRGRE PRALGAEDTD
RRATQGELKR DHPCLQAPEL DEHLVERATQ ESTLDHWKFL
QEQNKTKPEF NVRKVEGTLP PDVLVIHQSK YKCGMKNHHP
EQQSSLLNLS STTPTHQESM NTGTLASLRG RARRSKGKNK
HSKRALLVCQ
Nucleotide sequence for hDUB4.7
atggaggacg actcactcta cttgggtggt gagtggcagt
tcaaccactt ttcaaaactc acatcttctc ggcccgatgc
agcttttgct gaaatccagc ggacttctct ccctgagaag
tcaccactct catgtgagac ccgtgtcgac ctctgtgatg
atttggctcc tgtggcaaga cagcttgctc ccagggagaa
gcttcctctg agtagcagga gacctgctgc ggtgggggct
gggctccaga atatgggaaa tacctgctac gtgaacgctt
ccttgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc cgggagcact ctcaaacgtg tcatcgtcac
aagggctgca tgctctgtac tatgcaagct cacatcacac
gggccctcca caatcctggc cacgtcatcc agccctcaca
ggcattggct gctggcttcc atagaggcaa gcaggaagat
gcccatgaat ttctcatgtt cactgtggat gccatgaaaa
aggcatgcct tcccgggcac aagcaggtag atcatcactc
taaggacacc accctcatcc accaaatatt tggaggctac
tggagatctc aaatcaactg tctccactgc cacggcattt
cagacacttt tgacccttac ctggacatcg ccctggatat
ccaggcagct cagagtgtcc agcaagcttt ggaacagttg
gtgaagcccg aagaactcaa tggagagaat gcctatcatt
gtggtgtttg tctccagagg gcgccggcct ccaagacgtt
aactttacac acctctgcca aggtcctcat ccttgtattg
aagagattct ccgatgtcac aggcaacaag attgccaaga
atgtgcaata tcctgagtgc cttgacatgc agccatacat
gtctcagcag aacacaggac ctcttgtcta tgtcctctat
gctgtgctgg tccacgctgg gtggagttgt cacaacggac
attacttctc ttatgtcaaa gctcaagaag gccagtggta
taaaatggat gatgccgagg tcaccgccgc tagcatcact
tctgtcctga gtcaacaggc ctacgtcctc ttttacatcc
agaagagtga atgggaaaga cacagtgaga gtgtgtcaag
aggcagggaa ccaagagccc ttggcgcaga agacacagac
aggcgagcaa cgcaaggaga gctcaagaga gaccacccct
gcctccaggc ccccgagttg gacgagcact tggtggaaag
agccactcag gaaagcacct tagaccactg gaaattcctt
caagagcaaa acaaaacgaa gcctgagttc aacgtcagaa
aagtcgaagg taccctgcct cccgacgtac ttgtgattca
tcaatcaaaa tacaagtgtg ggatgaagaa ccatcatcct
gaacagcaaa gctccctgct aaacctctct tcgtcgaccc
cgacacatca ggaggccatg aacactggca cactcgcttc
cctgcgaggg aggaccagga gatccaaagg gaagaacaaa
cacagcaaga gggctctgct tgtgtgccag tga
hDUB4.7 deduced polypeptide sequence
MEDDSLYLGG EWQFNHFSKL TSSRPDAAFA EIQRTSLPEK
SPLSCETRVD LCDDLAPVAR QLAPREKLPL SSRRPAAVGA
GLQNMGNTCY VNASLQCLTY TPPLANYMLS REHSQTCHRH
KGCMLCTMQA HITRALHNPG HVIQPSQALA AGFHRGKQED
AHEFLMFTVD ANKKACLPGH KQVDHHSKDT TLIHQIFGGY
WRSQINCLHC HGISDTFDPY LDIALDIQAA QSVQQALEQL
VKPEELNGEN AYHCGVCLQR APASKTLTLH TSAKVLILVL
KRFSDVTGNK IAKNVQYPEC LDMQPYNSQQ NTGPLVYVLY
AVLVHAGWSC HNGHYFSYVK AQEGQWYKMD DAEVTAASIT
SVLSQQAYVL FYIQKSEWER HSESVSRGRE PRALGAEDTD
RRATQGELKR DHPCLQAPEL DEHLVERATQ ESTLDHWKFL
QEQNKTKPEF NVRKVEGTLP PDVLVIHQSK YKCGMKNHHP
EQQSSLLNLS SSTPTHQEAM NTGTLASLRG RTRRSKGKNK
HSKRALLVCQ
Nucleotide sequence for hDUB4.8
atgcgccaga gagctcgtca tttgaagact ctctcggaag
ggatagcgtc ttgctgcaaa ctgcggtccc agcagaaaaa
ccttgtgatc cttgttccag tcgacatgga ggacgactca
ctctacttgg gaggtgagtg gcagttcaac cacttttcaa
aactcacatc ttctcggccc gatgcagctt ttgctgaaat
ccagcggact tctctccctg agaagtcacc actctcatgt
gagacccgtg tcgacctctg tgatgatttg gctcctgtgg
caagacagct tgctcccagg gagaagcttc ctctgagtag
caggagacct gctgcggtgg gggctgggct ccagaatatg
ggaaatacct gctacgtgaa cgcttccttg cagtgcctga
catacacacc gccccttgcc aactacatgc tgtcccggga
gcactctcaa acgtgtcatc gtcacaaggg ctgcatgctc
tgtacgatgc aagctcacat cacacgggcc ctccacaatc
ctggccacgt catccagccc tcacaggcat tggctgctgg
cttccataga ggcaagcagg aagatgccca tgaatttctc
atgttcactg tggatgccat gaaaaaggca tgccttcccg
ggcacaagca ggtagatcat cactctaagg acaccaccct
catccaccaa atatttggag gctactggag atctcaaatc
aagtgtctcc actgccacgg catttcagac acttttgacc
cttacctgga catcgccctg gatatccagg cagctcagag
tgtccagcaa gctttggaac agttggtgaa gcccgaagaa
ctcaatggag agaatgccta tcattgtggt gtttgtctcc
agagggcgcc ggcctccaag acgttaactt tacacacctc
tgccaaggtc ctcatccttg tattgaagag attctccgat
gtgacaggca acaagattgc caagaatgtg caatatcctg
agtgccttga catgcagcca tacatgtctc agcagaacac
aggacctctt gtctatgtcc tctatgctgt gctggtccac
gctgggtgga gttgtcacaa cggacattac ttctcttatg
tcaaagctca agaaggccaa tggtataaaa tggatgatgc
cgaggtcacc gccgctagca tcacttctgt cctgagtcaa
caggcctacg tcctctttta catccagaag agtgaatggg
aaagacacag tgagagtgtg tcaagaggca gggaaccaag
agcccttggc gcagaagaca cagacaggcg agcaacgcaa
ggagagctca agagagacca cccctgcctc caggcccccg
agttggacga gcacttggtg gaaagagcca ctcaggaaag
caccttagac cactggaaat tccttcaaga gcaaaacaaa
acgaagcctg agttcaacgt cagaaaagtc gaaggtaccc
tgcctcccga cgtacttgtg attcatcaat caaaatacaa
gtgtgggatg aagaaccatc atcctgaaca gcaaagctcc
ctgctaaacc tctcttcgtc gaccccgaca catcaggagt
ccatgaacac tggcacactc gcttccctgc gagggagggc
caggagatcc aaagggaaga acaaacacag caagagggct
ctgcttgtgt gccagtga
hDUB4.8 deduced polypeptide sequence
MRQRARHLKT LSEGIASCCK LRSQQKNLVI LVPVDMEDDS
LYLGGEWQFN HFSKLTSSRP DAAFAEIQRT SLPEKSPLSC
ETRVDLCDDL APVARQLAPR EKLPLSSRRP AAVGAGLQNM
GNTCYVNASL QCLTYTPPLA NYMLSREHSQ TCHRHKGCML
CTMQAHITRA LHNPGHVIQP SQALAAGFHR GKQEDAHEFL
MFTVDANKKA CLPGHKQVDH HSKDTTLIHQ IFGGYWRSQI
KCLHCHGISD TFDPYLDIAL DIQAAQSVQQ ALEQLVKPEE
LNGENAYHCG VCLQRAPASK TLTLHTSAKV LILVLKRFSD
VTGNKIAKNV QYPSCLDMQP YNSQQNTGPL VYVLYAVLVH
AGWSCHNGHY FSYVKAQEGQ WYKMDDAEVT AASITSVLSQ
QAYVLFYIQK SEWERHSESV SRGREPRALG AEDTDRRATQ
GELKRDHPCL QAPELDEHLV ERATQESTLD HWKFLQEQNK
TKPEFNVRKV EGTLPPDVLV IHQSKYKCGM KNHHPEQQSS
LLNLSSSTPT HQESMNTGTL ASLRGRARRS KGKNKHSKRA
LLVCQ
Nucleotide sequence for hDUB4.10
atgtgcatac gaacagggtc tccgtgtgac gtgtgtgaaa
actacagtgt gatgagcatg actggcagac agcttatcga
ttgggctccc ctcaaaatcg gttatgagca ttcaagcaca
ccgatgccca gggaacatgt ccactttcgg cagcattaca
attttggcac caaatgtgct aactgcaatt ccaccataca
atgcgtaact ggaaatggag gcaacatcgc cgatcctgaa
cgatcgatgc gagaatccag gatatgcacg gcttattttg
gccttttccc actgaaacaa gggccagtat taaaaatggt
aatttcactc ggacagagaa tcaataggct caacgtggaa
aggttatcgc tggaagggaa gaaaatacgc tgtgctaaat
actatacttc attgactatt ctcaggtcag aaagcgcact
ttcgacttct tgtccttccg tcgctgagag gatgatggca
gctgccaaaa ggatagcgtc tttctgcaac ctgcggtccc
agcagaaaaa ccttgtgatc ctcgttccag tcgacatgga
ggacgactca ctctacttgg gaggtgagtg gcagttcaac
cacttttcaa aactcacatc ttctcggccc gatgcagctt
ttgctgaaat ccagcggact tctctccctg agaagtcacc
actctcatgt gagacccgtg tcgacctctg tgatgatttg
gctcctgtgg caagacagct tgctcccagg gagaagcttc
ctctgagtag caggagacct gctgcggtgg gggctgggct
ccagaatatg ggaaatacct gctacgtgaa cgcttccttg
cagtgcctga catacacaac gccccttgcc aactacatgc
tgtcccggga gcactctcaa acgtgtcatc gtcacaaggg
ctgcatgctc tgtactatgc aagctcacat cacacgggcc
ctccacaatc ctggccacgt catccagccc tcacaggcat
tggctgctgg cttccataga ggcaagcagg aagatgccca
tgaatttctc atgttcactg tggatgccat gaaaaaggca
tgccttcccg ggcacaagca ggtagatcat cactctaagg
acaccaccct catccaccaa atatttggag gctactggag
atctcaaatc aagtgtctcc actgccacgg catttcagac
acttttgacc cttacctgga catcgcccta gatatccagg
cagctcagag tgtccagcaa gctttggaac agttggtgaa
gcccgaagaa ctcaatggag agaatgccta tcattctggt
gtttgtctcc agagggcgcc ggcctccaag acgttaactt
tacacacctc tgccaaggtc ctcatccttg tattgaagag
attctccgat gtcacaggca acaagattgc caagaatgtg
caatatcctg agtgccttga catgcagcca tacatgtctc
agcagaacac aggacctctt gtctatgtcc tctatgctgt
gctggtccac gctgggtgga gttgtcacaa cggacattac
ttctcttatg tcaaagctca agaaggccag tggtataaaa
tggatgatgc cgaggtcacc gccgctagca tcacttctgc
cctgagtcaa caggcctacg tcctctttta catccagaag
agtgaatggg aaagacacag tgagagtgtg tcaagaggca
gggaaccaag agcccttggc acagaagaca cagacaggcg
agcaacgcaa ggagagctca agagagacca cccctgcctc
caggcccccg agttggacga gcacttggtg gaaagagcca
ctcaggaaag caccttagac cactggaaat tccttcaaga
gcaaaacaaa acgaagcctg agttcaacgt cagaaaagtc
gaaggtaccc tgcctcccga cgtacttgtg attcatcaat
caaaatacaa gtgtgggatg aagaaccatc atcctgaaca
gcaaagctcc ctgctaaacc tctcttcgtc gaccccgaca
catcaggagt ccatgaacac tggcacactc gcttccctgc
gagggagggc caggagatcc aaagggaaga acaaacacag
caagagggct ctgcttgtgt gccagtga
hDUB4.10 deduced polypeptide sequence
MCIRTGSPCD VCENYSVMSM TGRQLIDWAP LKIGYEHSST
PNPRSHVHFR QHYNFGTKCA NCNSTIQCVT GNGGNIADPE
RSMRESRICT AYFGLFPLKQ GPVLKMVISL GQRINRLNVE
RLSLEGKKIR CAKYYTSLTI LRSESALSTS CPSVAERMMA
AAKRIASFCN LRSQQKNLVI LVPVDMEDDS LYLGGEWQFN
HFSKLTSSRP DAAFAEIQRT SLPEKSPLSC ETRVDLCDDL
APVARQLAPR EKLPLSSRRP AAVGAGLQNM GNTCYVNASL
QCLTYTTPLA NYMLSREHSQ TCHRHKGCML CTMQAHITRA
LHNPGHVIQP SQALAAGFHR GKQEDAHEFL NFTVDANKKA
CLPGHKQVDH HSKDTTLIHQ IFGGYWRSQI KCLHCHGISD
TFDPYLDIAL DIQAAQSVQQ ALEQLVKPEE LNGENAYHSG
VCLQRAPASK TLTLHTSAKV LILVLKRFSD VTGNKIAKNV
QYPECLDMQP YMSQQNTGPL VYVLYAVLVH AGWSCHNGHY
FSYVKAQEGQ WYKMDDAEVT AASITSALSQ QAYVLFYIQK
SEWERHSESV SRGREPRALG TEDTDRRATQ GELKRDHPCL
QAPELDEHLV ERATQESTLD HWKFLQEQNK TKPEFNVRKV
EGTLPPDVLV IHQSKYKCGM KNHHPEQQSS LLNLSSSTPT
HQESMNTGTL ASLRGRARRS KGKNKHSKRA LLVCQ
Nucleotide sequence for hDUB4.11
atgtgcatac gaacagggtc tccgtgtgac gtgtgtgaaa
actacagtgt gatgagcatg actggcagac agcttatcga
ttgggctccc ctcaaaatcg gttatgagca ttcaagcaca
ccgatgccca ggacacttta catccggcac aggaagcctt
ctgatggagc acacctggcc catgaaaaga caagggaaag
aaacggggcc aaagggaaga aaatacgctg tgctaaatac
tatacttcat tgactattct caggtcagaa agcgcacttt
cgtcttcttg tccttccgtc gcggagagga tgatggcagc
tgccaaaatc gacatggagg acgactcact ctacttggga
ggtgagtggc agttcaacca cttttcaaaa ctcacatctt
ctcggccaga tgcagctttt gctgaaatcc agcggacttc
tctccctgag aagtcaccac tctcatatga tttggctcct
gtggcaagac agcttgctcc cagggagaag cttcctctga
gtagcaggag acctgctgcg gtgggggctg ggctccagaa
tatgggaaat acctgctacg tgaacgcttc cttgcagtgc
ctgacataca caccgcccct tgccaactac atgctgtccc
gggagcactc tcaaacgtgt catcgtcaca agggctgcat
gctctgtact atgcaagctc acatcacacg ggccctccac
aatcctggcc acgtcatcca gccctcacag gcattggctg
ctggcttcca tagaggcaag caggaagatg cccatgaatt
tctcatgttc actgtggatg ccatgaaaaa ggcatgcctt
cccaggcaca agcaggtaga tcatcactct aaggacacca
ccctcatcca ccaaatattt ggaggctact ggagatctca
aatcaagtgt ctccactgcc acggcatttc agacactttt
gacccttacc tggacatcgc cctggatatc caggcagctc
agagtgtcca gcaagctttg gaacagttgg tgaagcccga
agaactcaat ggagagaatg cctatcattg tggtgtttgt
ctccagaggg cgccggcctc caagacgtta actttacaca
cctctgccaa ggtcctcatc cttgtattga agagattctc
cgatgtcaca ggcaacaaga ttgccaagaa tgtgcaatat
cctgagtgcc ttgacatgca gccatacatg tctcagcaga
acacaggacc tcttgtctat gtcctctatg ctgtgctggt
ccacgctgag tggagttgtc acaacggaca ttacttctct
tatgtcaaag ctcaagaagg ccagtggtat aaaatggatg
atgccgaggt caccgccgct agcatcactt ctgtcctgag
tcaacaggcc tacgtcctct tttacatcca gaagagtgaa
tgggaaagac atagtgagag tgtgtcaaga ggcagggaac
caagagccct tggcgcagaa gacacagaca ggcgagcaac
gcaaggagag ctcaagagag accacccctg cctccaggcc
cccgagttgg acgagcactt ggtggaaaga gccactcagg
aaagcacctt agaccactgg aaattccttc aagagcaaaa
caaaacgaag cctgagttca acgtcagaaa agtcaaaggt
accctgcctc ccgacgtact tgtgattcat caatcaaaat
acaagtgtgg gatgaagaac catcatcctg aacagcaaag
ctccctgcta aacctctctt cgtcgacccc gacacatcag
gagtccatga acactggcac actcgcttcc ctgcgaggga
gggccaggag atccaaaggg aagaacaaac acagcaagag
ggctctgctt gtgtgccagt ga
hDUB4.11 deduced polypeptide sequence
MCIRTGSPCD VCENYSVMSM TGRQLIDWAP LKIGYEHSST
PMPRTLYIRH RKPSDGAHLA HEKTRERNGA KGKKIRCAKY
YTSLTILRSE SALSSSCPSV AERMMAAAKI DMEDDSLYLG
GEWQFNHFSK LTSSRPDAAF AEIQRTSLPE KSPLSYDLAP
VARQLAPREK LPLSSRRPAA VGAGLQNMGN TCYVNASLQC
LTYTPPLANY MLSREHSQTC HRHKGCNLCT MQAHITRALH
NPGHVIQPSQ ALAAGFHRGK QEDAHEFLMF TVDAMKKACL
PRHKQVDHHS KDTTLIHQIF GGYWRSQIKC LHCHGISDTF
DPYLDIALDI QAAQSVQQAL EQLVKPEELN GENAYHCGVC
LQRAPASKTL TLHTSAKVLI LVLKRFSDVT GNKIAKNVQY
PECLDMQPYN SQQNTGPLVY VLYAVLVHAE WSCHNGHYFS
YVKAQEGQWY KMDDAEVTAA SITSVLSQQA YVLFYIQKSE
WERHSESVSR GREPRALGAE DTDRRATQGE LKRDHPCLQA
PELDEHLVER ATQESTLDHW KFLQEQNKTK PEFNVRKVKG
TLPPDVLVIH QSKYKCGMKN HHPEQQSSLL NLSSSTPTHQ
ESMNTGTLAS LRGRARRSKG KNKHSKRALL VCQ
Nucleotide sequence for hDUB8.1
atgggggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcttttgctgaaatccagc
ggacttctctccctgagaagtcaccactctcatctgagacccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagctcgctcccagggagaa
gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgagaacgcttccctgcagtgcctgacatac
acactgccccttgccaactacatgctgtcccgggagcactctcaaacatg
tcagcgtcccaagtgctgcatgctctgtactatgcaagctcacatcacat
gggccctccacagtcctggccatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgtccatgaatttctcatgtt
cactgtggatgccatgaaaaaggcatgccttcccggccacaagcaggtag
atcatcactgcaaggacaccaccctcatccaccaaatatttggaggctgc
tggagatctcaaatcaagtgtctccactgccacgggatttcagacacttt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtca
agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgcggtctttgtctccagagggcgccggcctccaacacgtt
aactttacacacttctgccaaggtcctcatccttgtcttgaagagattct
ccgatgtcgcaggcaacaaacttgccaagaatgtgcaatatcctgagtgc
cttgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacgacggac
attacttctcctatgtcaaagctcaagaagtccagtggtataaaatggat
gatgccgaggtcactgtctgtagcatcatttctgtcctgagtcaacaggc
ctatgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagccctcggcgctgaagacacagac
aggcgagcaaagcaaggagagctcaagagagaccacccctgcctccaggc
acccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
tagaccactggaaattcctgcaagagcaaaacaaaacgaagcctgagttc
aacgtcggaaaagtcgaaggtaccctgcctcccaacgcacttgtgattca
tcaatcaaaatacaagtgtgggatgaaaaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgacgacccggacagatcaggagtccatg
aacactggcacactcgcttctctgcaagggaggaccaggagagccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
hDUB8.1 deduced polypeptide sequence
MGDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSETRVD
LCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTY
TLPLANYMLSREHSQTCQRPKCCMLCTMQAHITWALHSPGHVIQPSQALA
AGFHRGKQEDVHEFLMFTVDAMKKACLPGHKQVDHHCKDTTLIHQIFGGC
WRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVKQALEQLVKPEELNGEN
AYHCGLCLQRAPASNTLTLHTSAKVLILVLKRFSDVAGNKLAKNVQYPEC
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEVQWYKMD
DAEVTVCSIISVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RRAKQGELKRDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNKTKPEF
NVGKVEGTLPPNALVIHQSKYKCGMKNHHPEQQSSLLNLSSTTRTDQESM
NTGTLASLQGRTRRAKGKNKHSKRALLVCQ
Nucleotide sequence for HDUB8.3
Atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcctttgctgaaatccagc
Ggacttctctccctgagaagtcacaactctcaactgagacccgcgtcgac
ttctgcgatgatttggcgcctgtggcaagacagcttgctcccagggagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgtgaacgcttcccagcagtgtctgacatac
Acaccgccccttgccaactacatgctgtcccgggagcactctcaaacatg
tcatcgtcacaagtgctgcatgctctgtaccatggaagctcacatcacat
Ggcccctccacattcctggccatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagctgcccttgaatttctcatgtt
Cactgtggatgccatgaaaaaggcatgccttcccgggcacaagcaggtag
atcatcactccaaggacaccaccctcatccaccaaatatttggagggtac
Tggagatctcaaatcaagtgtctccactgccacggcatttcagacacttt
tggcccttacctggacatcgccctggatatccaggaagctcagagtgtca
Agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgtggcaacaaaattgccaagaatgtgcaatatcctgagtg
Ccttgacatgcagccatacatgtctcagcagaacacaggacctcttgtct
atgtcctctatgctgtgctggtccacgccgggtggagttgtcacaacgga
Cattacttctcttatgtcaaagttcaagaaggccagtggtataaaatgga
tgatgccgaggtcactgcctctggcatcacctctgtcctgagtcaacagg
Cctatgtcctcttttacatccacaagagtgaatgggaaagacacagtgag
agtgtgtcaagaggcagggaaccaagagccctcggcgctgaagacacaga
Caggcgagcaacgcaaggagagctcaagagagactacccctgcctccagg
tacccgagttggacgagcacttggtggaaagagccactcaggaaagcacc
Ttagaccactggaaattcctccaagagcaaaacaaaacgaagcctgagtt
caacgtcagaaaacttgaaggtaccctgcctcccaacgtacttgtgattc
Atcaatcaaaatacaagtgtgggatgaaaaaccatcatcctgaacagcaa
agctccctgctaaacctctcttcgacgaacccgacagatcaggagtccat
Gaacactggcacactcgcttctctgcaagggaggaccaggagagccaaag
ggaagaacaaacactgcaagagggctctgcttgtgtgccagtga
HDUB8.3 deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSQLSTETRVD
FCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASQQCLTY
TPPLANYMLSREHSQTCHRHKCCMLCTMEAHITWPLHIPGHVIQPSQALA
AGFHRGKQEAALEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGY
WRSQIKCLHCHGISDTFGPYLDIALDIQEAQSVKQALEQLVKPEELNGEN
AYHCGNKIAKNVQYPECLDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNG
HYFSYVKVQEGQWYKMDDAEVTASGITSVLSQQAYVLFYIHKSEWERHSE
SVSRGREPRALGAEDTDRRATQGELKRDYPCLQVPELDEHLVERATQEST
LDHWKFLQEQNKTKPEFNVRKLEGTLPPNVLVIHQSKYKCGMKNHHPEQQ
SSLLNLSSTNPTDQESMNTGTLASLQGRTRRAKGKNKHCKRALLVCQ
Nucleotide sequence for HDUB8.5
Atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcttttgctgaaatccagc
Ggacttctctccctgagaagtcaccactctcatctgaggcccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccaggaagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgagaacgcttccctgcagtgcctgacatac
Acaccgccccttgccaactacatgctgtcccgggagcactctcaaacatg
tcagcgtcccaagtgctgcatgctctgtactatgcaagctcacatcacat
Gggccctccacagtcctggtcatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgcccatgaatttctcatgtt
Cactgtggatgccatgaaaaaggcatgccttcccggccacaagcaggtag
atcatcactctaaggacaccaccctcatccaccaaatatttggaggctgc
Tggagatctcaaatcaagtgtctccactgccacgggatttcagacacttt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtca
Agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgcggtctttgtcttcagagggcgccagtctccaagacgtt
Aactttacacacttttgccaaggaacgcatacttgaaacgcagagaccat
gggtggtcacacgccacaaactagccaagagtgtgcaatatgctgagagc
Cttgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacgatggac
Attacttctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccaaggtcactgcctgtagcatcacttctgtcctgagtcaacaggc
Ctatgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagccctcggcgctgaagacacagac
Aggcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggc
acccgagttggacgagcgcttggtggaaagagccactcaggaaagcacct
Tagaccactggagattcccccaagagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagtcgaaggtaccctgcctcccaacgtacttgtgattca
Tcaatcgaaatacaagtgtgggatgaaaaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgacgacccggacagatcaggagtccgtg
aacactggcaccctcgcttctctgcaagggaggaccaggagatccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
HDUB8.5 deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSEARVD
LCDDLAPVARQLAPRKKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTY
TPPLANYMLSREHSQTCQRPKCCMLCTMQAHITWALHSPGHVIQPSQALA
AGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGC
WRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVKQALEQLVKPEELNGEN
AYHCGLCLQRAPVSKTLTLHTFAKERILETQRPWVVTRHKLAKSVQYAES
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEGQWYKMD
DAKVTACSITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RRATQGELKRDHPCLQAPELDERLVERATQESTLDHWRFPQEQNKTKPEF
NVRKVEGTLPPNVLVIHQSKYKCGMKNHHPEQQSSLLNLSSTTRTDQESV
NTGTLASLQGRTRRSKGKNKHSKRALLVCQ
Nucleotide sequence for HDUB8.6
Atggaagacgactcactctatttgggaggtgactggcagttcaatcactt
ttcaaaactcacatcttctcggctagatgcagcttttgctgaaatccagc
Ggacttctctctctgaaaagtcaccactctcatctgagacccgtttcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccagggagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
agataggaaataccttctatgtgaacgtttccctgcagtgcctgacatac
Acactgccgctttccaactacatgctgtcccgggaggactctcaaacgtg
tcatcttcacaagtgctgcatgttctgtactatgcaagctcacatcacat
Gggccctctaccgtcctggccatgtcatccagccctcacaggtattggct
gctggcttccatagaggtgagcaggaggatgcccatgaatttctcatgtt
Tactgtggatgccatgaaaaaggcatgccttcccgggcacaagcagctag
atcatcactccaaggacaccaccctcatccaccaaatatttggagcgtat
Tggagatctcaaatcaagtatctccactgccacggcatttcagacacctt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtca
Agcaagctttggaacagttggtgaagcccaaagaactcaatggagagaat
gcctatcattgtggtctttgtctccagaaggcgcctgcctccaagacgtt
Aactttacccacttctgccaaggtcctcattcttgtattgaagagattct
ccgatgtcacaggcaacaaacttgccaagaatgtgcaatatcctaagtgc
Cgtgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacaacggac
Attacttctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccgaggtcactgcctctggcatcacctctgtcctgagtcaacaggc
Ctatgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagcccttggtgctgaagacacagac
Aggccagcaacgcaaggagagctcaagagagaccacccttgcctccaggt
acccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
Tagaccactggaaattcccccaaaagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagttgaaggtaccctgcctcccaacgtacttgtgattca
Tcaatcaaaatacaagtgtggtatgaaaaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgacgaaaccgacagatcaggagtccatg
Aacactggcacactcgcttctctgcaagggagcaccaggagatccaaagg
gaataacaaacacagcaagagatctctgcttgtgtgccagtga
HDUB8.6 deduced polypeptide sequence
MEDDSLYLGGDWQFNHFSKLTSSRLDAAFAEIQRTSLSEKSPLSSETRFD
LCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQKIGNTFYVNVSLQCLTY
TLPLSNYMLSREDSQTCHLHKCCMFCTMQAHITWALYRPGHVIQPSQVLA
AGFHRGEQEDAHEFLMFTVDAMKKACLPGHKQLDHHSKDTTLIHQIFGAY
WRSQIKYLHCHGISDTFDPYLDIALDIQAAQSVKQALEQLVKPKELNGEN
AYHCGLCLQKAPASKTLTLPTSAKVLIIKLKRFSDVTGNKLAKNVQYPKC
RDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMD
DAEVTASGITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RPATQGELKRDHPCLQVPELDEHLVERATQESTLDHWKFPQKQNKTKPEF
NVRKVEGTLPPNVLVIHQSKYKCGMKNHHPEQQSSLLNLSSTKPTDQESM
NTGTLASLQGSTRRSKGNNKHSKRSLLVCQ
Nucleotide sequence for HDUB8.7
Atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcttttgctgaaatccagc
Ggacttctctccctgagaagtcaccactctcatctgaggcccgtgtcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccaggaagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgagaacgcttccctgcagtgcctgacatac
Acaccgccccttgccaactacatgctgtcccgggagcactctcaaacatg
tcagcgtcccaagtgctgcatgctctgtactatgcaagctcacatcacat
Gggccctccacagtcctggtcatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagatgcccatgaatttctcatgtt
Cactgtggatgccatgaaaaaggcatgccttcccggccacaagcaggtag
atcatcactctaaggacaccaccctcatccaccaaatatttggaggctgc
Tggagatctcaaatcaagtgtctccactgccacgggatttcagacacttt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtca
Agcaagctttggaacagttggtgaagcccgaagaactcaatggagagaat
gcctatcattgcggtctttgtctccagagggcgccagcctccaagacgtt
Aactttacacacttctgccaaggtcctcatccttgtcttgaagagattct
ccgatgtcacaggcaacaaacttgccaagaatgtgcaatatcctgagtgc
Cttgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacgatggac
Attacttctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccaaggtcactgcctgtagcatcacttctgtcctgagtcaacaggc
Ctatgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagccctcggcgctgaagacacagac
Aggcgagcaacgcaaggagagctcaagagagaccacccctgcctccaggc
acccgagttggacgagcgcttggtggaaagagccactcaggaaagcacct
Tagaccactggagattcccccaagagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagtcgaaggtaccctgcctcccaacgtacttgtgattca
Tcaatcgaaatacaagtgtgggatgaaaaaccatcatcctgaacagcaaa
gctccctgctaaacctctcttcgacgacccggacagatcaggagtccgtg
aacactggcaccctcgcttctctgcaagggaggaccaggagatccaaagg
gaagaacaaacacagcaagagggctctgcttgtgtgccagtga
HDUB8.7 deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSEARVD
LCDDLAPVARQLAPRKKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTY
TPPLANYMLSREHSQTCQRPKCCMLCTMQAHITWALHSPGHVIQPSQALA
AGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGC
WRSQIKCLHCHGISDTVDPYLDIALDIQAAQSVKQALEQLVKPEELNGEN
AYHCGLCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKLAKNVQYPEC
LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEGQWYKMD
DAKVTACSITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RRATQGELKRDHPCLQAPELDERLVERATQESTLDHWRFPQEQNKTKPEF
NVRKVEGTLPPNVLVIHQSKYKCGMKNHHPEQQSSLLNLSSTTRTDQESV
NTGTLASLQGRTRRSKGKNKHSKRALLVCQ
Nucleotide sequence for HDUB8.8
Atggaagacgactcactctatttgggaggtgactggcagttcaatcactt
ttcaaaactcacatcttctcggctagatgcagcttttgctgaaatccagc
Ggacttctctctctgaaaagtcaccactctcatctgagacccgtttcgac
ctctgtgatgatttggctcctgtggcaagacagcttgctcccagggagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
agataggaaataccttctatgtgaacgtttccctgcagtgcctgacatac
Acactgccgctttccaactacatgctgtcccgggaggactctcaaacgtg
tcatcttcacaagtgctgcatgttctgtactatgcaagctcacatcacat
Gggccctctaccgtcctggccatgtcatccagccctcacaggtattggct
gctggcttccatagaggtgagcaggaggatgcccatgaatttctcatgtt
Tactgtggatgccatgaaaaaggcatgccttcccgggcacaagcagctag
atcatcactccaaggacaccaccctcatccaccaaatatttggagcgtat
Tggagatctcaaatcaagtatctccactgccacggcatttcagacacctt
tgacccttacctggacatcgccctggatatccaggcagctcagagtgtca
Agcaagctttggaacagttggtgaagcccaaagaactcaatggagagaat
gcctatcattgtggtctttgtctccagaaggcgcctgcctccaagacgtt
Aactttacccacttctgccaaggtcctcattcttgtattgaagagattct
ccgatgtcacaggcaacaaacttgccaagaatgtgcaatatcctaagtgc
Cgtgacatgcagccatacatgtctcagcagaacacaggacctcttgtcta
tgtcctctatgctgtgctggtccacgctgggtggagttgtcacaacggac
Attacttctcttatgtcaaagctcaagaaggccagtggtataaaatggat
gatgccgaggtcactgcctctggcatcacctctgtcctgagtcaacaggc
Ctatgtcctcttttacatccagaagagtgaatgggaaagacacagtgaga
gtgtgtcaagaggcagggaaccaagagcccttggtgctgaagacacagac
Aggccagcaacgcaaggagagctcaagagagaccacccttgcctccaggt
acccgagttggacgagcacttggtggaaagagccactcaggaaagcacct
Tagaccactggaaattcccccaaaagcaaaacaaaacgaagcctgagttc
aacgtcagaaaagttgaaggtaccctgcctcccaacgtacttgtgattca
Tcaatcaaaatacaagtgtggtatgaaaaaccatcatcctgaacagcaaa
gctccgtgctaaacctctcttcgacgaaaccgacagatcaggagtccatg
aacactggcacactcgcttctctgcaagggagcaccaggagatccaaagg
gaataacaaacacagcaagagatctctgcttgtgtgccagtga
HDUB8.8 deduced polypeptide sequence
MEDDSLYLGGDWQFNHFSKLTSSRLDAAFAEIQRTSLSEKSPLSSETRFD
LCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQKIGNTFYVNVSLQCLTY
TLPLSNYMLSREDSQTCHLHKCCMFCTMQAHITWALYRPGHVIQPSQVLA
AGFHRGEQEDAHEFLNFTVDAMKKACLPGHKQLDHHSKDTThIHQIFGAY
WRSQIKYLHCHGISDTFDPYLDIALDIQAAQSVKQALEQLVKPKELNGEN
AYHCGLCLQKAPASKTLTLPTSAKVLILVLKRFSDVTGNKLAKNVQYPKC
RDMQPYMSQQNTGPLVYTLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMD
DAEVTASGITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTD
RPATQGELKRDHPCLQVPELDEHLVERATQESTLDHWKFPQKQNKTKPEF
NVRKVEGTLPPNVLVIHQSKYKCGMKNHHPEQQSSVLNLSSTKPTDQESM
NTGTLASLQGSTRRSKGNNKHSKRSLLVCQ
Nucleotide sequence for HDUB8.11
Atggaggacgactcactctacttgggaggtgagtggcagttcaaccactt
ttcaaaactcacatcttctcggccagatgcagcctttgctgaaatccagc
Ggacttctctccctgagaagtcacaactctcaactgagacccgcgtcgac
ttctgcgatgatttggccgctgtggcaagacagctcgctcccagggagaa
Gcttcctctgagtagcaggagacctgctgcggtgggggctgggctccaga
atatgggaaatacctgctacgtgaacgcttcccagcagtgtctgacatac
Ataccgccccttgccaactacatgctgtcccgggagcactctcaaacatg
tcatcgtcacaagtgctgcatgctctgtaccatggaagctcacatcacat
Ggcccctccacattcctggccatgtcatccagccctcacaggcattggct
gctggcttccatagaggcaagcaggaagctgcccttgaatttctcatgtt
Cactgtggatgccatgaaaaaggcatgccttcccgggcacaagcagatcc
tcatcctcgtatggaagagattctccgatgtcacaggcaacaaaattgcc
Aagaatgtgcaatatcctgagtgccttgacatgcagccatacatgtctca
gcagaacacaggacctcttgtctatgtcctctatgctgtgctggtccacg
Ccgggtggagttgtcacaacggacattacttctcttatgtcaaagttcaa
gaaggccagtggtataaaatggatgatgccgagaagagtgaatgggaaag
Acacagtgagagtgtgtcaagaggcagggaaccaagagccctcggcgctg
aagacacagacaggcgagcaacgcaaggagagctcaagagagactacccc
Tgcctccaggtacccgagttggacgagcacttggtggaaagagccactca
ggaaagcaccttagaccactggaaattcctccaagagcaaaacaaaacga
Agcctgagttcaacgtcagaaaacttgaaggtaccctgcctcccaacgta
cttgtgattcatcaatcaaaatacaagtgtgggatgaaaaaccatcatcc
Tgaacagcaaagctccctgctaaacctctcttcgacgaacccgacagatc
aggagtccatgaacactggcacactcgcttctctgcaagggaggaccagg
agatccaaagggaagaacaaacactgcaagagggctctgcttgtgtgcca
gtga
HDUB8.11 deduced polypeptide sequence
MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSQLSTETRVD
FCDDLAAVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASQQCLTY
IPPLANYMLSREHSQTCHRHKCCMLCTNEAHITWPLHIPGHVIQPSQALA
AGFHRGKQEAALEFLMFTVDAMKKACLPGHKQILILVWKRFSDVTGNKIA
KNVQYPECLDMQPYNSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKVQ
EGQWYKMDDAEKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDYP
CLQVPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKLEGTLPPNV
LVIHQSKYKCGMKNHHPEQQSSLLNLSSTNPTDQESMNTGTLASLQGRTR
RSKGKNKHCKRALLVCQ
Nucleotide sequence for HDUB4.4 sequence
atggaggagg actcactcta cttgggtggt gagtggcagt
tcaaccactt ttcaaaactc acatcttctc ggctcgatgc
agcttttgct gaaatccagc ggacttctct ccctgagaag
tcaccactct catgtgagac ccgtgtcgac ctctgtgatg
atttggttcc tgaggcaaga cagcttgctc ccagggagaa
gcttcctctg agtagcagga gacctgctgc ggtgggggct
gggctccaga atatgggaaa tacctgctac gtgaacgctt
ccttgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc cgggagcact ctcaaacgtg tcatcgtcac
aagggctgca tgctctgtac tatgcaagct cacatcacac
gggccctcca caatcctggc cacgtcatcc agccctcaca
ggcattggct gctggcttcc atagaggcaa gcaggaagat
gcccatgaat ttctcatgtt cactgtggat gccatgaaaa
aggcatgcct tcccgggcac aagcaggtag atcatccctc
taaggacacc accctcatcc accaaatatt tggaggctac
tggagatctc aaatcaagtg tctccactgc cacggcattt
cagacacttt tgacccttac ctggacatcg ccctggatat
ccaggcagct cagagtgtcc agcaagcttt ggaacagttg
gtgaagcccg aagaactcaa tggagagaat gcctatcatt
gtggtgtttg tctccagagg gcgccggcct ccaagacgtt
aactttacac acttctgcca aggtcctcat ccttgtattg
aagagattct ccgatgtcac aggcaacaag attgccaaga
atgtgcaata tcctgagtgc cttgacatgc agccatacat
gtctcagcag aacacaggac ctcttgtcta tgtcctctat
gctgtgctgg tccatgctgg gtggagttgt cacaacggac
attacttctc ttatgtcaaa gctcaagaag gccagtggta
taaaatggat gatgccgagg tcaccgcctc ttagcatcac
atctgtcctg agtcaacagg cctacgtcct cttttacatc
cagaagagtg aatgggaaag acacagtgag agtgtgtcaa
gaggcaggga accaagagcc cttggcgcag aagacacaga
caggcgagta acgcaaggag agctcaagag agaccacccc
tgactccagg cccccgagtt ggacgagcac ttggtggaaa
gagccactca ggaaagcacc ttagaccact ggaaattcct
tcaagagcaa aacaaaacga agcctgagtt caacgtcaga
aaagtcgaag gtaccctgcc tcccgacgta cttgtgattc
atcaatcaaa atacaagtgt gggatgaaga accatcatcc
tgaacagcaa agctccctgc taaacctctc ttcgacgacc
ccgacacatc agcagtccat gaacaatggc acactcgctt
ccctgcgagg gagggccagg agatccaaag ggaagaacaa
acacagcaag agggctctgc ttgtgtgcca gtga
hDUB4.4 Deduced polypeptide sequence
MEEDSLYLGG EWQFNHFSKL TSSRLDAAFA EIQRTSLPEK
SPLSCETRVD LCDDLVPEAR QLAPREKLPL SSRRPAAVGA
GLQNMGNTCY VNASLQCLTY TPPLANYMLS REHSQTCHRH
KGCMLCTMQA HITRALHNPG HVIQPSQALA AGFHRGKQED
AHEFLMFTVD ANKKACLPGH KQVDHPSKDT TLIHQIFGGY
WRSQIKCLHC HGISDTFDPY LDIALDIQAA QSVQQALEQL
VKPEELNGEN AYHCGVCLQR APASKTLTLH TSAKVLILVL
KRFSDVTGNK IAKNVQYPEC LDMQPYNSQQ NTGPLVYVLY
AVLVHAGWSC HNGHYFSYVK AQEGQWYKMD DAEVTAS
Nucleotide sequence for hDUB4.9
atggaggacg actcactcta cttgggaggt gagtggcagt
tcaaccactt ttcaaaactc acatctcctc ggcccgatgc
agcttttgct gaaatccagc ggacttctct ccctgagaag
tcaccactct catgtgagac ccgtgtcgac ctctgtgatt
atttggctcc tgtggcaaga cagcttgctc ccagggagaa
gcttcctctg agtagcagga gacctgctgc ggtgggggct
gggctccaga atatgggaaa tacctgctac gtgaacgctt
ccttgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc cgggagcact ctcaaacgtg tcatcgtcac
aagggctgca tgctctgtac tatgcaagct cacatcacac
gggccctcca caatcctggc cacgtcatcc agccctcaca
ggcattggct gctggcttcc atagaggcaa gcaggaagat
gcccatgaat ttctcatgtt cactgtggat gccatgaaaa
aggcatgcct tcccgggcac aagcaggtgg atcatcactc
taaggacacc accctcatcc accaaatatt tggaggctac
tggagatctc aaatcaagtg tctccactgc cacggcattt
cagacacttt tgacccttac ctggacatcg ccctggatat
ccaggcagct cagagtgtcc agcaagcttt ggaacagttg
gtgaagcccg aagaactcaa tggagagaat gcctatcatt
gtggtgtttg tctccagagg gcgccggcct ccaagacgtt
aactttacac acctctgcca aggtcctcat ccttgtattg
aagagattct ccgatgtcac aggcaacaag attgccaaga
atgtgcaata tcctgagtgc cttgacatgc agccatacat
gtctcagcag aacacaggac ctcttgtcta tgtcctctat
gctgtgctgg tccacgctgg gtggagttgt cacaacggac
attacttctc ttatgtcaaa gctcaagaag gccagtggta
taaaattgat gatgccgagg tcaccgcctc tagcatcact
tctgtcctga ctcaacaggc ctacgtcctc ttttacatcc
agaagagtga atgggaaaga cacagtgaga gtgtgtcaag
aggcagggaa ccaagagccc ttggctctga agactaa
hDUB4.9 deduced polypeptide sequence
MEDDSLYLGG EWQFNHFSKL TSPRPDAAFA EIQRTSLPEK
SPLSCETRVD LCDYLAPVAR QLAPREKLPL SSRRPAAVGA
GLQNMGNTCY VNASLQCLTY TPPLANYMLS REHSQTCHRH
KGCMLCTMQA HITRALHNPG HVIQPSQALA AGFHRGKQED
AHEFLMFTVD AMKKACLPGH KQVDHHSKDT TLIHQIFGGY
WRSQIKCLHC HGISDTFDPY LDIALDIQAA QSVQQALEQL
VKPEELNGEN AYHCGVCLQR APASKTLTLH TSAKVLILVL
KRFSDVTGNK IAKNVQYPEC LDMQPYNSQQ NTGPLVYVLY
AVLVHAGWSC HNGHYFSYVK AQEGQWYKID DAEVTASSIT
SVLTQQAYVL FYIQKSEWER HSESVSRGRE PRALGSED
Nucleotide sequence for hDUB8.2 sequence
atgcggccag agagcccgtc atttgaagac tcggaagaga
tagcgtcttt ctgcaacctg cggtcccagc cgaaaaacct
tgtgatcctt gttccgggcg acatggagga cgactcactc
tacttgggag gtgagtggca gttcaaccac ttttcaaaac
tcacatcttc tcggccagat gcagcttttg ctgaaatcca
gcggacttct ctctctgaga agtcatcact ctcatctgag
acccgcgtcg acctctgtga tgatttggct cctgtggcaa
gacagctcgc tcccagggag aagcttcctc tgagtagcag
gagacctgct gcggtggggg ctgggctcca gaatatggga
aatacctgct acgtgaacgc ttccctgcag tgcctgacat
acacaccgcc ccttgccaac tacatgctgt cccgggagca
ctctcaaacg tgtcatcgtc acaagtgctg catgctctgt
actatgcaag ctcacatcac atggcccctc cacagtcctg
gccatgtcat ccagccctca caggtgttgg ctgctggctt
ccatagaggc gagcaggaag atgcccatga atttctcatg
ttcactgtgg atgccatgaa aaaggcattc cttcccgggc
acaagcattt agataatcac tctaaggaca ccaccctcat
ccaccaaata tttggagggt actggagatc tcacatcaac
tgtttccact gccacgggat ttcagacacc tttgaccctt
acctggacat cgccctggat atccaggcag ctcagagtgt
caagcaagct ttgtaacagt tggtgaagcc cgaagaactc
aatggataaa atgcctatca ttgtggtctt tgtctccaga
aggcgcctgc ctccaggacg ttaactttac acacttctgc
caaggtcctc atccttgtat tgaagagatt ctctgaggtc
acaggcaaca aacttgccaa gaatgtgcaa tatcctgagt
gccttgacat gcagccatac atgtctcagc agaacacagg
acctcttgtc tatgtcctct atgctgtgct ggtccacgct
gggtggagtt gtcacaacgg acattactta tcttatgtca
aactcaagaa ggccattggt ataaaatgga tgatgccgag
gtcactgcct ccggtatcac ttctgtcctg agtcaacagg
cctatgtcct cttttacatc cagaagaatg aatttggaag
acccagttac agtgtgtcca taggcaggga accaagagct
ctttgcgtga aggcaagtga attgtgtgtg aaataaaatg
tcatgaataa atcttgcagt ggagtattta tttgtctcac
tttgtaatca gtgaatgagc tttaaccaat atcaatgcct
agtgcctacc ccccagagat aagaacttcc actctcttat
gtgtaaccat ggcctctgga ttgcttatga ctctgaagat
aattctcctt tcccccaacg tttcagaatc acttcaggtg
gtggtaacag ataacacatc agtccctttc tctctctttt
ctcttcactc aggaaaactc tcactgagac aaaggaaaat
cctatggttt actggggagg aagaattccc tcaggagtga
aattggtggc tccttcctcc ctgtcaagtc tcttcctcag
gattgcccct ttgtctcttc aggact
hDUB8.2 dedeuced polypeptide sequence
MRPESPSFED SEEIASFCNL RSQPKNLVIL VPGDMEDDSL
YLGGEWQFNH FSKLTSSRPD AAFAEIQRTS LSEKSSLSSE
TRVDLCDDLA PVARQLAPRE KLPLSSRRPA AVGAGLQNMG
NTCYVNASLQ CLTYTPPLAN YMLSREHSQT CHRHKCCMLC
TMQAHITWPL HSPGHVIQPS QVLAAGFHRG EQEDAHEFLM
FTVDANKKAF LPGHKHLDNH SKDTTLIHQI FGGYWRSHIN
CFHCHGISDT FDPYLDTALD IQAAQSVKQA L
Nucleotide sequence for hDUB8.9
atggaggaag actcactcta cttgggaggt gagtggcagt
tcaaccactt ttcaaaactc acatcttctc agccagatgc
agcttttcct gaaatccagc ggacttctct ccctgagaag
tcaccactct catcggagac ccgtgtcgac ctctgtgacg
atttggctcc tgtgacaaga cagcttgctc ccagggagaa
gcttcctccg agtagcagga gacctgctgc ggtgggagct
ggtctccaga atatgggaaa tacctgccac ttgaatgctt
ccctgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc tgggagctct ctcaaatgtg tcatcgtccc
aagtgctgca tgctctgtat tatggaagct cacagcacac
gggcacctcc accgtcctgg ccatgtcatc cagccctcac
aggcattggc tgctgacttc catagagaca agcaggaaga
tgcccatgaa tttctcatat tcactgtgga tgccattaga
aaggcatgcc ttcccgggca caagcagcta gatcatcact
gcaaggacac catcctcatc caccaaatat ttggagggta
ctagagatct caaatcaagt gtctctactt ccacggcatt
tcagacacct tcgaccctta cctggatatc gccctggata
tccaggcagc tcagagtgtc aagcaagctt tggaacagtt
ggtgaagccc gaagaactca atggagagaa tgcctatcat
tgtggtcttt gtctccagaa ggcgcctgcc gccaagacgt
taactttacc cacttctgcc aaggtcctca tccttgtctt
gaagagattc tccgatgtca caggcaacaa acttgccaag
aatctgcaat atcctgagtg cgttgacatg cagccataca
tgtctcagca gaacacagga cctcttttct atgtcctcta
tgctgttctc gtcatcaccg ggtggagttg tcacaacgga
cattacttct cttgtgtcaa actcaagaag gccagtggta
taaaatggat gatgccgagg tcactgcctc tggtatcact
tctccttaga gtcaacaggc ctatgtcctc ttttacatcc
agaagaatga atttggaaga cccagttaca gggtgtccgc
aggcagagaa ccaagagctc tttgtgctga agacaattga
attgtggtga aataatatgt catgaataaa tcttgcagca
gatttatttg tctcactttg taatcagtga atgagcttta
acgaatatca atgcctagtg cctacccccc agagataaga
acttccagtt tctcatgtgt aatcatggca tctggattgc
tcatgattct gaagataatt ctcctgtccc ccaaagtttc
agaatcactt caggtggtag aaacagataa cacatcagtc
cctttctctc tcttttctct tca
hDUB8.9 Deduced polypeptide sequence
MEDDSLYLGG EWQFNHFSKL TSSRPDAAFA EIQRTSLSEK
SSLSSETRVD LCDDLAPVAR QLAPREKLPL SSRRPAAVGA
GLQNMGNTCY VNASLQCLTY TPPLANYNLS REHSQTCHRH
KCCMLCTMQA HITWPLHSPG HVIQPSQVLA AGFHRGEQED
AHEFLNFTVD AMKKAFLPGH KHLDNHSKDT TLIHQIFGGY
WRSHINCFHC HGISDTFDPY LDIALDIQAA QSVKQALEQL
VKPEELNG
Nucleotide sequence for hDUB8.10
atggaggacg actcactcta cttgggaggt gagtggcagt
tcaaccactt ttcaaaactc acatcttctc ggccagatgc
agcttttgct gaaatccagc ggacttctct ctctgagaag
tcatcactct catctgagac ccgcgtcgac ctctgtgatg
atttggctcc tgtggcaaga cagctcgctc ccagggagaa
gcttcctctg agtagcagga gacctgctgc ggtgggggct
gggctccaga atatgggaaa tacctgctac gtgaacgctt
ccctgcagtg cctgacatac acaccgcccc ttgccaacta
catgctgtcc cgggagcact ctcaaacgtg tcatcgtcac
aagtgctgca tgctctgtac tatgcaagct cacatcacat
ggcccctcca cagtcctggc catgtcatcc agccttcaca
ggtgttggct gctggcttcc atagaggcga gcaggaagat
gcccatgaat ttctcatgtt cactgtggat gccatgaaaa
aagcattcct tcccgggcac aagcatttag ataatcactc
taaggacacc accctcatcc accaaatatt tggagggtac
tggagatctc acatcaactg tttccactgc catgggattt
cagacacctt tgacccttac ctggacatcg ccctggatat
ccaggcagct cagagtgtca agcaagcttt ggaacagttg
gtgaagcccg aagaactcaa tggataaaat gcctatcatt
gtggtctttg tctccagaag gcgcctacct ccaggacgtt
aactttacac acttctgcca aggtcctcat ccttgtattg
aagagattct ctgatgtcac aggcaacaaa cttgccaaga
atgtgcaata tcctgagtgc cttgacatgc agccatacat
gtctcagcag aacacaggac ctcttgtcta tgtcctctat
gctgtgctgg tccacgctgg gtggagttgt cacaacggac
attacttatc ttatgtcaaa ctcaagaagg ccattggtat
aaaatggatg atgccgaggt cactgcctcc ggtatcactt
ctgtcctgag tcaacaggcc tatgtcctct tttacatcca
gaagaatgaa tttggaagac ccagttacag tgtgtccata
ggcagggaac cgagagctct ttgcgtgaag gcaagtgaat
tgtgtgtgaa ataaaatgtc atgaataaat cttgcagtgg
agtatttatt tgtctcactt tgtaatcagt gaatgagctt
taaccaatat caatgcctag tgcctacccc ccagagataa
gaacttccac tctcttatgt gtaaccatgg cctctggatt
gcttatgact ctgaagataa ttctcctttc ccccaacgtt
tcagaatcac ttcaggtggt ggtaacagat aacacatcag
tccctttctc tctcttttct cttcactcag gaaaactctc
actgagacaa aggaaaatcc tatggtttac tggggaggaa
gaattccctc aggagtgaaa ttggtggctc cttcctccct
gtcaagtctc ttcctcagga ttgccccttt gtctcttcag
gactctgctc atcaggcccg agatgccccc tggttgtgca
tacctggcct gtgaagaaat a
hDUB8.10 Deduced polypeptide sequence
MEEDSLYLGG EWQFNHFSKL TSSQPDAAFP EIQRTSLPEK
SPLSSETRVD LCDDLAPVTR QLAPREKLPP SSRRPAAVGA
GLQNMGNTCH LNASLQCLTY TPPLANYMLS WELSQMCHRP
KCCMLCIMEA HSTRAPPPSW PCHPALTGILG C
TABLE 24
Deduced Amino acid alignment of hDUB4.10 (Seq ID NO.22) and
hDUB4.11 (Seq ID NO.24).
hDUB4.10 MCIRTGSPCDVCENYSVMSMTGRQLIDWAPLKIGYEHSSTPMPREHVHFRQHYNFGTKCA 60
hDUB4.11 MCIRTGSPCDVCENYSVMSMTGRQLIDWAPLKIGYEHSSTPMPRT-LYIRHRK------- 52
******************************************** :::*::
hDUB4.10 NCNSTIQCVTGNGGNIADPERSMRESRICTAYFGLFPLKQGPVLKMVISLGQRINRLNVE 120
hDUB4.11 ---------PSDGAHLAHEK-------------------------------------TRE 66
..:*.::*. : . *
hDUB4.10 RLSLEGKKIRCAKYYTSLTILRSESALSTSCPSVAERMMAAAKRIASFCNLRSQQKNLVI 180
hDUB4.11 RNGAKGKKIRCAKYYTSLTILRSESALSSSCPSVAERMMAAAK----------------- 109
* . :***********************:**************
hDUB4.10 LVPVDMEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDL 240
hDUB4.11 ---IDMEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLS--------YDL 158
:********************************************* ** **
hDUB4.10 APVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQ 300
hDUB4.11 APVARQLAPREKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQ 218
**********************************************.*************
hDUB4.10 TCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKA 360
hDUB4.11 TCHRHKGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKA 278
************************************************************
hDUB4.10 CLPGHKQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQ 420
hDUB4.11 CLPRHKQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQ 338
*** ********************************************************
hDUB4.10 ALEQLVKPEELNGENAYHSGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNV 480
hDUB4.11 ALEQLVKPEELNGENAYHCGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNV 398
******************.*****************************************
hDUB4.10 QYPECLDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVT 540
hDUB4.11 QYPECLDMQPYMSQQNTGPLVYVLYAVLVHAEWSCHNGHYFSYVKAQEGQWYKMDDAEVT 458
******************************* ****************************
hDUB4.10 AASITSALSQQAYVLFYIQKSEWERHSESVSRGREPRALGTEDTDRRATQGELKRDHPCL 600
hDUB4.11 AASITSVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCL 518
******.*********************************:*******************
hDUB4.10 QAPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVEGTLPPDVLVIHQSKYKCGM 660
hDUB4.11 QAPELDEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVKGTLPPDVLVIHQSKYKCGM 578
****************************************:*******************
hDUB4.10 KNHHPEQQSSLLNLSSSTPTHQESMNTGTLASLRGRARRSKGKNKHSKRALLVCQ 715
hDUB4.11 KNHHPEQQSSLLNLSSSTPTHQESMNTGTLASLRGRARRSKGKNKHSKRALLVC- 632
******************************************************
TABLE 25
Nucleotide sequence alignment of hDUB4.5 (Seq ID NO.13), hDUB4.8
(Seq ID NO.19) and hDUB8.2 (Seq ID NO.43).
hDUB4.5 ATGCG-CCAGAGACCTCGTCATTTGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAA 59
hDUB4.8 ATGCG-CCAGAGAGCTCGTCATTTGAAGACTCTCTCGGAAGGGATAGCGTCTTGCTGCAA 59
hDUB8.2 ATGCGGCCAGAGAGCCCGTCATTTGAAGA----CTCGGAAGAGATAGCGTCTTTCTGCAA 56
***** ********* ************* ******** *********** ******
hDUB4.5 CCTGCGGTCCCAGCAGAAAAACCTTGTGATCCTTGTTCCAGTCGACATGGAGGAAGACTC 119
hDUB4.8 ACTGCGGTCCCAGCAGAAAAACCTTGTGATCCTTGTTCCAGTCGACATGGAGGACGACTC 119
hDUB8.2 CCTGCGGTCCCAGCCGAAAAACCTTGTGATCCTTGTTCCGGGCGACATGGAGGACGACTC 116
************* ************************ * ************ *****
hDUB4.5 ACTCTACTTGGGAGGTGAGTGGCAGTTCAACCACTTTTCAAAACTCACATCTTCTCGGCC 179
hDUB4.8 ACTCTACTTGGGAGGTGAGTGGCAGTTCAACCACTTTTCAAAACTCACATCTTCTCGGCC 179
hDUB8.2 ACTCTACTTGGGAGGTGAGTGGCAGTTCAACCACTTTTCAAAACTCACATCTTCTCGGCC 176
************************************************************
hDUB4.5 CGATGCAGCTTTTGCTGAAATCCAGCGGACTTCTCTCCCTGAGAAGTCACCACTCTCATG 239
hDUB4.8 CGATGCAGCTTTTGCTGAAATCCAGCGGACTTCTCTCCCTGAGAAGTCACCACTCTCATG 239
hDUB8.2 AGATGCAGCTTTTGCTGAAATCCAGCGGACTTCTCTCTCTGAGAAGTCATCACTCTCATC 236
************************************ *********** *********
hDUB4.5 TGAGACCCGTGTCGACCTCTGTGATGATTTGGCTCCTGTGGCAAGACAGCTTGCTCCCAG 299
hDUB4.8 TGAGACCCGTGTCGACCTCTGTGATGATTTGGCTCCTGTGGCAAGACAGCTTGCTCCCAG 299
hDUB8.2 TGAGACCCGCGTCGACCTCTGTGATGATTTGGCTCCTGTGGCAAGACAGCTCGCTCCCAG 296
********* ***************************************** ********
hDUB4.5 GGAGAAGCTTCCTCTGAGTAACAGGAGACCTGCTGCGGTGGGGGCTGGGCTCCAGAATAT 359
hDUB4.8 GGAGAAGCTTCCTCTGAGTAGCAGGAGACCTGCTGCGGTGGGGGCTGGGCTCCAGAATAT 359
hDUB8.2 GGAGAAGCTTCCTCTGAGTAGCAGGAGACCTGCTGCGGTGGGGGCTGGGCTCCAGAATAT 356
******************** ***************************************
hDUB4.5 GGGAAATACCTGCTACGTGAACGCTTCCTTGCAGTGCCTGACATACACACCGCCCCTTGC 419
hDUB4.8 GGGAAATACCTGCTACGTGAACGCTTCCTTGCAGTGCCTGACATACACACCGCCCCTTGC 419
hDUB8.2 GGGAAATACCTGCTACGTGAACGCTTCCCTGCAGTGCCTGACATACACACCGCCCCTTGC 416
**************************** *******************************
hDUB4.5 CAACTACATGCTGTCCCGGGAGCACTCTCAAACGTGTCATCGTCACAAGGGCTGCATGCT 479
hDUB4.8 CAACTACATGCTGTCCCGGGAGCACTCTCAAACGTGTCATCGTCACAAGGGCTGCATGCT 479
hDUB8.2 CAACTACATGCTGTCCCGGGAGCACTCTCAAACGTGTCATCGTCACAAGTGCTGCATGCT 476
************************************************* **********
hDUB4.5 CTGTACGATGCAAGCTCACATCACACGGGCCCTCCACAATCCTGGCCACGTCATCCAGCC 539
hDUB4.8 CTGTACGATGCAAGCTCACATCACACGGGCCCTCCACAATCCTGGCCACGTCATCCAGCC 539
hDUB8.2 CTGTACTATGCAAGCTCACATCACATGGCCCCTCCACAGTCCTGGCCATGTCATCCAGCC 536
****** ****************** ** ********* ********* ***********
hDUB4.5 CTCACAGGCATTGGCTGCTGGCTTCCATAGAGGCAAGCAGGAAGATGCCCATGAATTTCT 599
hDUB4.8 CTCACAGGCATTGGCTGCTGGCTTCCATAGAGGCAAGCAGGAAGATGCCCATGAATTTCT 599
hDUB8.2 CTCACAGGTGTTGGCTGCTGGCTTCCATAGAGGCGAGCAGGAAGATGCCCATGAATTTCT 596
******** ************************ *************************
hDUB4.5 CATGTTCACTGTGGATGCCATGAAAAAGGCATGCCTTCCCGGGCACAAGCAGGTGGATCA 659
hDUB4.8 CATGTTCACTGTGGATGCCATGAAAAAGGCATGCCTTCCCGGGCACAAGCAGGTAGATCA 659
hDUB8.2 CATGTTCACTGTGGATGCCATGAAAAAGGCATTCCTTCCCGGGCACAAGCATTTAGATAA 656
******************************** ****************** * *** *
hDUB4.5 TCACTCTAAGGACACCACCCTCATCCACCAAATATTTGGAGGCTACTGGAGATCTCAAAT 719
hDUB4.8 TCACTCTAAGGACACCACCCTCATCCACCAAATATTTGGAGGCTACTGGAGATCTCAAAT 719
hDUB8.2 TCACTCTAAGGACACCACCCTCATCCACCAAATATTTGGAGGGTACTGGAGATCTCACAT 716
****************************************** ************** **
hDUB4.5 CAAGTGTCTCCACTGCCACGGCATTTCAGACACTTTTGACCCTTACCTGGACATCGCCCT 779
hDUB4.8 CAAGTGTCTCCACTGCCACGGCATTTCAGACACTTTTGACCCTTACCTGGACATCGCCCT 779
hDUB8.2 CAACTGTTTCCACTGCCACGGGATTTCAGACACCTTTGACCCTTACCTGGACATCGCCCT 776
*** *** ************* *********** **************************
hDUB4.5 GGATATCCAGGCAGCTCAGAGTGTCCAGCAAGCTTTGGAACAGTTGGTGAAGCCCGAAGA 839
hDUB4.8 GGATATCCAGGCAGCTCAGAGTGTCCAGCAAGCTTTGGAACAGTTGGTGAAGCCCGAAGA 839
hDUB8.2 GGATATCCAGGCAGCTCAGAGTGTCAAGCAAGCTTTGTAACAGTTGGTGAAGCCCGAAGA 836
************************* *********** **********************
hDUB4.5 ACTCAATGGAGAGAATGCCTATCATTGTGGTGTTTGTCTCCAGAGGGCGCCGGCCTCCAA 899
hDUB4.8 ACTCAATGGAGAGAATGCCTATCATTGTGGTGTTTGTCTCCAGAGGGCGCCGGCCTCCAA 899
hDUB8.2 ACTCAATGGATAAAATGCCTATCATTGTGGTCTTTGTCTCCAGAAGGCGCCTGCCTCCAA 896
********** * ****************** ************ ****** *******
hDUB4.5 GACGTTAACTTTACACACCTCTGCCAAGGTCCTCATCCTTGTATTGAAGAGATTCTCCGA 959
hDUB4.8 GACGTTAACTTTACACACCTCTGCCAAGGTCCTCATCCTTGTATTGAAGAGATTCTCCGA 959
hDUB8.2 GACGTTAACTTTACACACTTCTGCCAAGGTCCTCATCCTTGTATTGAAGAGATTCTCTGA 959
****************** ************************************** **
hDUB4.5 TGTCACAGGCAACAAGATTGACAAGAATGTGCAATATCCTGAGTGCCTTGACATGAAGCT 1019
hDUB4.8 TGTGACAGGCAACAAGATTGCCAAGAATGTGCAATATCCTGAGTGCCTTGACATGCAGCC 1019
hDUB8.2 GGTCACAGGCAACAAACTTGCCAAGAATGTGCAATATCCTGAGTGCCTTGACATGCAGCC 1016
** *********** *** ********************************** ***
hDUB4.5 ATACATGTCTCAGACGAACTCAGGACCTCTCGTCTATGTCCTCTATGCTGTGCTGGTCCA 1079
hDUB4.8 ATACATGTCTCAGCAGAACACAGGACCTCTTGTCTATGTCCTCTATGCTGTGCTGGTCCA 1079
hDUB8.2 ATACATGTCTCAGCAGAACACAGGACCTCTTGTCTATGTCCTCTATGCTGTGCTGGTCCA 1076
************* **** ********** *****************************
hDUB4.5 CGCTGGGTGGAGTTGTCACAACGGACATTACTTCTCTTATGTCAAAGCTCAAGAAGGCCA 1139
hDUB4.8 CGCTGGGTGGAGTTGTCACAACGGACATTACTTCTCTTATGTCAAAGCTCAAGAAGGCCA 1139
hDUB8.2 CGCTGGGTGGAGTTGTCACAACGGACATTACTTATCTTATGTCAAA-CTCAAGAAGGCCA 1135
********************************* ************ *************
hDUB4.5 GTGGTATAAAATGGATGATGCCGAGGTCACCGCCTCTAGCATCACTTCTGTCCTGAGTCA 1199
hDUB4.8 ATGGTATAAAATGGATGATGCCGAGGTCACCGCCGCTAGCATCACTTCTGTCCTGAGTCA 1199
hDUB8.2 TTGGTATAAAATGGATGATGCCGAGGTCACTGCCTCCGGTATCACTTCTGTCCTGAGTCA 1195
***************************** *** * * ********************
hDUB4.5 ACAGGCCTACGTCCTCTTTTACATCCAGAAGAGTGAATGGGAAAGACACAGTGAGAGTGT 1259
hDUB4.8 ACAGGCCTACGTCCTCTTTTACATCCAGAAGAGTGAATGGGAAAGACACAGTGAGAGTGT 1259
hDUB8.2 ACAGGCCTATGTCCTCTTTTACATCCAGAAGAATGAATTTGGAAGACCCAGTTACAGTGT 1259
********* ********************** ***** * ***** **** * *****
hDUB4.5 GTCAAGAGGCAGGGAAACCAAGAGCCCTTGGCGCAGAAGACACAGACAGGCGAGCAACGCA 1319
hDUB4.8 GTCAAGAGGCAGGGAAACCAAGAGCCCTTGGCGCAGAAGACACAGACAGGCGAGCAACGCA 1319
hDUB8.2 GTCCATAGGCAGGGAAACCAAGAGCTCTTTGCGTGAAGGCAAGTGAATTGTGTGTGAAATA 1315
*** * ******************* *** *** * * * ** * * * * *
hDUB4.5 AGGAGAGCTCAAGAGAGACCACCCCTGCCTCCAGGCCCCCGAGTTGGACGAGCACTTGGT 1379
hDUB4.8 AGGAGAGCTCAAGAGAGACCACCCCTGCCTCCAGGCCCCCGAGTTGGACGAGCACTTGGT 1379
hDUB8.2 AAATG---TCATGA---ATAAATCTTGCAGTGGAGTATTT-ATTTGTCTCACTTTGTAAT 1368
* * *** ** * * * *** * * *** * * *
hDUB4.5 GGAAAGAGCCACTCAGGAAAGCACCTTAGACCACTGGAAATTCCTTCAAGAGCAAAACAA 1439
hDUB4.8 GGAAAGAGCCACTCAGGAAAGCACCTTAGACCACTGGAAATTCCTTCAAGAGCAAAACAA 1439
hDUB8.2 CAGTGAATGAGCTTTAACCAATATCAATGCCTAGTGCCTACCCCCCAGAGATAAGAACTT 1428
* ** * * * * * * ** * ** *** * ***
hDUB4.5 AACGAAGCCTGAGTTCAACGTCAGAAAAGTCGAAGGTACCCTGCCTCCCGACGTACTTGT 1499
hDUB4.8 AACGAAGCCTGAGTTCAACGTCAGAAAAGTCGAAGGTACCCTGCCTCCCGACGTACTTGT 1499
hDUB8.2 CCACTCTCTTATGTGTAAC--CATGGCCTCTGGATTGCTTATGACTCTGAAGATAATTCT 1486
* * ** *** ** * * ** *** * ** ** *
hDUB4.5 GATTCATCAATCAAAATACAAGTGTGGGATGAAGAACCATCATCCTG-AACAGCAAAGCT 1558
hDUB4.8 GATTCATCAATCAAAATACAAGTGTGGGATGAAGAACCATCATCCTG-AACAGCAAAGCT 1558
hDUB8.2 CCTT--TCCCCCAACGTTTCAGAATCACTTCAGGTGGTGGTAACAGATAACACATCAGTC 1544
** ** *** * ** * * * * * * **** **
hDUB4.5 CCCTGCTAAACCTCTCTTCGACGACCCCGACACATCAGGAGTCCATGAACACTGGCACAC 1618
hDUB4.8 CCCTGCTAAACCTCTCTTCGACGACCCCGACACATCAGGAGTCCATGAACACTGGCACAC 1618
hDUB8.2 CCTTTCTCTCTCTTTTCTCTTCACTCAGGAAAACTCTCACTGAGACAAAGGAAAATCCTA 1604
** * ** ** * ** * * ** * ** * ** *
hDUB4.5 TCGCTTCCCTGCGAGGGAGGGC-----CAGGAGATCCAAAGGGAAGAACAAACACAGCAA 1673
hDUB4.8 TCGCTTCCCTGCGAGGGAGGGC-----CAGGAGATCCAAAGGGAAGAACAAACACAGCAA 1673
hDUB8.2 TGGTTTACTGGGGAGGAAGAATTCCCTCAGGAGTGAAATTGGTGGCTCCTTCCTCCCTGT 1664
* * ** * * **** ** ****** * ** * * *
hDUB4.5 GAGGGCTCTGCTTGTGTG----CCAGTGGTCTCAGTGGAAGTACCGACCCACA 1722
hDUB4.8 GAGGGCTCTGCTTGTGTG----CCAGTGA------------------------ 1698
hDUB8.2 CAAGTCTCTTCCTCAGGATTGCCCCTTTGTCTCTTCAGGACT----------- 1706
* * **** * * * ** *
In frame termination codons in hDUB8.2 are underlined
TABLE 26
Deduced amino acid alignment of hDUB4.5 (Seq ID NO.14), hDUB4.8
(Seq ID NO.20) and hDUB8.2 (Seq ID NO.44).
hDUB4.5 MRQRARHLKTLSEGIASFCNLRSQQKNLVILVPVDMEEDSLYLGGEWQFNHFSKLTSSRP 60
hDUB4.8 MRQRARHLKTLSEGIASCCKLRSQQKNLVILVPVDMEDDSLYLGGEWQFNHFSKLTSSRP 60
hDUB8.2 MRPESPSFED-SEEIASFCNLRSQPKNLVILVPGDMEDDSLYLGGEWQFNHFSKLTSSRP 59
** .: :: ** *** *:**** ******** ***:**********************
hDUB4.5 DAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVARQLAPREKLPLSNRRPAAVGAGLQNM 120
hDUB4.8 DAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVARQLAPREKLPLSNRRPAAVGAGLQNM 120
hDUB8.2 DAAFAEIQRTSLSEKSSLSSETRVDLCDDLAPVARQLAPREKLPLSSRRPAAVGAGLQNM 119
************.***.**.**************************.*************
hDUB4.5 GNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRHKGCMLCTMQAHITRALHNPGHVIQP 180
hDUB4.8 GNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRHKGCMLCTMQAHITRALHNPGHVIQP 180
hDUB8.2 GNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRHKCCMLCTMQAHITWPLHSPGHVIQP 179
************************************ *********** .**.*******
hDUB4.5 SQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGYWRSQI 240
hDUB4.8 SQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGHKQVDHHSKDTTLIHQIFGGYWRSQI 240
hDUB8.2 SQVLAAGFHRGEQEDAHEFLMFTVDAMKKAFLPGHKHLDNHSKDTTLIHQIFGGYWRSHI 239
**.********:****************** *****::*:******************:*
hDUB4.5 KCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGENAYHCGVCLQRAPASK 300
hDUB4.8 KCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQLVKPEELNGENAYHCGVCLQRAPASK 300
hDUB8.2 NCFHCHGISDTFDPYLDIALDIQAAQSVKQAL---------------------------- 271
:*:*************************:***
hDUB4.5 TLTLHTSAKVLILVLKRFSDVTGNKIDKNVQYPECLDMKLYMSQTNSGPLVYVLYAVLVH 360
hDUB4.8 TLTLHTSAKVLILVLKRFSDVTGNKIDKNVQYPECLDMKLYMSQTNSGPLVYVLYAVLVH 360
hDUB8.2 ------------------------------------------------------------
hDUB4.5 AGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASSITSVLSQQAYVLFYIQKSEWERHSESV 420
hDUB4.8 AGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASSITSVLSQQAYVLFYIQKSEWERHSESV 420
hDUB8.2 ------------------------------------------------------------
hDUB4.5 SRGREPRALGAEDTDRRATQGELKRDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNK 480
hDUB4.8 SRGREPRALGAEDTDRRATQGELKRDHPCLQAPELDEHLVERATQESTLDHWKFLQEQNK 480
hDUB8.2 ------------------------------------------------------------
hDUB4.5 TKPEFNVRKVEGTLPPDVLVIHQSKYKCGMKNHHPEQQSSLLNLSSTTPTHQESMNTGTL 540
hDUB4.8 TKPEFNVRKVEGTLPPDVLVIHQSKYKCGMKNHHPEQQSSLLNLSSTTPTHQESMNTGTL 540
hDUB8.2 ------------------------------------------------------------
hDUB4.5 ASLRGRARRSKGKNKHSKRALLVCQWSQWKYRPT 574
hDUB4.8 ASLRGRARRSKGKNKHSKRALLVCQ--------- 565
hDUB8.2 ----------------------------------
N-terminal potential mitochondrial targeting sequences are underlined.
TABLE 27
Upstream of initiation codon nucleotide sequence (putative
promoter region) alignment of hDUB4.5 (Seq ID NO.13), hDUB4.8
(Seq ID NO.19) and hDUB8.2 (Seq ID NO.43). Numbering is
initiated from initiation ATG.
hDUB4.5 CACACGAACACAATCACACACACACACTCACACGGTTTCCTACGTAAAGATTTCTTCCCT −276
hDUB4.8 CACACGAACACAATCACACACACACACTCACACGGTTTCCTACGTAAAGATTTCTTCCCT −276
hDUB8.2 GGGAGAAAAACACACACACACACACACACACACGGTTTCATAGGTAAAGATTTCTTCCCT −276
* ** *** ************* *********** ** *****************
hDUB4.5 GCCATTGCTTTACCTAAAATAAGGCAACTGTGTGGCCACTGTCCCAACCCGGTTACACTC −216
hDUB4.8 GCCATTGCTTTACCTAAAATAAGGCAACTGTGTGGCCACTGTCCCAACCCGGTTACACTC −216
hDUB8.2 GACATTGTTTTACCTAAAATAAGGCAACTGTGTGGCCACTGTCCCAACCCGGTTACACTC −216
* ***** ****************************************************
hDUB4.5 CTATTATATGTGCCTATCATCCTGAGGAGTAATTTGATTCAGGTGTTCTGGAAGTCATGC −156
hDUB4.8 CTATTATATGTGCCTATCATCCTGAGGAGTAATTTGATTCAGGTGTTCTGGAAGTCATGC −156
hDUB8.2 ATATTACATGTGTCTATCAGCCTGAGGAGTAGTTTGATTCAGGTGTTCTAGAAGTCATGA −156
***** ***** ****** ************ ***************** ********
hDUB4.5 TGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTCCTTCC −96
hDUB4.8 TGTGGGCTGTGTCTGTTGAATACCCAGCGATGCAAGGGGACACACCCTGTGACTCCTTCC −96
hDUB8.2 TGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTCATTCC −96
********************* ********************************* ****
hDUB4.5 TGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGGTGTTC −36
hDUB4.8 TGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGGTGTTC −36
hDUB8.2 TTAATTGAGTGCTGATATTTGATTGGTTTATCGCGCACCTGATGGGTGGGTGGGGTGTTC −36
* ************************ ***************** ***************
hDUB4.5 GCGGTTGGTGGGGTTGACTTACAGAAGGGCTGATG 0
hDUB4.8 GCGGTTGGTGGGGGTGACTTACAGAAGGGCTGATG 0
hDUB8.2 GCGGTTGGTGGGGGTGAGTTATATAAGGGCTGATG 0
************* *** *** * ***********
TABLE 28
CLUSTAL W (1.81) multiple sequence alignment of core amino
acids of hDUBs (8.5: Seq ID NO.30; 8.7: Seq ID NO.34; 8.1:
Seq ID NO.26; 4.2: Seq ID NO.10; 4.3: Seq ID NO.12; 4.5:
Seq ID NO.14; 4.1: Seq ID NO.6; 8.3: Seq ID NO.28; 8.11:
Seq ID NO.38; 8.8: Seq ID NO.36; 8.6: Seq ID NO.32)
8.5 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSEARVDLCDDLAPVAR 60
8.7 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSEARVDLCDDLAPVAR 60
8.1 MGDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSSETRVDLCDDLAPVAR 60
4.2 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVAR 60
4.3 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVAR 60
4.5 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVAR 60
4.1 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSPLSCETRVDLCDDLAPVAR 60
8.3 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSQLSTETRVDFCDDLAPVAR 60
8.11 MEDDSLYLGGEWQFNHFSKLTSSRPDAAFAEIQRTSLPEKSQLSTETRVDFCDDLAPVAR 60
8.8 MEDDSLYLGGDWQFNHFSKLTSSRLDAAFAEIQRTSLSEKSPLSSETRFDLCDDLAPVAR 60
8.6 MEDDSLYLGGDWQFNHFSKLTSSRLDAAFAEIQRTSLSEKSPLSSETRFDLCDDLAPVAR 60
* :*******:************* ************.*** ** *:*.*:*****.***
8.5 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTYTPPLANYMLSREHSQTCQRP 120
8.7 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTYTPPLANYMLSREHSQTCQRP 120
8.1 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYENASLQCLTYTPPLANYMLSREHSQTCQRP 120
4.2 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRH 120
4.3 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRH 120
4.5 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRH 120
4.1 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASLQCLTYTPPLANYMLSREHSQTCHRH 120
8.3 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASQQCLTYTPPLANYMLSREHSQTCHRH 120
8.11 QLAPRKKLPLSSRRPAAVGAGLQNMGNTCYVNASQQCLTYIPPLANYMLSREHSQTCHRH 120
8.8 QLAPRKKLPLSSRRPAAVGAGLQKIGNTFYVNVSLQCLTYTLPLSNYMLSREDSQTCHLH 120
8.6 QLAPRKKLPLSSRRPAAVGAGLQKIGNTFYVNVSLQCLTYTLPLSNYMLSREDSQTCHLH 120
*****:* ***.***********::*** * *.* ***** **:**** **.****:
8.5 KCCMLCTMQAHITWALHSPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGH 180
8.7 KCCMLCTMQAHITWALHSPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGH 180
8.1 KCCMLCTMQAHITWALHSPGHVIQPSQALAAGFHRGKQEDVHEFLMFTVDAMKKACLPGH 180
4.2 KGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGH 180
4.3 KGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGH 180
4.5 KGCMLCTMQAHITRALHNPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMKKACLPGH 180
4.1 KGCMLCTMQAHITRALHIPGHVIQPSQALAAGFHRGKQEDAHEFLMFTVDAMRKACLPGH 180
8.3 KCCMLCTMEAHITWPLHIPGHVIQPSQALAAGFHRGKQEAALEFLMFTVDAMKKACLPGH 180
8.11 KCCMLCTMEAHITWPLHIPGHVIQPSQALAAGFHRGKQEAALEFLMFTVDAMKKACLPGH 180
8.8 KCCMFCTMQAHITWALYRPGHVIQPSQVLAAGFHRGEQEDAHEFLMFTVDAMKKACLPGH 180
8.6 KCCMFCTMQAHITWALYRPGHVIQPSQVLAAGFHRGEQEDAHEFLMFTVDAMKKACLPGH 180
* **:***:**** .*: *********.********:** . **********:*******
8.5 KQVDHHSKDTTLIHQIFGGCWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVKQALEQL 240
8.7 KQVDHHSKDTTLIHQIFGGCWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVKQALEQL 240
8.1 KQVDHHCKDTTLIHQIFGGCWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVKQALEQL 240
4.2 KQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQL 240
4.3 KQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQL 240
4.5 KQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQL 240
4.1 KQVDRHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFDPYLDIALDIQAAQSVQQALEQL 240
8.3 KQVDHHSKDTTLIHQIFGGYWRSQIKCLHCHGISDTFGPYLDIALDIQEAQSVKQALEQL 240
8.11 K----------------------QILILVWKRFSDVTG---------------------- 196
8.8 KQLDHHSKDTTLIHQIFGAYWRSQIKYLHCHGISDTFDPYLDIALDIQAAQSVKQALEQL 240
8.6 KQLDHHSKDTTLIHQIFGAYWRSQIKYLHCHGISDTFDPYLDIALDIQAAQSVKQALEQL 240
* ** * : :**. .
8.5 VKPEELNGENAYHCGLCLQRAPVSKTLTLHTFAKERILETQRPWVVTRHKLAKSVQYAES 300
8.7 VKPEELNGENAYHCGLCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKLAKNVQYPEC 300
8.1 VKPEELNGENAYHCGLCLQRAPASNTLTLHTSAKVLILVLKRFSDVAGNKLAKNVQYPEC 300
4.2 VKPEELNGENAYHSGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNVQYPEC 300
4.3 VKPEELNGENAYHCGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIAKNVQYPEC 300
4.5 VKPEELNGENAYHCGVCLQRAPASKTLTLHTSAKVLILVLKRFSDVTGNKIDKNVQYPEC 300
4.1 VKPEELNGENAYHCGVCLQRAPASKTLTLHNSAKVLILVLKRFPDVTGNKIAKNVQYPEC 300
8.3 VKPEELNGENAYHC---------------------------------GNKIAKNVQYPEC 267
8.11 ------------------------------------------------NKIAKNVQYPEC 208
8.8 VKPKELNGENAYHCGLCLQKAPASKTLTLPTSAKVLILVLKRFSDVTGNKLAKNVQYPKC 300
8.6 VKPKELNGENAYHCGLCLQKAPASKTLTLPTSAKVLILVLKRFSDVTGNKLAKNVQYPKC 300
:*: *.***.:.
8.5 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEGQWYKMDDAKVTACSIT 360
8.7 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEGQWYKMDDAKVTACSIT 360
8.1 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHDGHYFSYVKAQEVQWYKMDDAEVTVCSII 360
4.2 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTAASIT 360
4.3 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTAASIT 360
4.5 LDMKLYMSQTNSGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASSIT 360
4.1 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYSSYVKAQEGQWYKMDDAEVTASSIT 360
8.3 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKVQEGQWYKMDDAEVTASGIT 327
8.11 LDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKVQEGQWYKMDDAE------- 261
8.8 RDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASGIT 360
8.6 RDMQPYMSQQNTGPLVYVLYAVLVHAGWSCHNGHYFSYVKAQEGQWYKMDDAEVTASGIT 360
**: **** *:*******************:*** ****.** ********:
8.5 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCLQAPEL 420
8.7 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCLQAPEL 420
8.1 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRAKQGELKRDHPCLQAPEL 420
4.2 SALSQQAYVLFYIQKSEWERHSESVSRGREPRALGTEDTDRRATQGELKRDHPCLQAPEL 420
4.3 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCLQAPEL 420
4.5 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDHPCLQAPEL 420
4.1 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGVEDTDRRATQGELKRDHPCLQAPEL 420
8.3 SVLSQQAYVLFYIHKSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDYPCLQVPEL 387
8.11 --------------KSEWERHSESVSRGREPRALGAEDTDRRATQGELKRDYPCLQVPEL 307
8.8 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRPATQGELKRDHPCLQVPEL 420
8.6 SVLSQQAYVLFYIQKSEWERHSESVSRGREPRALGAEDTDRPATQGELKRDHPCLQVPEL 420
*********************.***** *.*******:****.***
8.5 DERLVERATQESTLDHWRFPQEQNKTKPEFNVRKVEGTLPPNVLVIHQSKYKCGMKNHHP 480
8.7 DERLVERATQESTLDHWRFPQEQNKTKPEFNVRKVEGTLPPNVLVIHQSKYKCGMKNHHP 480
8.1 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVGKVEGTLPPNALVIHQSKYKCGMKNHHP 480
4.2 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVEGTLPPDVLVIHQSKYKCGMKNHHP 480
4.3 DEHLVERATQESTLDRWKFLQEQNKTKPEFNVRKVEGTLPPDVLVIHQSKYKCGMKNHHP 480
4.5 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKVEGTLPPDVLVIHQSKYKCGMKNHHP 480
4.1 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVRRVEGTVPPDVLVIHQSKYKCRMKNHHP 480
8.3 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKLEGTLPPNVLVIHQSKYKCGMKNHHP 447
8.11 DEHLVERATQESTLDHWKFLQEQNKTKPEFNVRKLEGTLPPNVLVIHQSKYKCGMKNHHP 367
8.8 DEHLVERATQESTLDHWKFPQKQNKTKPEFNVRKVEGTLPPNVLVIHQSKYKCGMKNHHP 480
8.6 DEHLVERATQESTLDHWKFPQKQNKTKPEFNVRKVEGTLPPNVLVIHQSKYKCGMKNHHP 480
**:************:*:* *:********** ::***:**:.********** ******
8.5 EQQSSLLNLSSTTRTDQESVNTGTLASLQGRTRRSKGKNKHSKRALLVCQ 530
8.7 EQQSSLLNLSSTTRTDQESVNTGTLASLQGRTRRSKGKNKHSKRALLVCQ 530
8.1 EQQSSLLNLSSTTRTDQESMNTGTLASLQGRTRRAKGKNKHSKRALLVCQ 530
4.2 EQQSSLLNLSSSTPTHQESMNTGTLASLRGRARRSKGKNKHSKRALLVCQ 530
4.3 EQQSSLLNLSSSTPTHQESMNTGTLASLRGRARRSKGKNKHSKRALLVCQ 530
4.5 EQQSSLLNLSSTTPTHQESMNTGTLASLRGRARRSKGKNKHSKRALLVCQ 530
4.1 EQQSSLLNLSSTTPTDQESMNTGTLASLRGRTRRSKGKNKHSKRALLVCQ 530
8.3 EQQSSLLNLSSTNPTDQESMNTGTLASLQGRTRRAKGKNKHCKRALLVCQ 497
8.11 EQQSSLLNLSSTNPTDQESMNTGTLASLQGRTRRSKGKNKHCKRALLVCQ 417
8.8 EQQSSVLNLSSTKPTDQESMNTGTLASLQGSTRRSKGNNKHSKRSLLVCQ 530
8.6 EQQSSLLNLSSTKPTDQESMNTGTLASLQGSTRRSKGNNKHSKRSLLVCQ 530
*****:*****:. *.***:********:* :**:**:***.**:*****
TABLE 29
CLUSTAL W (1.81) multiple sequence alignment of putative promoter
sequences of hDUBs (upstream of ATG initiation codon)
8.9 TGACGTGTGTGAAAACTACAGTGTGATGAGCATGACTTGCAGACAGGTTATCGATTGGGC 60
8.10 -GACGTGTGTGAAAACTACAGTGTGACGAGCATGACTCGCAGACAGGTTATCGATTGGGC 59
8.3 ----------------------------------------------GATATCAATACGGC 14
8.11 ----------------------------------------------GATATCAATACGGC 14
4.2_a -----------------------------------------------TTATCGATTGGGC 13
4.5 --------------------------TGAGCATGACTGGCAGACAGCTTATCGATTGGGC 34
4.3 ------------------------GATGAGCATGACTGGCAGACAGCTTATCGATTGGGC 36
4.2_b ----------------------GTGATGAGCATGACTGGCAGACAGCTTATCGATTGGGC 38
4.4 ----------------------GTGATGAGCATGACTGGCAGACAGCTTATCGATTGGGC 38
4.1_b -------------------AGTGCAATGAGCATGACACGCAGGCAGGATATCAATTCGGC 41
8.1 -----------------------CAATGAGCATGACACGAAGACAGAATATCAATTCGGC 37
8.7 -----------------------CAATGAGCATGACACGAAGACAGAATATCAATTCGGC 37
8.6 ---------------------TGTGATGAGCATGACTCGCAGACAGGTTATCGATTGGGC 39
8.8 ---------------------TGTGATGAGCATGACTCGCAGACAGGTTATCGATTGGGC 39
8.5 -----------------TCTCTGTCAGAACCATGGTACTCTGTTGTGGTGTGAAAGTAGC 43
8.2 ---------TCACATCTTCTCGGCCAGATGCAGCCTTTGCTGAAATCCAGCGGACTTCTC 51
4.1_a ----------------------------AGTATAGCAGAGCAGAGAGCTG-GAAGGGACC 31
* *
8.9 T-CCCCTCAAAAT-TAGTTATGAGCATTAAAGGACACCGATGCCC---AGGTCCCGGCTG 115
8.10 T-CCCCTCAAAAT-CAGTTATGAGCATTAAAGCACACCGATCCCC---AGGTCCCGGCTC 114
8.3 T-CACCTCAAAAG-CAGTTATGAGCATTAAAGGACACCCATGCCT---AGGTCCCGCTTA 69
8.11 T-CACCTCAAAAG-CAGTTATGAGCATTAAAGGACACCCATGCCT---AGGTCCCGGTTA 69
4.2_a T-CCCCTCAAAAT-CGGTTATGAGCATTCAAGCACACCGATGCCC---AGGTCCCGGCTG 68
4.5 T-CCCCTCAAAAT-CGGTTATGAGCATTCAAGCACACCGATGCCC---AGGTCCCGGCTG 89
4.3 T-CCCCTCAAAAT-CGGTTATGAGCATTCAAGCACACCGATGCCC---AGGTCCCGGCTG 91
4.2_b T-CCCCTCAAAAT-CGGTTATGAGCATTCAAGCACACCGATGCCC---AGGTCCCGGCTG 93
4.4 T-CCCCTCAAAAT-CGGTTATGAGTATTCAAGCACACCGATGCCC---AGGTCCCGGCTG 93
4.1_b T-CCCCTCAAAAG-CTGTTATGAGCATTAAAGGACACCAATGCCT---AGTTCCCGGTTA 96
8.1 T-CACCTCAAAT--CAGTTGTGAGCATTAAAGAAAACCAATTCCT---AGGTCCCGCTTA 91
8.7 T-CACCTCAAAAG-CAGTTATGAGCATTAAAGGACAACAATTCCT---AGGTCCCGCTTA 92
8.6 T-CCCCTCAAAAT-CAGTTAGGAACATGAAAGCACACCGATGCCC---AGGTCCTGGCTG 94
8.8 T-CCCCTCAAAAT-CAGTTAGGAACATGAAAGCACACCGATGCCC---AGGTCCTGGCTG 94
8.5 CACAGATCATCTG-TAGAT-TAAGGGGTGTGGCTTTGTTCCAACA---AAGCTTTATTTA 98
8.2 TCCCTGAGAAGTCACAACTCTCAACTGAGACCCGCGTCGACTTCTGCGATGATTTGGCGC 111
4.1_a TGCATCCCTAAT----GATATAAGAAAGTATCTGTACTAGCCCTGA--ATGGTATAACTA 85
* * * *
8.9 CAGGAATAAGAC-CCTCCGACGTCTTGTGTGAAGCCACGGC--ATCTGGATTGCTCATGC 172
8.10 CAGGAATAAGAC-CCTCCAGCGTCTTGTGTGAAGCCACGGC--ATGTGGATTGCTCATGC 171
8.3 AAGAGATAAGAC-TCTCCCACACCCTGTGTGAAGCCACGGC--ATGTGGATTGCTCATGC 126
8.11 AAGAGATAAGAC-TCTCCCACACCCTGTGTGAAGCCACGGC--ATGTGGATTGCTCATGC 126
4.2_a CAGGAATAAGAC-CCTCCAGGGTCTTGTGTGAAGCCTCGGC--ATCTGCATTGCTCATGC 125
4.5 CAGGAATAAGAC-CCTCCAGGGTCTTGTGTGAAGCCTCGGC--ATCTGCATTGCTCATGC 146
4.3 CAGGAATAAGAC-CCTCCAGGGTCTTGTGTGAAGCCTCGGC--ATCTGCATTGCTCATGC 148
4.2_b CAGGAATAAGAC-CCTCCAGGGTCTTGTGTGAAGCCTCGGC--ATCTGCATTGCTCATGC 150
4.4 CAGGAATAAGAC-CCTCCAGGGTCTTGTGTGAAGCCTCGGC--ATCTGCATTGCTCATGC 150
4.1_b AAACGATAAGAC-TCTCGCACACCCTGTGGGAAGCCACGGC--ATCTGGATTGCTCATGC 153
8.1 AAGAGATAAGAC-CATCCAACAACCTGTGTGAAGCCACCGC--ATCTGGCTTGCTCATGA 148
8.7 AAGAGATAAGAC-CATCCAACACCCTGTGTGAAGCCACGGC--ATCTGGATTGCTCATGT 149
8.6 CAGGAATAAGAT-CCTCCGACGTCTTGTGTGAAGCCACGAC--ATCTGCATTGCTCATGC 151
8.8 CAGGAATAAGAT-CCTCCGACGTCTTGTGTGAAGCCACGAC--ATCTGCATTGCTCATGC 151
8.5 CAAACACAGGCTGTGGGCTGGATTTGGCCTGCAGCTGTAGT--TTGTG----ATCCTTGA 152
8.2 CTGTGGCAAGAC--AGCTTGCTCCCAGGGAGAAGCTTCCTCTGAGTAGCAGGAGACCTGC 169
4.1_a CAG-GTTAAATT---TACGTGAAAAAGAAATCAACTTCTGCCTTGTTTAAGCAAACTTA- 140
* * * * * *
8.9 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTCCTGCCTGTGGAGCACCTCT 228
8.10 TTCTG-G-CGATCATTCTCCTGAAAACG--GTGGCTCCTTTCTCCCTGTGGAGCACCTTT 227
8.3 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCACTGTGGAGCATCTTT 182
8.11 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCACTGTGGAGCATCTTT 182
4.2_a TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCCCTGTGGACCATCTTT 181
4.5 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCCCTGTGGAGCATCTTT 202
4.3 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCCCTGTGGAGCATCTTT 204
4.2_b TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCCCTGTGGAGCATCTTT 206
4.4 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTCCTTTCTCCCTGTGGAGCATCTTT 206
4.1_b TTCTG-G-GGATCATTTTCCTGAAAATC--GTGGCTGCTTTCTCCCTGTGTAGCATCTTT 209
8.1 TTCTG-G-GGATCATTCTCCAGAAAATG--GTGGCTCCTTTCTCCCTGTGGAGCATCTTT 204
8.7 TTCTG-G-GGAACATTCTTCTGAAAATG--GCGGCTCCTTTCTCCCTGTGGAGCATCTTT 205
8.6 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTTCTTTCTCCCTGTGGAGCATCTTT 207
8.8 TTCTG-G-GGATCATTCTCCTGAAAATG--GTGGCTTCTTTCTCCCTGTGGAGCATCTTT 207
8.5 TTCAG-ACAGTTTAGCAAGGCTGAAAAG--AACACCCACACCCCCTTGTTACCCACAGAT 209
8.2 TGCGGTGGGGGCTGGGCTCCAGAATATG--GGAAATACCTGCTACGTG---AACGCTTCC 224
4.1_a TTCAG---GCATTAATTTTATAAATATGTAGAGAATACATACTCCTTAT-GAGCAGA--- 193
* * * * * * * *
8.9 CTA-AGCA-GTGC-CCTTTCTTCACCCAGGACACTTTACATCAGGCACAGAAAGCCTTCT 285
8.10 CTA-AGCA-GTGC-CCTTTCTTCACCCAGGACACTTTACATCAGGCACAGAAAGCCTTCT 284
8.3 GTA-AGCA-GTGT-CCTTTCTTCCCCCAGGACACTTTACTTCAGGCACAGGAAGCCTTCT 239
8.11 CTA-AGCA-GTGT-CCTTTCTTCCCCCAGGACACTTTACTTCAGGCACAGGAAGCCTTCT 239
4.2_a CTA-AGCA-GTGCTCTTTTCTTCCCCCAGGACACTTTACATCCGGCACAGGAAGCCTTCT 239
4.5 CTA-AGCA-GTGCTCTTTTCTTCCCCCAGGACACTTTACATCCGGCACAGGAAGCCTTCT 260
4.3 CTA-AGCA-GTGCTCTTTTCTTCCCCCAGGACACTTTACATCCGGCACAGGAAGCCTTCT 262
4.2_b CTA-AGCA-GTGCTCTTTTCTTCCCCCAGGACACTTTACATCCGGCACAGGAAGCCTTCT 264
4.4 CTA-AGCA-GTGCTCTTTTCTTCCCCCAGGACACTTTACATCCGGCACAGGAAGCCTTCT 264
4.1_b CTA-AGCA-GTGCTCCTTTCTTCCCACAGGAAACTTTACATCAGGCACAGGAAGCTTTCT 267
8.1 CTA-AGCA-GTGC-CCTTTCTTCCCCCAGGACACTTTACATGAGGTGCAGGAAGCCTTCT 261
8.7 CTA-AGCA-GTGCTCCTTTCTTCCCCCAGGACACTTTACATCAGGCATAGGAAGCCTTCT 263
8.6 CTA-AGCA-GTGCTCCTTTCTTCCCCCAGGACACTTTACATCAGGCGCACGAAGCCTTCT 265
8.8 CTA-AGCA-GTGCTCCTTTCTTCCCCCAGGACACTTTACATCAGGCGCACGAAGCCTTCT 265
8.5 GGGTGGGA-CTGTGTTGGCCAGAGACCGAGAGACGGGTGCTCACAGGGGAACGTACAGCA 268
8.2 CAGCAGTGTCTGACATACACACCGCCCCTTGCCAACTACATGCTGTCCCGGGAGCACTCT 284
4.1_a -AACAATGTTTGCGCCATATGGTCCATGATGGGTGTTCAATAATGTGTGATGATGATAAT 252
** *
8.9 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGATAAGAAACGGGGCCAAACATCACAG 345
8.10 GATGGAGCACACCTGGCCCATGAAAAAACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 343
8.3 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAATGGGGCCAAAGGTCACAG 298
8.11 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAATGGGGCCAAAGGTCACAG 298
4.2_a GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 298
4.5 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 319
4.3 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 321
4.2_b GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 323
4.4 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 323
4.1_b GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAATGGGGCCAAAGGTCACAC 326
8.1 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAAAAGGGCCAAAGGTCACAG 320
8.7 GATGAAGTACACCTGGCCCATGAAAAGACAAAGGA-AAGAAACAGGGCCAAAGGTCACAG 322
8.6 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 324
8.8 GATGGAGCACACCTGGCCCATGAAAAGACAAGGGA-AAGAAACGGGGCCAAAGGTCACAG 324
8.5 TGTAGAGGCCGGAAGGTGCTCCAGGGCACAAGTGT-GGGAAAGTGGGACATACGGGGAAG 327
8.2 CAAACATGTCATC--GTCACAAGTGCTGCATGCTCTGTACCATGGAAGCTCACATCACAT 342
4.1_a AATGAAGACAATAGTGACAAATAAAAGAAAATAAA-AAGCAGTGAAACAAAGTGGTTTAA 311
* * * *
8.9 TCCTCTCATTCCACCGTCCTCCTTAAAATCATCCTAATTTCATGGGCTCT-GCGGCCACG 404
8.10 TCCTCTCATTCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAGGCCACG 402
8.3 TCCTCTCATTCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 357
8.11 TCCTCTCATTCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAGGCCACG 357
4.2_a TCCTCTCATCCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 357
4.5 TCCTCTCATCCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 378
4.3 TCCTCTCATCCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 380
4.2_b TCCTCTCATCCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 382
4.4 TCCTCTCATCCCATCATCCTCCTTAAAATCATCCTAATTTCATGGGCCCT-GAAGCCAGG 382
4.1_b TCCTCTCATTCCATCATACTCCTTAAAATCATCCTAATTTCATGGGTCCT-GAAGCCAGG 385
8.1 TCCTCTCATTACATCATCATCCTTAAAATCATCCTAATTTCATGAGCCCT-GAAGACAGG 379
8.7 CCCACTCATTTCATCACCATCCTTAAAATCATCCTAATTTCATGGGCCAT-GAAGCCAGG 381
8.6 TCCTCTCATTCCATCATCCTCCTTAAAATCATCCGAATTTCATGAGCCCTTGAAGCCAGG 384
8.8 TCCTCTCATTCCATCATCCTCCTTAAAATCATCCGAATTTCATGAGCCCTTGAAGCCAGG 384
8.5 TTTCCAGAAAGCATGATGTCAAGTTGGAG-GTGGAGCGCTGCTGGGCTTGTGAAGGGTCT 386
8.2 GGCCCC---TCCA-CATTCCTGGCCATGTCATCCAGCCCTCACAGGCATT---------G 389
4.1_a TAGCTATACATAGTTATT-TTGTTGAAAGATTCTGCTGCTAATATTATTCAATATTTTTG 370
* *
8.9 GCTGTTTCTTTACACCTCGAGACCTTGGCGCCAGGCCTCAATTCTGCCCCGGTGCTTACT 464
8.10 GCTGTTTCTTTACACCTCGAGACCTTGGCGCCGGGCCTCAATTCTGCTCCAGTGCTTACT 462
8.3 GCTGTTTCTTTAAAACTAGAGGCCTTGGCGCCGTGCCTCAATTCTGCCCTGTTCCTTACT 417
8.11 GCTGTTTCTTTAAAACTAGAGGCCTTGGCGCCGGGCCTCAATTTTGCCCTGTTCCTTACT 417
4.2_a GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCCGCCCTGTTCCTTACC 417
4.5 GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCCGCCCTGTTCCTTACC 438
4.3 GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCCGCCCTGTTCCTTACC 440
4.2_b GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCCGCCCTGTTCCTTACC 442
4.4 GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCCGCCCTGTTCCTTACC 442
4.1_b GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCTGCCCTGTTGCTTACT 445
8.1 GCTGTTTCTTTACACCTAGAGGCCTTGGCGCCGGGCCTCAATTCTGCCCTGTTCCTTACT 439
8.7 GCTGTTTCTTTACACCCAGAGGCCTTGGCGCCGGGCCTCAATTCTGCCCTGTTCCTTACT 441
8.6 GCTGTTTCTTTACACCCAGAGGCCTTGGCGCCGGGCCTCAATTCTGCCCTGTTCCTTACT 444
8.8 GCTGTTTCTTTACACCCAGAGGCCTTGGCGCCGGGCCTCAATTCTGCCCTGTTCCTTACT 444
8.5 CGAGTCCAAGTGAGGGCGGGTTGTGAAGGGTCTCCTCTCAAAGCTGACCGACTTCGGGAC 446
8.2 GCTGCTGGCTTCCATAGAGGCAAGCAGGAAGCTGCCCTTGAATTTCTCATGTTCACTGTG 449
4.1_a TATGCTGGC--GCAAATAAGGAAATTTACATCGTCTAATAAAAATTATTTATCAATTTAT 428
* * *
8.9 GTCTAAGACATTTTGGGAAAATCCCTAGAGC-CTGGATCTTCAATCCTGGTAAGCCAGAG 523
8.10 GTCTAAGACATTTTGGGAGAATCCCTAGAGC-CTAGATCTTCAATCCTGGTAAGCCAGAG 521
8.3 GTCTAAGAAAGGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGGTAAGCCAGAG 476
8.11 GTCTAACAAAGGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGGTAAGCCAGAG 476
4.2_a GTCTAAGACATGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGCTAAGCCAGAC 476
4.5 GTCTAAGACATGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGCTAAGCCAGAC 497
4.3 GTCTAAGACATGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGCTAAGCCAGAC 499
4.2_b GTCTAAGACATGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGCTAAGCCAGAC 501
4.4 GTCTAAGACATGTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGCTAAGCCAGAC 501
4.1_b CTCTAAGACATGTTGGGAAAGTCCCAAGAGC-CAGGATCTTCATTCCTGGTAAGGCAGAC 504
8.1 GTCTAAGACATTTTGGGAAAATCACTAGAGC-CAGGACCTTCATTCCTGGTAAGCCAGAG 498
8.7 GTCTAAGACATTTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGGTAAGCCAGAG 500
8.6 GTCTAAGACATTTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGGTAAGCCAGAG 503
8.8 GTCTAAGACATTTTGGGAAAATCCCTAGAGC-CAGGATCTTCATTCCTGGTAAGCCAGAG 503
8.5 TTCCCAGGGATTGTTGTTGAGTCCACGGCTCACGTCGTCCACACTC-TGAGGTCCCATGG 505
8.2 GATGCCATGAAAAAGGCATGCCTTCCCGGGCACAAGCAGGTAGATC--ATCACTCCAAGG 507
4.1_a AAAACAGTAAAAATTTCATAG--AATGGGGCTAAGAATCTGCACTGCAAACTAACTCTTT 486
* * * *
8.9 AGCCTGGAGACACACCCAAATTATGTCCCTCTTAGTTCAGGGAACATGTCCATTTTCGTC 583
8.10 AGCCTGAAGACACACCCAAATTATGTCCCTCTTAGTTCAGGGAACATGTCCATTTTCGTC 581
8.3 AGCCTGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGTC 536
8.11 AGCCTGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGTC 536
4.2_a AGCCGGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGGC 536
4.5 AGCCGGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGGC 557
4.3 AGCCGGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGGC 559
4.2_b AGCCGGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGGC 561
4.4 AGCCGGAAGACACACCCAAATTCTGTCCCTCTTACTTCAGGGAACATGTCCACTTTCGGC 561
4.1_b AGAATGAAGACACACCAAAATTCTGTCCCTCTTAATTCAGGGAACGTGTCCACTTTCGTC 564
8.1 AGCCGAAAGACACACCCAAATTCTGTCCCTCTTAGTTCAGGGAACAGGTCTACTTTCGTC 558
8.7 AGCCTGAAGACACACCCAAATGCTGTCCCTCTTAGTTCAGGGAACATGTCCACTTTCGTC 560
8.6 AGCCTGAAGACACACCCAAATGCTGTCCCTCTTAGTTCAGGGAACATGTCCACTTTCGTC 563
8.8 AGCCTGAAGACACACCCAAATGCTGTCCCTCTTAGTTCAGGGAACATGTCCACTTTCGTC 563
8.5 ATTCGCCACCCACATTCATCTACTCTCCTCTCTCTCTTCCTTACCTCCTTTGATCCCCTC 565
8.2 ACACCACCCTCATCCACCAAATATTTGGAGGGTACTGGAGATCTCAAATCAAGTGTCTCC 567
4.1_a CAGTTGATTTTATGCACAGAAATTATTGAGAATCCCCTTATCTAGATCCAACAGATCTGG 546
* * * * *
8.9 AGCATTAAAATTTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCATAACTG 643
8.10 AGCACTAAAATTTTTGCACCAAATGTGCTAACTGCAATTCCACCATGCAATGCGTAACTG 641
8.3 AGCATTACAATTTTTGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCATAAATG 596
8.11 AGCATTACAATTTTTGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCATAAATG 596
4.2_a AGCATTACAATTTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCGTAACTG 596
4.5 AGCATTACAATCTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCGTAACTG 617
4.3 AGCATTACAATTTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCGTAACTG 619
4.2_b AGCATTACAATTTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCGTAACTG 621
4.4 AGCATTACAATTTTGGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCGTAACTG 621
4.1_b AGAATTAAAATTTTTGCACCAAATGTGCTAACTGGAATTCCACCATACAATGCATAACTG 624
8.1 AGCATTACAATTTTTGCACCAAATGTGCTAACTGCAATTCCACCATACAATGCATAACTG 618
8.7 AGCATTACAATTTTTGCACCAAATGTACTAACTGCAATTCCACCATACAATGCATAACTG 620
8.6 AGCATTACAATTTTTGCACCAAATGTACTAACTGCAATTCCACCATACAATGCATAACTG 623
8.8 AGCATTACAATTTTTGCACCAAATGTACTAACTGCAATTCCACCATACAATGCATAACTG 623
8.5 CCCA-TATGCTACCCCCCGCTACCAAACCTCTGCCAAGCATACCACCCTATCGGCAGCTA 624
8.2 ACTGCCACGGCATTTCAGACACTTTTGGCCCTTACCTGGACATCGCCCTGGATATCCAGG 627
4.1_a GCTTACATAGGTGCTATCAAGACTTAAGGAAGAAAATTTTCCTGACTCTATCCATACCTC 606
* *
8.9 GAAATAGAGGCAACATCTCATATCCTGAACAATTCATGTG------AGAATCTAGGAGAC 697
8.10 TAAATGGAGGCAACATCTCAGATCCTGAACAATCGATGCG------AGAATCCAGGAGAC 695
8.3 GAAATGGAGGGAACATCTCAGATCCTGAACAATCGATGCG------AGAATCCAGGAGAT 650
8.11 GAAATGGAGGGAACATCTCAGATCCTGAACAATCGATGCG------AGAATCCAGGAGAT 650
4.2_a GAAATGGAGGCAACATCTCCGATCCTGAACGATCGATGCG------AGAATCCAGGATAT 650
4.5 GAAATGGAGGCAACATCTCCGATCCTGAACGATCGATGCG------AGAATCCAGGATAT 671
4.3 GAAATGGAGGCAACATCTCCGATCCTGAACGATCGATGCG------AGAATCCAGGATAT 673
4.2_b GAAATGGAGGCAACATCGCCGATCCTGAACGATCGATGCG------AGAATCCAGGATAT 675
4.4 GAAATGGAGGCAACATCTCCGATCCTGAACGATCGATGCG------AGAATCCAGGATAT 675
4.1_b GAAATGGAGGGAAAATCCCAGATCATGAACAATCAAAGCG------AGAATCCAGGAGAC 678
8.1 GAAATGGAGGGAACATCTCAGATCATGAACAATCGATGAG------AGAATCCAGGAGAT 672
8.7 GAAATGGAGGGAACATCTCAGAGCATGAACAACTGATGCG------AGAATCCAGGAGAT 674
8.6 GAAATGGAGGGAACATCTCAGACCATGAACAATCGATGAG------AGAATCCAGGAGAC 677
8.8 GAAATGGAGGGAACATCTCAGACCATGAACAATCGATGAG------AGAATCCAGGAGAC 677
8.5 CTCTTCACTCCCA-ACTACATCGGCCGCATCNNNNNNNNN------NNNNNNNNNNNNNN 677
8.2 AAGCTCAGAGTGTCAAGCAAGCTTTGGAACAGTTGGTGAAGCCCGAAGAACTCAATGGAG 687
4.1_a CAATTAGTAATAGATCTAGAGATTTAAAACTGAAATCCAGACCTC-CTGCTTCCATGTGC 665
* *
8.9 ACACCGCTTATTTTTGCCTTTTCCCACTGAAACAATGGCTAGTATTAACAATGTTATGCT 757
8.10 ACACGGCTTATTTTTGCCTTTTCCCACTGAAACAAGGGCCAGTATTAACAATCTTATGCT 755
8.3 ACACGGCTGATTTTTGCGTTTTCCCTGTGAAACAAGGGCCAGTATTAAAAATGGTATGCT 710
8.11 ACACGGCTGATTTTTGCGTTTTCCCTGTCAAACAAGGGCCAGTATTAAAAATGGTATGCT 710
4.2_a GCACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGGCCAGTATTAAAAATGGCACGCT 710
4.5 GCACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGGCCAGTATTAAAAATGGCACGCT 731
4.3 GCACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGGCCAGTATTAAAAATGGCACGCT 733
4.2_b GCACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGGCCAGTATTAAAAATGGTACGCT 735
4.4 GCACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGGCCAGTATTAAAAATGGCACGCT 735
4.1_b ACACGGCTTATTTTGGCCTTTTCCCACTGAAACAAGGACCAGTATTAAAAATGGTATGCT 738
8.1 ACACGGCTTATTTTTGCCTTTTCCCTGTGAAACAAGGGCAAGTATTAAAAACTTTATGCT 732
8.7 ACACGGTTTATTTTTGCCATTTCCCAGTGAAACAAAAGCCAGTATTAAAAAGGTTATGCT 734
8.6 ACACGGCTTATTTTTGCCTTTTCCCTGTGAAACAAGGGCCAGCATTAAAAAGGTTATGCT 737
8.8 ACACGGCTTATTTTTGCCTTTTCCCTGTGAAACAAGGGCCAGCATTAAAAAGGTTATGCT 737
8.5 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 737
8.2 AGAATGCCTATCATTGTGGTCTTTGTCTCCAGAGGGCGCCGGCCTCCAAGACGTAAACTT 747
4.1_a AGTGTCCTTTCACTGTCCTGTTTTGCTTCACTTGATGAAGAGGATTTGAGAATAAATGAC 725
8.9 ATCCTTGGTTTCACTCCCCACTTTTAAATCTCTCGGATGTTTACTTCT-TGAGACAGG-- 814
8.10 ATCCTGGGTTTCACTCTCTGCTTTTAAATCTCTCCAATGTTTTCTTCT-TGAGACAGG-- 812
8.3 ATCCTCTGTTTCACTCCCTGCTTTTAAGTCTCC--GATGTTT-CTTCT-TAAGACAGG-- 764
8.11 ATCCTCTGTTTCACTCCCTGCTTTTAAGTCTCC--GATGTTT-CTTCT-TAAGACAGG-- 764
4.2_a ATCCTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGT-TTCTCCC-TGAGACAGG-- 766
4.5 ATCCTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGT-TTCTCCC-TGAGACAGG-- 787
4.3 ATCCTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGT-TTCTCCC-TGAGACAGG-- 789
4.2_b ATCCTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGT-TTCTCCC-TGAGACAGG-- 791
4.4 ATCCTCTGTTTCACTCCCTGCTTTTAAACGTCTCTGATGT-TTCTCCC-TGAGACAGG-- 791
4.1_b ATACTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGT-TTCTTCT-TGAGACAGG-- 794
8.1 GTCTTCTATTTCACTGCCTGCTTTTAAACGTCTCCGATGTATTCTTCT-TGAGAAAGG-- 789
8.7 ACCCTCTGTTTCACTCACTGCTTTTAAACGTCTCCGATGTTTTCTTCT-TCAGACAGG-- 791
8.6 ATCTTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGTTTTCTTCT-TCAGACAGG-- 794
8.8 ATCTTCTGTTTCACTCCCTGCTTTTAAACGTCTCCGATGTTTTCTTCT-TCAGACAGG-- 794
8.5 NNNNNNNNNNNNNNNNNCTGCTTTTAAACGTCTCCGATGTTTTCTTCT-TCAGACAGG-- 794
8.2 TACACACTTCTGCCAAGATCCTCATCCTCGTATTGAAGAGATTCTCCGATGTCACAGGCA 807
4.1_a CACATGATTCAACTCCTCCTCAGCTCTGAGCAAT-ATAGCCCTGTCCTGGCAAACAAGAA 784
* * * * * * *
8.9 GCGTC-ACTGCCGTCACCCACGCTTTTCTACGGT------GTAATTTTTGTTGTTCGCTT 867
8.10 GCCTC-ACTCCCGTCACCAGGGCTTTTCTACGGT------GCAATTTTCGGTGTTTGCTT 865
8.3 GCCTC-ACTTCCTTCCCCCTGACTTTTCTACGGT------ATAATTTTCGTTGTTTGCTT 817
8.11 GCCTC-ACTTCCTTCCCCCTGACTTTTCTACGGT------ATAATTTTCGTTGTTTGCTT 817
4.2_a GCCTC-ACTTCCGTCAGCCGGGCTTTTCCACGGT------ATAATTTTCCTTGTTTGCTT 819
4.5 GCCTC-ACTTCCGTCAGCCGGGCTTTTCCACGGT------ATAATTTTCCTTGTTTGCTT 840
4.3 GCCTC-ACTTCCGTCAGCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 842
4.2_b GCCTC-ACTTCCGTCAGCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 844
4.4 GCCTC-ACTTCCGTCAGCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 844
4.1_b GCCTC-ACTGCCGTCCGCCGGGCTAT-CTAGAGT------ATAATTTTCAGTGTTTGCTT 846
8.1 GCCTC-ACTACTGTCACCTGGGCTTTTCTAAGGT------ATAATTTTCCTTGTTTGCTT 842
8.7 GCCTC-ACTCCCGTCACCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 844
8.6 GCCTC-ACTCCCGTCACCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 847
8.8 GCCTC-ACTCCCGTCACCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 847
8.5 GCCTC-ACTCCCGTCACCCGGGCTTTTCTACGGT------ATAATTTTCCTTGTTTGCTT 847
8.2 ACAAA-ATTGCCAAGAATGTGCAATATCCTGAGTGCCTTGACATGCAGCCATACATGTCT 866
4.1_a GCTCCTGCAGTAGTAGAGGAGGCAAATATACGTT----CACTAATCTAACATACAAG--- 837
* * * * *
8.9 TTGTCAAATTTAGAAATTTTCATTTCA--TCTCTATCAAATGTTGCTCCATT----ATCA 921
8.10 TTGTCAAATTTAGAACTTTTCATTTCA--TCTCTATCAAATGTTGATCCATT----ATCA 919
8.3 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGATCCATT----ATCA 871
8.11 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGATCCATT----ATCA 871
4.2_a TTGTCCAAATTAGAACTTTTTATTTCA--CCTCTAGGAAACGTTGATCCATT----ATCA 873
4.5 TTGTCCAAATTAGAACTTTTTATTTCA--CCTCTAGGAAACGTTGATCCATT----ATCA 894
4.3 TTGTCCAAATTAGAACTTTTTATTTCA--TCTCTAGGAAACGTTGATCCATT----ATCA 896
4.2_b TTGTCCAAATTAGAACTTTTTATTTCA--TCTCTAGGAAACGTTGATCCATT----ATCA 898
4.4 TTGTCCAAATTAGAACTTTTTATTTTA--TCTCTAGGAAACGTTGATCCATT----ATCA 898
4.1_b TTGTCAACCTTAGAACATTTTATTTCG--TCTCTATGAAATGTTGATCCATT----ATCA 900
8.1 TTGTCAAAATTAGAACATTTTATTTCA--TATCTATGAAATGTTGATCCATT----ATCA 896
8.7 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGATCCATT----ATCA 898
8.6 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGAGCCATT----ATCA 901
8.8 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGAGCCATT----ATCA 901
8.5 TTGTCAAAATTAGAACTTTTTATTTCA--TCTCTATGAAATGTTGATCCATT----ATCA 901
8.2 CAGCAGAACACAGGACCTCTTGTCTATGTCCTCTATGCTGTGCTGGTCCACGCCGGGTGG 926
4.1_a --GCAGTAGGCACTGTACCATAAACAAG-ACACTGTGGGGGTTCAGACCAGG---GGCAA 891
* * ** ***
8.9 CATACGTATGA-AAATATTATCACGCGTGCTGTGAGATACGTTGTTTTTATTTTCATCAA 980
8.10 CATACGTATGA-AAATATTATCACCCATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 978
8.3 CATACGTATGG-AAAGACTATCACCCATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 930
8.11 CATACGTATGG-AAAGACTATCACCCATGATGTGAGATACGTTGTTTTTATTTTCATCAA 930
4.2_a CATACGTATGG-AAATATTATCACACATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 932
4.5 CATACGTATGG-AAATATTATCACACATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 953
4.3 CATACGTATGG-AAATATTATCACACATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 955
4.2_b CATACGTATGG-AAATATTATCACACATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 957
4.4 CATACGTATGG-AAATATTATCACACATGCTGTGAGATACGTTGTTTTTATTTTCATCAA 957
4.1_b CATACACATGG-AAATATTATCACCCACGGTGTCAGATACGTTGTTTTTATTTTCATCAC 959
8.1 CATACGTATGG-AAATAGTATCACCAATGCTGTGAGATAAGTTGTTTTTATTTTGGTCAA 955
8.7 CGTAAGTATGG-AAATAGTATCAGCCACGCTGTGAGATACGTTGTTTTTATTTTCATCAG 957
8.6 CATACGTATGG-AAACAGTATCACCCATGCTGTGAGATACGTTGTTTTTATTTTCATCAG 960
8.8 CATACGTATGG-AAACAGTATCACCCATGCTGTGAGATACGTTGTTTTTATTTTCATCAG 960
8.5 CGTAAGTATGG-AAATAGTATCAGCCACGCTGTGAGATACGTTGTTTTTATTTTCATCAG 960
8.2 AGTTGTCACAACGGACATTACTTCTCTTATGTCAAAGTTCAAGAAGGCCAGTGGTATAAA 986
4.1_a AGTGGGGATTG---ATAGGGCTAGTAAAGTCTAGGAAGTGTTCACTAACAAAATGTCTAA 948
* * * * * *
8.9 TTCTTTTGTAAAACAAAGGTTATAGTTGGGATACCTTCTGATTTCTCAAGTTTTTTGTTT 1040
8.10 TTCTTTAATAAACCAAAGGTTATAGTTGGGATACCTTCTGATTTCTCAAGTTTTTTGTTT 1038
8.3 TTCTTTAATAAACCAAAGGTTATAGTTGGGATACCTTCCGATTTCTCTAGTTTTTTGTTT 990
8.11 TTCTTTAATAAACCAAAGGTTATAGTTGGGATACCTTCCGATTTCTCTAGTTTTTTGTTT 990
4.2_a TTCTTTAATAAACAAACGGTTATAGCTGGGATACCTTCTGAGTTCTCAAGTTTTTTGTTT 992
4.5 TTCTTTAATAAACAAACGGTTATAGCTGGGATACCTTCTGAGTTCTCAAGTTTTTTGTTT 1013
4.3 TTCTTTAATAAACAAAAGGGTATAGCTGGGATACCTTCTGAGTTCTCAAGTTTTTTGTTT 1015
4.2_b TTCCTTAATAAACAAAAGGTTATAGCTGGGATACCTTCTGAGTTCTCAAGTTTTTTGTTT 1017
4.4 TTC-TTAATAAACAAAAGGTTATAGCTGGGATACCTTCTGAGTTCTCAAGTTTTTTGTTT 1016
4.1_b TTC---AAGAAAAAAAAGGGTATAGTTGGGATACCTTCTGATTTCTCAAGATTTTTCTTT 1016
8.1 TTCTTTAATAAACAAAAGCTTATAGTTGGGATACCTTCTGATTTCTCAAGGTTTTTGTTT 1015
8.7 TTATTTAATAAACAAAAGCTTATAGTTGGGATACCTTTGGATTTCTCAAGTTTTTTGTTT 1017
8.6 TTCTTTAATAAACAAAAGCTTATAGTTGGGATACCTTTGGATTTCTCAAGTTTTTTGTTT 1020
8.8 TTCTTTAATAAACAAAAGCTTATAGTTTGGATACCTTTGGATTTCTCAAGTTTTTTGTTT 1020
8.5 TTATTTAATAAACAAAAGCTTATAGTTGGGATACCTTTGGATTTCTCAAGTTTTTTGTTT 1020
8.2 ATGGATGATGCCGAGGTCACTGCCTCTGGCATCACCTCTG---TCCTGAGTCAACAGGCC 1043
4.1_a TTATTAACTAAACTAAATGGTTTC-TCAACATGACCTAATTAATTGTAACTTACTATAAA 1007
* * ** * * * *
8.9 CATGTTTTCTT------------------------------------------------- 1051
8.10 CAGGTTTTCTT------------------------------------------------- 1049
8.3 CATGTTTTCTTTCTTTTTTTTTTTTTTTTTTTT---------GAGACGGGGTCTCGCTCT 1041
8.11 CATGTTTTCTTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGACGGGGTCTCGCTCT 1050
4.2_a CGTGTTTTCTT------------------------------------------------- 1003
4.5 CGTGTTTTCTT------------------------------------------------- 1024
4.3 CGTGTTTTCTT------------------------------------------------- 1026
4.2_b CGTGTTTTCTT------------------------------------------------- 1028
4.4 CCTGTTTTCTT------------------------------------------------- 1027
4.1_b CATATTTTCTT------------------------------------------------- 1027
8.1 CATGTTTTCTT------------------------------------------------- 1026
8.7 CAAGTTTTCTT------------------------------------------------- 1028
8.6 CATGTTTTCTT------------------------------------------------- 1031
8.8 CATGTTTTCTT------------------------------------------------- 1031
8.5 CAAGTTTTCTT------------------------------------------------- 1031
8.2 TATGTCCTCTTTTACATCC----------------------------------------- 1062
4.1_a TGGTTGTTTGTTCA---------------------------------------------- 1021
* * *
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 GTCGCCCAGGCCGGACTGCGGACTGCAGTGGCGCAATCTCGGCTCACTGCAAGCTCCGCT 1101
8.11 GTCGCCCAGGCCGGACTGCGGACTGCAGTGGCGCAATCTCGGCTCACTGCAAGCTCCGCT 1110
4.2_a ------------------------------------------------------------
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 TCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCC 1161
8.11 TCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCC 1170
4.2_a ------------------------------------------------------------
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ---A-------------------------------------------------------- 1052
8.10 ---A-------------------------------------------------------- 1050
8.3 GCCACCGCGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACTTTGTTAGC 1221
8.11 GC-ACGCGCCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCTTGTTAGC 1229
4.2_a ------------------------------------------------------------
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 CAGGATGGTCTCGATCTCCTGACCTCATGATCCACCCGCCTCGGCCTCCCAAAGTGCTGG 1281
8.11 CAGGATGGTCTCGATCTCCTGACCTCATGATCCACCCGCCTCGGCCTCCCAAAGTGCTGG 1289
4.2_a ------------------------------------------------------------
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ----------------------------------------------AACTGCCGTCGCAC 1066
8.10 ----------------------------------------------AACTGCCGTCGCAC 1064
8.3 GATTACAGGCGTGAGCCACCGCGCCCGGCCGTTTCATGTTTTCTTAAACTGCCATCGCAC 1341
8.11 GATTACAGGCGTGAGCCACCGCGCCCGGCCGTTTCATGTTTTCTTAAACTGCCATCGCAC 1349
4.2_a ----------------------------------------------AACTGCCGTCGCAC 1018
4.5 ----------------------------------------------AACTGCCGTCGCAC 1039
4.3 ----------------------------------------------AACTGCCGTCGCAC 1041
4.2_b ----------------------------------------------AACTGCCGTCGCAC 1043
4.4 ----------------------------------------------AACTGCCGTCGCAC 1042
4.1_b ----------------------------------------------AACTGCCGTCGGAC 1042
8.1 ----------------------------------------------AACTGCCGCCGCAC 1041
8.7 ----------------------------------------------AACTGCCGCCGCAC 1043
8.6 ----------------------------------------------AACTGCCGCCGCAC 1046
8.8 ----------------------------------------------AACTGCCGCCGCAC 1046
8.5 ----------------------------------------------AACTGCCGCCGCAC 1046
8.2 -------------------------------------ACAAGAGTGAATGGGAAAGACAC 1085
4.1_a --------------------------------------------TAAACCTTAATCTTTT 1037
**
8.9 GTCCAAAACCACTCGCTATGCAATGTCTTG-ACCATCTCTCTTTTCTGGCAAATATAAAT 1125
8.10 GTCCGAAACCATTCACTATACAATGTCATT-TTCATCTCTCTTTTCTGGCACACATAAAT 1123
8.3 ATCCGAAATCATTCACTATACAATGTCATG-ACCATCTCTCTTTCCTGGCAAACATAAAT 1400
8.11 ATCCGAAATCATTCACTATACAATGTCATG-ACCATCTCTCTTTTCTGGCAAACATAAAT 1408
4.2_a GTCCGAAACCGCTCACTATGCAGTGTCATG-ACCGTCTCTCTTTTCTGGCAAACATAAAT 1077
4.5 GTCCGAAACCGCTCACTATGCAGTCTCATG-ACCGTCTCTCTTTTCTGGCAAACATAAAT 1098
4.3 GTCCGAAACCGCTCACTATGCAGTGTCATG-ACCGTCTCTCTTTTCTGGCAAACATAAAT 1100
4.2_b GTCCGAAACCGCTCACTATGCAGTGTCATG-ACCGTCTCTCTTTTCTGGCAAACATAAAT 1102
4.4 GTCCGAAACCGCTCACTATGCAGTGTCATG-ACCGTCTCTCTTTTCTGGCAAACATAAAT 1101
4.1_b GTCAGAAACTACTCACTATACAATGTCGTG-ACAATCTACATTTTCGGGCAAACACAAAT 1101
8.1 GTCCGAAACCACTCACTATACAATGTCAGG-ACCATCTCTCTTTTCTGGCACACATAAAT 1100
8.7 GTCCGAAACCACTCACTATACAATGTCAGG-ACCATCTCTCTTTTCTGGCACACATAAAT 1102
8.6 GTCCGAAACCACTCACTATACAATGTCAGG-ACCATCTCTCTTTTCTGGTACACATAAAT 1105
8.8 GTCCGAAACCACTCACTATACAATGTCAGG-ACCATCTCTCTTTTCTGGTACACATAAAT 1105
8.5 GTCCGAAACCACTCACTATACAATGTCAGG-ACCATCTCTCTTTTCTGGCACACATAAAT 1105
8.2 AGTGAGAGTGTGTCAAGAGGCAGGGA-ACC-AAGAGCCCTCGGCGCTGA-AGACACAGAC 1142
4.1_a GCCAAAATATTTGTAGCTTATGTTCCCATTTAACAAGGTTTTCTGGTCAAAACTGTGCAC 1097
* * *
8.9 TTTCGGAATGTCATCAATTAGTCTCTCGGTGATTGCATTATTTCCCCAAAGTCTTTTACA 1185
8.10 TTGCGGAATGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTACACA 1183
8.3 TTGGGGATTGTCATCAATTAGTCTCTCAGTGACTGCATGATTTCCACAAAGTCTTTCACA 1460
8.11 TTGGGGATTGTCATCAATTAGTCTCTCGGTGACTGAATGATTTCCACAAAGTCTTTCACA 1468
4.2_a TTGGGGATTGTCATCAATTAGTCTCTCGGGGATTGCATGATTTCCCCAAAGGCTTTCACA 1137
4.5 TTGGGGATTGTCATCAATTAGTCTCTCGGGGATTGCATGATTTCCCCAAAGGCTTTCACA 1158
4.3 TTGGGGATTCTCATCAATTAGTCTCTCGGGGATTGCATGATTTCCCCAAAGGCTTTCACA 1160
4.2_b TTGGGGATTGTCATCAATCAGTCTCTCGGGGATTGCATGATTTCCCCAAAGGCTTTCACA 1162
4.4 TTGGGGATTGTCATCAATTAGTCTCTCGGGGATTGCATGATTTCCCCAAAGGCTTTCACT 1161
4.1_b TTGGGGAATGTCATCAAATAGTCTCCCGCTGATTGCATGATT-CCACAAAGTCCTACACA 1160
8.1 TTGGGGAATGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTTCACA 1160
8.7 TTGGGGAATGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTTCACA 1162
8.6 TTGGGGAAAGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTTCACA 1165
8.8 TTGGGGAAAGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTTCACA 1165
8.5 TTGGGGAATGTCATCAATTAGTCTCTCGGTGATTGCATGATTTCCCCAAAGTCTTTCACA 1165
8.2 A-GGCGAGCAACG-CAAGGAGAGCTCAAGAGAGACTACCCCTGCCTCCAGG--TACCCGA 1198
4.1_a CCACATCATTCTAATGAACTTAGTGTCCAATAAAACATGGACTCTCAGTCGTCCCACGGA 1157
* * * * *
8.9 GTCTAGTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACGACTTAATGC 1245
8.10 CTCTACATTGTGCACTGAGTATCTCTTCAGACTTTAGTGCATGTTTCTACCACTTGATGC 1243
8.3 GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGT--GTTTCTACCATATGATGC 1518
8.11 GTCTACTTTATGCACTGAGTATCTCTTCAAACTTCAGTGTATGTTTCTACCATTTGATGC 1528
4.2_a GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACCATTTGATTC 1197
4.5 GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACCATTTCATGC 1218
4.3 GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACCATTTGATTC 1220
4.2_b GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACCATTTGATGC 1222
4.4 GTCTACTTTGTGCACTGAGTATCTCTTCAAACTTCAGTGCATGTTTCTACCATTTGATGC 1221
4.1_b GTCTACATTGTGCACTGAGTATCTCTTCAAACTTCAGTGCTTCTTTCTACCATATGATGC 1220
8.1 GTCTACTTTGTGCAATGAGTATCTCTTCAAACTTCAGTGCATATTTCTACCATTTGATGC 1220
8.7 GCCTACTTTGTGCACTGAGTATCTCTTCAAACTTTAGTGCATGTTTCTACCATTTGATGC 1222
8.6 GTCTACTTTGTGCACTGAGTAACTCTCCAAACTTCAGTGCATGTTTCIACCATTTGATGC 1225
8.8 GTCTACTTTGTGCACTGAGTAACTCTCCAAACTTCAGTGCATGTTTCTACCATTTGATGC 1225
8.5 GCCTACTTTGTGCACTGAGTATCTCTTCAAACTTTAGTGCATGTTTCTACCATTTGATGC 1225
8.2 GTTGGACGAGCACTTGGTGGAAAGAGCCACTCAGGAAAGCAC-CTTAGACCACTGGAAAT 1257
4.1_a AGTTATTTTGTGTGCATAGTACATCTCTGTGAATATGCCTAATGAGGTATGGAAGGACAC 1217
* * * *
8.9 TTTATTATTCAGCAATCTAGCTTCCACAAGAGCATTTAATGTAAAGACTTGTCT-TTTTC 1304
8.10 TTTATTACTT-GCCATCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTCTCT-TGTTC 1301
8.3 TTTATTATTTGGCAACCTAGCTTCCAAAAGAGCATTTCATGCAAAGACTTGTCT-TGTTA 1577
8.11 TTTATTATTTGGCAACCTAGCTTCCAAAAGAGCATTTCATGCAAAGACTTGTCT-TGTTA 1587
4.2_a TTTCTTATTTGGCAATCTAGCTTCCACAAGAGCATTTCACGCAAAGACTTGTCT-TGTTC 1256
4.5 TTTCTTATTTGGCAATCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TGTTC 1277
4.3 TTTCTTATTTGGCAATCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TGTTC 1279
4.2_b TTTATTATTTGGCAATCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TGTTC 1281
4.4 TTTATTATTTGGCAATCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TCTTC 1280
4.1_b TTTATCATTTGGCAATCTAGCTTCCACAAGAGCATTTCATGCAAACACTTGTCT-TGTTG 1279
8.1 TTTATTATTTGGCAACCTAGCTTCCACAAGAGCATGTCAGGCAAAGAGTTCTCT-TGTTC 1279
8.7 TTTATTATTTGGCAGCCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TGTTC 1281
8.6 TTTATT---TGGCAGCCTAGCTTCCACAAGAGTATTTCATGCAAAGACTTGTCT-TGTTC 1281
8.8 TTTATT---TGGCAGCCTAGCTTCCACAAGAGTATTTCATGCAAAGACTTGTCT-TGTTC 1281
8.5 TTTATTATTTGGCAGCCTAGCTTCCACAAGAGCATTTCATGCAAAGACTTGTCT-TGTTC 1284
8.2 TCCTCCAAGAGCAAAACAAAACGAAGCCTGAGTTCAACGTCAGAAAACTTGAAGGTACCC 1317
4.1_a TT-ATTATCCAAACAGAGACATTCCACTGGTGCTAGAGAGCCACAGAC--GGAAGTTTTC 1274
* * * * * * *
8.9 TCCACTGGCAGGTAATTTCACTCGGATATAGAATCATTAGGCTGAACATGGAAAGGTTAT 1364
8.10 TCCACTGGCAGGTAATTTCACTCGGATAGAGAATCAATAGGCTGAACGTGGAAAGGTTAT 1361
8.3 TCCACTGGCAGCTAATTTCATTCGGATAGAGAATCAATAGGCTGAACGTGGAAAGCTTAT 1637
8.11 TCCACTGGCAGCTAATTTCATTCGGATAGAGAATCAATAGGCTGAACGTGGAAAGCTTAT 1647
4.2_a TCCACTGGCAGGTAATTTCACTCGGACAGAGAATCAATAGGCTCAACGTGGAAAGCTTAT 1316
4.5 TCCACTGGCAGGTAATTTCACTCAGATAGAGAATCAATAGGCTCAACGTGGAAAGCTTAT 1337
4.3 TCCCCTGGCAGGTAATTTCACTCGGACAGAGAATCAATAGGCTCAACGTGGAAAGGTTAT 1339
4.2_b TCCACTGGCAGGTAATTTCACTCGGACAGAGAATCAATAGGCTCAACGTGGAAAGGTTAT 1341
4.4 TCCACTGGCAGGTAATTTCACTCGGACAGAGAATCAATAGGCTCAACGTGGAAAGGTTAT 1340
4.1_b TCCACTGGCAAGTAATTCAACACGGATAGAGAATCAATAGGCTCAACGTGGAAAGGTTAT 1339
8.1 TCCACTGGAAGGTAATTTCATTCGCACAGAGAATCAATAGGCTGAACGTAGAAAGGTTAT 1339
8.7 TCCACTGGCCAGTAATTTCACTCGGATAGAGAGTCAATAGGCTGAACGTGGAAAGGTTAT 1341
8.6 TCCACTGGCAGGTAATTTCACTCGGATAGAGAATCAATAGTCTGAACGTGGAAAGGTTAT 1341
8.8 TCCACTGGCAGGTAATTTCACTCGGATAGAGAATCAATAGTCTGAACGTGGAAAGGTTAT 1341
8.5 TCCACTGGCCAGTAATTTCACTCGGATAGAGAGTCAATAGGCTGAACGTGGAAAGGTTAT 1344
8.2 TGCCTCCCAACGTACTTGTGATTCATCAATCAAAATACAAGTGTGGGATGAAAAA-CCAT 1376
4.1_a TCTGCCTACTGGAAATAAAGC-----CAAGCTTTCTTCTTTCCTCAGCCGTGAGGATTGC 1329
* * * * *
8.9 CGCTGGGAGGTCTGTTTGATTCCACGGATCTCTCCTTTTTTATTGAGGAAAAAAATATGC 1424
8.10 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTTATTAAGGAAAAAGATACAC 1421
8.3 CGCTGGAAGGTTTGTTTGTTTCCACGGATCTCTCCTTTCTTATTAGGGAAAAAAATACGC 1697
8.11 CGCTGGAAGGTTTGTTTGTTTCCACGGATCTCTCCTTTCTTATTAGGGAAAAAAATACGC 1707
4.2_a CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCATTAGGGAAGAAAATACGC 1376
4.5 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCATTAGGGAAGAAAATACGC 1397
4.3 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCACTAGGGAAGAAAATACGC 1399
4.2_b CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCACTAGGGAAGAAAATACGC 1401
4.4 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCACTAGGGAAGAAAATACGC 1400
4.1_b CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTCTCATTAGGGAAGAAAATACGC 1399
8.1 CGCTGGAAGCTCTGTTTCATTCCACGGATCTCTCCTTTCTTATTAAAGAAAAAAATACGC 1399
8.7 CCCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTATTATTAAGGAAGAAAATACGC 1401
8.6 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTATTATTAAGGAAAAATATACGC 1401
8.8 CGCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTATTATTAAGGAAAAATATACGC 1401
8.5 CCCTGGAAGGTCTGTTTGATTCCACGGATCTCTCCTTTATTATTAAGGAAGAAAATACGC 1404
8.2 CATCCTGAA--CAGCAAAGCTCCCTGCTAAACCTCTCTTCGACGAACCCGACAGATCAGG 1434
4.1_a TGACCTCC--TCTTTATCATTCTCTCTCTCTCTTTTTTTTTAATGAGCCAAGCTCCACCA 1387
** * * * *
8.9 TGTGCTAATTACTGTACTTCATTGCCTATTCTCAGGTCAGAAAG-----CGCACTTCAGA 1479
8.10 TGCGCTAATTACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTCCGA 1476
8.3 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTCCGA 1752
8.11 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTCCGA 1762
4.2_a TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTTCGT 1431
4.5 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTTCGA 1452
4.3 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTTCGA 1454
4.2_b TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTTCGA 1456
4.4 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTTCGA 1455
4.1_b TGTGCTAAATATTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CACACTTCCGA 1454
8.1 TGTGCTAAATACCATACTTCATTGACTAATCTCAGGTCAGAAAG-----CACACTTCCGA 1454
8.7 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTCAGA 1456
8.6 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----TGCACTTCAGA 1456
8.8 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----TGCACTTCAGA 1456
8.5 TGTGCTAAATACTATACTTCATTGACTATTCTCAGGTCAGAAAG-----CGCACTTCAGA 1459
8.2 AGT-CCATGAACACTGGCACACTCGCTTCTCT---GCAAGGGAG-----GAC-CAGGAGA 1484
4.1_a AATAATAAGATAAACTTTGTGCAAGACTTGGTAAGAGTAGAGTGTCTGACACCTTATGGT 1447
* * ** * * *
8.9 CTTCT---CCTTCTATCGCTGAAAGGAT-GATGGTATCTGCCAAAAGCACATAC-TCGGA 1534
8.10 CTTCTTGTCCTTCCATCGCTGAGAGGAT-GATGGTATCTGCCAAAAGCACATAT-TTGGA 1534
8.3 CTTCTTCTCTTTCCGTCGCTGAGAGGAT-GATGGTAGCTGCCAAAAGCACATAC-TTGGA 1810
8.11 CTTCTTCTCTTTCCGTCGCTGAGAGGAT-GATGGTAGCTGCCAAAAGCACATAC-TTGGA 1820
4.2_a CTTCTTGTCCTTCCGTCGCGGAGAGGAT-GATGGCAGCTGCCAAAAGTACATAC-TTGGA 1489
4.5 CTTCTTGTCTTTCCGTCGCTGAGAGGAT-GATGGCAGTTGCCAAAAGTACATAC-TTGGA 1510
4.3 CTTCTTGTCCTTCCGTCGCTGAGAGGAT-GATGGCAGCTGCCAAAAGTACCTAC-TTGGA 1512
4.2_b CTTCTTGTCCTTCCGTCGCTGAGAGGAT-GATGGCAGCTGCCAAAAGTACCTAC-TTGGA 1514
4.4 CTTCTTGTCCTTCCGTCGCTGAGAGGAT-GATGGCAGCTGCCAAAAGTAACTAC-TTGGA 1513
4.1_b ATTCTTGTCCTTCGGTCACTGAGAGGAT-GATGGTAGCTGCCAAAAGTACATAC-TTGGA 1512
8.1 TTTCTTGTCCTTCTGTCGCTGAGAGGAT-GATGATAGCTGCCAAAAGTACATAC-TTGGA 1512
8.7 CTTCTTGTCCTTCCGTTGATGAGAGGAT-GACGGTAGCTGCCAAAAGTACATAC-TTGGA 1514
8.6 CTTCTTGTGCTTCCATCGCTGAGAGGAT-GATGGTAGCTGCCAAAAGTACATAC-TTGGA 1514
8.8 CTTCTTGTGCTTCCATCGCTGAGAGGAT-GATGGTAGCTGCCAAAAGTACATAC-TTGGA 1514
8.5 CTTCTTGTCCTTCCGTTGATGAGAGGAT-GACGGTAGCTGCCAAAAGTACATAC-TTGGA 1517
8.2 --------------GCCAAAGGGAAGA---ACAAACACTGCAAGAGGGCTCTGC-TTGTG 1526
4.1_a GCTATAATACTCAAAGCAAAAGCAAAATCGCCTAGGACCAGAAAAGGGAGTCACATAGGA 1507
* * * * * * *
8.8 AGT---ACATCCCAGCACAAACACACACACACACA---------------CACGCACACA 1576
8.10 AGT---ACATCCCGGCACAAACACACACACACACA---------------CACACACACA 1576
8.3 GGT---TCATCCCAGCACAAACACACACACACAAA---------------CACACAAACA 1852
8.11 GGT---TCATCCCAGCACAAACACACACACACAAA---------------CACACAAACA 1862
4.2_a AGT---TCATCCCAGCACAAACACACACACACACGC--CCCCCCCACACACACACACACA 1544
4.5 AGT---TCATCCCAGCACAAACACACACACACACGCGCCCCCCCCACACACACACACACG 1567
4.3 GGT---TCATCCCAGCACAAACACACACACACACACGCCCCCCCC---CACACACACACA 1566
4.2_b GGT---TCATCCCAGCACAAACACACACACACACACGCCCCCCCC-----CACACACACA 1566
4.4 GGT---TCATCCCAGCACAAACACACACACACACATGCCCCCCCC----ACACACACACA 1566
4.1_b AGT---TCATCCCAGCACAAACACACATACACACACGCCCCCCCC-----CACACACACA 1564
8.1 AGT---TCATCCCAGCACGAGCACACACACACATAAACACACACA-----CACACACACA 1564
8.7 AGT---TCATCCCAGCACAAGCACACACACACACA--CACAAACA-----CACACACACA 1564
8.6 AGT---TCATCCCAGCACAAGCACACACACACACA--CACAAACA-----CACACACACA 1564
8.8 AGT---TCATCCCAGCACAAGCACACACACACACA--CACAAACA-----CACACACACA 1564
8.5 AGT---TCATCCCAGCACAAGCACACACACACACA--CACAAACA-----CACACACACA 1567
8.2 TGCCAGTGATCTCAGTGGAAGTGCCGACCCACACGTAGGGGAGAA------AAACACACA 1580
4.1_a AATCTAGAAGACCTATTGGCTGAGAGACCTGCAGCCTCATAGTTCATTAGCTCTC-CATA 1566
* * * ** * *
8.9 AACACACATACTCACAC------------GGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.10 CACACACACACACACAC------------GGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.3 CACACACA------CAC------------GGCTTCA--TAGGTAAAGATTTCTTCCCTGA 1892
8.11 CACACACA------CAC------------GGCTTCA--TAGGTAAAGATTTCTTCCCTGA 1902
4.2_a AACACACTCACACACACACACGCACAC--GGTTTCC--TAGGTAAAGATTTCTTCCCTGC 1600
4.5 AACACAATCACACACACACACTCACAC--GGTTTCC--TACGTAAAGATTTCTTCCCTGC 1623
4.3 AACACACTCACACACACACACCCACAC--GGTTTCC--TAGGTAAAGATTTCTTCCCTGC 1622
4.2_b AACACACTCACACACACACACGCACAC--GGTTTCC--TAGGTAAAGATTTCTTCCCTGC 1622
4.4 AACACACTCACACACACACACGCACAC--GGTTTCC--TAGGTAAAGATTTCTTCCCTGC 1622
4.1_b AACACACTCACACACACACACACACACACGGTTTCC--AAGGTAAAGATTTCTTCCCTGC 1622
8.1 CACACACACACACACACAGACACACACAGGGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.7 CACACACACACAGAGAGAGATACACACACGGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.6 CACACACACACACACACAGACACACACACGGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.8 CACACACACACACACACAGACACACACACGGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1622
8.S CACACACACACAGAGAGAGATACACACACGGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1625
8.2 CACACACACACACACAC------------GGTTTCA--TAGGTAAAGATTTCTTCCCTGA 1626
4.1_a GCAACTCTCACATGAAATGAAGTCAGTGGTGTTTCAAGTGCTTGAAACCCTCTTTACT-C 1625
** * * *** * ** **** **
8.9 CATTCTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACCAT 1679
8.10 CATTGTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1679
8.3 CATTGTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCTGGTTACACT 1949
8.11 CATTGTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCTGGTTACACT 1959
4.2_a CATTGCTTTACCTAAAATAAG---GCAAGTGTGAGGCCACTGTCCCAACCCGGTTACACT 1657
4.5 CATTGCTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1680
4.3 CATTGCTTTACCTAAAATAAG---GCAACTGTGAGGCCACTGTCCCAACCCGGTTACACT 1679
4.2_b CATTGCTTTACCTAAAATAAG---GCAACTGTGAGTCCACTGTCCCAACCCGGTTACACT 1679
4.4 CATTGCTTTACCTAAAATAAG---GCAACTGTGAGGCCACTGTCCCAACCCGGTTACACT 1679
4.1_b CATTGCTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1679
8.1 CATTCTTTTACCTAAAATAAG---GCAACTGTGCGGCCACTGCCCAAACCCGGTTACACT 1679
8.7 CATTCTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1679
8.6 CATTCTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1679
8.8 CATTCTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1679
8.5 CATT-CTGTACCTAAAATAAG---GCAACTGTGTG-CCACTGTCCCAACCCG-TTACACT 1679
8.2 CATTGTTTTACCTAAAATAAG---GCAACTGTGTGGCCACTGTCCCAACCCGGTTACACT 1683
4.1_a TACTTCTAAATGTGAATTAATTATGCAAATTTACTAGCAGTTGCTAGACCT--CAAAAGC 1683
* * * * * ** *** **** * * ** * * *** *
8.9 CATATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATGAAGGTGTTTTAGAAGT 1735
8.10 CATATTACATGTGTCTATCAGCCTGAGGAGTAGTTT----GATTCAGGTGTTCTAGAAGT 1735
8.3 CATATTACATCTGCCTATCATCCTGAGGAGTAATGT----GATTCAGGTGTTCTAGAAGT 2005
8.11 CATATTACATCTGCCTATCATCCTGAGGAGTAATGT----GATTCAGGTGTTCTAGAAGT 2015
4.2_a CCTATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATTCAGGTGTTCTGGAAGT 1713
4.5 CCTATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATTCAGGTGTTCTGGAAGT 1736
4.3 CCTATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATTCAGGTGTTCTGGAAGT 1735
4.2_b CCTATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATTCAGGTGTTCTGGAAGT 1735
4.4 CCTATTATATGTGCCTATCATCCTGAGGAGTAATTT----GATTCAGGTGTTCTGGAAGT 1735
4.1_b CCTATTATATGTGCTTATCATCCTGAGGAGTAATCT----GATTCAGGTGTTCTGGAAGT 1735
8.1 CATATTATATGTGCCTATCACCCTGAGGAGTAATTT----GATTCAGGTGTTCTAGAAGT 1735
8.7 CATATTATATGTGCCTATCACCCTGAGGAGTAATTT----GATTCAGGTGTTCTAGAAGT 1735
8.6 CATATTACATGTGTCTATCAGCCTGAGGAGTAATTT----GATTCAGGTGTTCTAGAAGT 1735
8.8 CATATTACATGTGTCTATCAGCCTGAGGAGTAATTT----GATTCAGGTGTTCTAGAAGT 1735
8.5 CATATTATATGTGCCTATCACCCTGAGGAGTAATTT----GATTCAGGTGTTCTAGAAGT 1735
8.2 CATATTACATGTGTCTATCAGCCTGAGGAGTAGTTT----GATTCAGGTGTTCTAGAAGT 1739
4.1_a AAAATAATCAGGCATTATTCTACTAAGTATTGGTCTCCATAACTCCTCTATTTTCTTTAG 1743
** * *** ** ** * * * * * * ** *
8.9 CATGATGTGGACTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.10 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.3 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 2065
8.11 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 2075
4.2_a CATGCTGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCCAGGGGACACACCCTGTGACTC 1773
4.5 CATGCTGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1796
4.3 CATGCTGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCCAGGGGACACACCCTGTGACTC 1795
4.2_b CATGCTGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCCAGGGGACACACCCTGTGACTC 1795
4.4 CATGCTGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCCAGGGGACACACCCTGTGACTC 1795
4.1_b CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.1 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.7 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.6 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.8 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.5 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1795
8.2 CATGATGTGGGCTGTGTCTGTTGAATTCCCAGCGATGCAAGGGGACACACCCTGTGACTC 1799
4.1_a GAAAAGTTAGTCTAAGACATTTGGCATAAAGGCTATGCCAAAGCTTTGGTGGGGTCAGCC 1803
* * * ** * * *** * ** **** * * ** * *
8.9 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATTGCCCACCTTATGTGCGGGTGGGG 1855
8.10 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCGCACCTGATGGGTGGGTGGGG 1855
8.3 ATTCCTTAATTAAATGCTGACATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGAGG 2125
8.11 ATTCCTTAATTAAATGCTGATATTTGATTGGTTTATCGCGCACCTGATGAGTGGGTGAGG 2135
4.2_a CTTCCTGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTAGGTGGGG 1833
4.5 CTTCCTGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGG 1856
4.3 CTTCCTGAATTGAGTGCTGTTATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGG 1855
4.2_b CTTCCTGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGG 1855
4.4 CTTCCTGAATTGAGTGCTGATATTTGATTGGCTTATCGCGCACCTGATGAGTGGGTGGGG 1855
4.1_b CTTCCTGAATTGAGTGCTGATATTTGATTGGCTAATCGCGCACCTGATGAGTGGGTGGGG 1855
8.1 ATTCCTTAATTGAGTGCTGATATTTGATTGTTTTATCGCGCACCTGATGGGTGGGTGGGG 1855
8.7 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCACACCTGATGGGTGGGTGGGG 1855
8.6 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCACACCTGATGGGTGGGTGGGG 1855
8.8 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCACACCTGATGGGTGGGTGGGG 1855
8.5 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCACACCTGATGGGTGGGTGGGG 1855
8.2 ATTCCTTAATTGAGTGCTGATATTTGATTGGTTTATCGCGCACCTGATGGGTGGGTGGGG 1859
4.1_a AGGAAGGATTCGTGGGGGTCTCCTTGAAAATACTGCAATA-ATCTAAGAAATCTTCAACC 1862
* * * **** * ** *
8.9 TGTTCGCTCTTGGTGCGGGTGAGTTATGTAAGGGCTGATTTGGCCAGAGAACTCGTTATT 1915
8.10 TGTTCGCGGTTGGTGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
8.3 TGTTCGCCGTTGGTGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 2185
8.11 TGTTCGCCGTTGGTGCGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 2195
4.2_a TGTTCGCGGTTGGTGGGGGTGACTTACAGAAGGGCTGATGTGGCCAGAGAGCTCGTCATT 1893
4.5 TGTTCGCGGTTGGTGGGGTTGACTTACAGAAGGGCTGATGCG-CCAGAGAGCTCGTCATT 1915
4.3 TGTTCGCGGTTCGTGGGGGTGACTTATAGAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
4.2_b TGTTCGCTGTTGGTGGGGGTGACTTACAGAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
4.4 TGTTCGCGGTTCGTGGGGGTGACTTACAGAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
4.1_b TGTTCGCGGTTGGTGTGGGTGAGTTATAGAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
8.1 TGTTCGCGGTTGGTGGGGGTGAGTTCTATAAGGGATGATGCGGCCAGAGAGCTCGTCATT 1915
8.7 TGTTCGCGGTTGGTGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
8.6 TGTTCGCGGTTGGAGGGGGTGAGTTATATAAGGCCTGATGCGGCCAGAGAGCTGGTCATT 1915
8.8 TGTTCGCGGTTGGAGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTGGTCATT 1915
8.5 TGTTCGCCGTTGGTGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCTCGTCATT 1915
8.2 TGTTCGCGGTTGGTGGGGGTGAGTTATATAAGGGCTGATGCGGCCAGAGAGCCCGTCATT 1919
4.1_a TATTGCCCCTCAGTACTGTTG-GTCCCCTGTACTTGACTTTTCCCCTTAAGTTTG--ATT 1919
* ** * * * * ** * * ** * * ***
8.9 TGAAGACTCTCTCGGAAGAGATAGCGTTTTTCTGCAACCTACGGTCCCAGCAGAAAAACC 1975
8.10 TGAAGACTCTCTCGGAAGAGATAGCATCTTTCTGCAACCTGCGGTCCCAGCCGAAAAACC 1975
8.3 TGAAGACTCTCTCGGAAGAGATAGAGTCTTTCTGCAACATAAGGTCCCAGCCGAAAAACC 2245
8.11 TGAAGACTCTCTCGGAAGAGATAGCGTCTTTCTGCAACATAAGGTCCCAGCCGAAAAACC 2255
4.2_a TGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAACCTGTGGTCCCAGCAGACAAACC 1953
4.5 TGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
4.3 TGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
4.2_b TGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
4.4 TGAAGACTCTCTCGGAAGGGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCAGACAAACC 1975
4.1_b TGAAGACTCTCTCGGAAGAGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
8.1 TGAAGACTCTCTCGGAAGAGATAGCGTCTTGCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
8.7 TGAAGACTCTCTTGGAAGAGATAGCGTCTTGCTGCAACCTGCGGTCCCAGCACAAAAACC 1975
8.6 TGAAGACTCTCTCGGAAGAGATAGCGTCTTGCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
8.8 TGAAGACTCTCTCGGAAGAGATAGCGTCTTGCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
8.5 TGAAGACTCTCTTGGAAGAGATAGCGTCTTGCTGCAACCTGCGGTCCCAGCAGAAAAACC 1975
8.2 TGAAGACTC----GGAAGAGATAGCGTCTTTCTGCAACCTGCGGTCCCAGCCGAAAAACC 1975
4.1_a CCATTTCCTAATATTATCCTTCCCTCTTCCTCCTCAGCAACTAGTCTTCTAAATTAGAAC 1979
* * * * * ** * *** * * *
8.9 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.10 CTGTGATCCTTGTTCCGGGCGACATG---------------------------------- 2001
8.3 TTGTGATCCTTGTTCCGGGCGACATG---------------------------------- 2271
8.11 TTGTGATCCTTGTTCCGGGCGACATG---------------------------------- 2281
4.2_a TTGTGATCCTTGTTCCAGTCGACATGGAGGACGACTCACTCTACTTGGGAGGTGAGTGGC 2013
4.5 TTGTGATCCTTGTTCCAGTCGACATG---------------------------------- 2001
4.3 TTGTGATCCTCGTTCCAGTCGACATG---------------------------------- 2001
4.2_b TTGTGATCCTCGTTCCAGTCGACATG---------------------------------- 2001
4.4 TTGTGATCCTTGTTCCAGTCGACATG---------------------------------- 2001
4.1_b TTGTGATCCTTGTTCCAGTCGACATG---------------------------------- 2001
8.1 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.7 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.6 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.8 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.5 TTGTGATCCTTGTTGCGGGCGACATG---------------------------------- 2001
8.2 TTGTGATCCTTGTTCCGGGCGACATG---------------------------------- 2001
4.1_a TTAAACACAATG----AGCAGATATG---------------------------------- 2001
* * * * ** ***
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 ------------------------------------------------------------
8.11 ------------------------------------------------------------
4.2_a AGTTCAACCACTTTTCAAAACTCACATCTTCTCGGCCAGATGCAGCTTTTGCTGAAATCC 2073
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 ------------------------------------------------------------
8.11 ------------------------------------------------------------
4.2_a AGCGGACTTCTCTCCCTGAGAAGTCACCACTCTCATGTGAGACCCGTGTCGACCTCTGAG 2133
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 ------------------------------------------------------------
8.10 ------------------------------------------------------------
8.3 ------------------------------------------------------------
8.11 ------------------------------------------------------------
4.2_a ATGATTTGGCTCCTGTGGCAAGACAGCTTGCTCCCAGGGAGAAGCTTCCTCTGAGTAGCA 2193
4.5 ------------------------------------------------------------
4.3 ------------------------------------------------------------
4.2_b ------------------------------------------------------------
4.4 ------------------------------------------------------------
4.1_b ------------------------------------------------------------
8.1 ------------------------------------------------------------
8.7 ------------------------------------------------------------
8.6 ------------------------------------------------------------
8.8 ------------------------------------------------------------
8.5 ------------------------------------------------------------
8.2 ------------------------------------------------------------
4.1_a ------------------------------------------------------------
8.9 --------------------------------------
8.10 --------------------------------------
8.3 --------------------------------------
8.11 --------------------------------------
4.2_a GGAGACCTGCTGCGGTGGGGGCTGGGCTCCAGAATATG 2231
4.5 --------------------------------------
4.3 --------------------------------------
4.2_b --------------------------------------
4.4 --------------------------------------
4.1_b --------------------------------------
8.1 --------------------------------------
8.7 --------------------------------------
8.6 --------------------------------------
8.8 --------------------------------------
8.5 --------------------------------------
8.2 --------------------------------------
4.1_a --------------------------------------
HDUB4.6 putative promoter sequence upstream of
initiation ATG
gcatgactgg cagacagctt atcgattggg ctcccctcaa
aatcggttat gagcattcaa gcacaccgat gcccaggtcc
cggctgcagg aataagaccc tccagggtct tgtgtgaagc
ctcggcatct gcattgctca tgcttctggg gatcattctc
ctgaaaatgg tggctccttt ctccctgtgg agcatctttc
taagcagtgc tcttttcttc ccccaggaca ctttacatcc
ggcacaggaa gccttctgat ggagcacacc tggcccatga
aaagacaagg gaaagaaacg gggccaaagg tcacagtcct
ctcatcccat catcctcctt aaaatcatcc taatttcatg
ggccctgaag ccagggctgt ttctttacac ctagaggcct
tggcgccggg cctcaattcc gccctgttcc ttaccgtcta
agacatgttg ggaaaatccc tagagccagg atcttcattc
ctgctaagcc agacagccgg aagacacacc caaattctgt
ccctcttact tcagggaaca tgtccacttt cggcagcatt
acaattttgg caccaaatgt gctaactgca attccaccat
acaatgcgta actggaaatg gaggcaacat ctccgatcct
gaacgatcga tgcgagaatc caggatatgc acggcttatt
ttggcctttt cccactgaaa caagggccag tattaaaaat
ggcacgctat cctctgtttc actccctgct tttaaacgtc
tccgatgttt ctccctgaga cagggcctca cttccgtcag
ccgggctttt ccacggtata attttccttg tttgcttttg
tccaaattag aactttttat ttcacctcta ggaaacgttg
atccattatc acatacgtat ggaaatatta tcacacatgc
tgtgagatac gttgttttta ttttcatcaa ttctttaata
aacaaacggt tatagctggg ataccttctg agttctcaag
ttttttgttt cgtgttttct taaactgccg tcgcacgtcc
gaaaccgctc actatgcagt gtcatgaccg tctctctttt
ctggcaaaca taaatttggg gattgtcatc aattagtctc
tcggggattg catgatttcc ccaaaggctt tcacagtcta
ctttgtgcac tgagtatctc ttcaaacttc agtgcatgtt
tctaccattt catgctttct tatttggcaa tctagcttcc
acaagagcat ttcatgcaaa gacttgtctt gttctccact
ggcaggtaat ttcactcaga tagagaatca ataggctcaa
cgtggaaagg ttatcgctgg aaggtctgtt tgattccacg
gatctctcct ttctcattag ggaagaaaat acgctgtgct
aaatactata cttcattgac tattctcagg tcagaaagcg
cactttcgac ttcttgtctt tccgtcgctg agaggatgat
ggcagctgcc aaaagtacat acttggaagt tcatcgcaga
aaaaacacac acacacacgc gcccccccca cacacacaca
cacgaacaca atcacacaca cacacactca cacggtttcc
tacgtaaaga tttcttccct gccattgctt tacctaaaat
aaggcaactg tgtggccact gtcccaaccc ggttacactc
ctattatatg tgcctatcat cctgaggagt aatttgattc
aggtgttctg gaagtcatgc tgtgggctgt gtctgttgaa
ttcccagcga tgcaagggga cacaccctgt gactccttcc
tgaattgagt gctgatattt gattggctta tcgcgcacct
gatgagtggg tgtggtgttc gcggttggag ggggtgactt
acagaagggc tgatgcggcc agagagctcg tcatttgaag
actctctcgg aagggatagc gtctttctgc aacctgcggt
cccagcagaa aaaccttgtg atccttgttc cagtcgacat
g
HDUB4.7 putative promoter sequence upstream of
initiation ATG
tcctcagcgt cggtttttag gcctggcata agctgtttga
aacccaggaa cgtaccccac ccatcatctt tggcctagtt
aacacctccc ctccgtgtgt ggtggtttgg agaacctgct
ttttcctcat cccactgatc ccaaacccag gacaccctac
agctgctgac caggattaaa cctaatggag atttaatgcc
attaaatcag aagaaattct gattctcagg gactgacatt
cattcactta catacttgca gagtcggcca ggtgtgttgg
ctcacacctg taatcccagc actttgggaa gccgaggtgg
gtggatcacg aggtcaagaa ttcgagacca tcctggccaa
catggtgaaa ccccgtctct actaaaaata caaaaattaa
ctggtgtagc tgtgcgtgcc tgtaatccca gctactcagg
aggctgaggc aggcgatttg cttgaacctg ggaggtggag
gttgcagtga gccaagatta tgccattgca ctccagcctg
ggcaacagag cgagactctc agaaaacaaa aaacccaaaa
acttgcagag tgaatttagg aaaccatgaa gtacacagtt
tgatccaatg ccttcctttt tctctttctc aaatattttg
agccaggtac tatcctagac tgtcttgtga tatttacaat
ctaggagaag gcaggagaga gaactaagaa cagagagcat
gttctgagat gtctgctgtg tttgcaggta ccttccctca
atttccctac tcactggcca tgctggaaag caggtcttgg
cgctatattt ataccatggt acttcccctc cctatactca
attggttggc cagaagccca attgtcactc tctctctctg
tctccctctc gctccctccc tccctccctc cctccctccc
tctccaagat atccagtaac tgactgatca gctgggggtg
ggctctgctg gctgccaaga tgggccacca gcaaaaaggg
aaaattggtt gtgagtgaga agaagagata agaaattcca
cagggctgat aagaaagacc atgggcttcc aggcgcggtg
tttcacgcct gtaatcccag cacttgggag gccaggatgg
tcggatttgg caatctagct tccacaagag catttcacgc
aaagacttgt cttgttctcc actggcaggt aatttcactc
ggatagagaa tcaataggct caacgtggaa aggttatcgc
tggaaggtct gtttaattcc acggatctct cctttctcat
tagggaagaa aatacgctgt gctaaatact atacttcatt
gactattctc aggtcagaaa gcgcactttc gacttcttgt
ccttccgtcg ctgagaggat gatggcagct gccaaaagta
catacttgga agttcatccc agcacaaaca cacacacaca
cacgcccccc cacacacaca cacacaaaca cactcacaca
cacacacgca cacggtttcc taggtaaaga tttcttccct
gccattgctt tacctaaaat aaggcaactg tgaggccact
gtcccaaccc ggttacgctc ctattatatg tgcctatcat
cctgaggagt aatttgattc aggtgttctg gaagtcatgt
tgtgggctgt gtctgttgaa ttcccagcga tgccagggga
cacaccctgt gactccttcc tgaattgagt gctgatattt
gattggctta tcgcgcacct gatgagtggg tggggtgttc
gcggttggtg ggggtgactt acagaagggc tgatgcggcc
agagagctcg tcatttgaag actctctcgg aagggatagc
gtccttctgc aacctgcggt cccagcagac aaaccttgtg
atccttgttc cagtcgacat g
HDUB4.8 putative promoter sequence upstream of
initiation ATG
CAGGGCTCCG TAGAACCACA GAATCTTGGG CGCAACCCTG
CTCAAGCACC CAAATGTGCA TACGAACAGG GTCTCCGTGT
GACGTGTGTG AAAACTACAG TGTGATGAGC ATGACTGGCA
GACAGCTTAT CGATTGGGCT CCCCTCAAAA TCGGTTATGA
GCATTCAAGC ACACCGATGC CCAGGTCCCG GCTGCAGGAA
TAAGACCCTC CAGGGTCTTG TGTGAAGCCT CGGCATCTGC
ATTGCTCATG CTTCTGGGGA TCATTCTCCT GAAAATGGTG
GCTCCTTTCT CCCTGTGGAG CATCTTTCTA AGCAGTGCTC
TTTTCTTCCC CCAGGACACT TTACATCCGG CACAGGAAGC
CTTCTGATGG AGCACACCTG GCCCATGAAA AGACAAGGGA
AAGAAACGGG GCCAAAGGTC ACAGTCCTCT CATCCCATCA
TCCTCCTTAA AATCATCCTA ATTTCATGGG CCCTGAAGCC
AGGGCTGTTT CTTTACACCT AGAGGCCTTG GCGCCGGGCC
TCAATTCCGC CCTGTTCCTT ACCGTCTAAG ACATGTTGGG
AAAATCCCTA GAGCCAGGAT CTTCATTCCT GCTAAGCCAG
ACAGCCGGAA GACACACCCA AATTCTGTCC CTCTTACTTC
AGGGAACATG TCCACTTTCG GCAGCATTAC AATTTTGGCA
CCAAATGTGC TAACTGCAAT TCCACCATAC AATGCGTAAC
TGGAAATGGA GGCAACATCT CCGATCCTGA ACGATCGATG
CGAGAATCCA GGATATGCAC GGCTTATTTT GGCCTTTTCC
CACTGAAACA AGGGCCAGTA TTAAAAATGG CACGCTATCC
TCTGTTTCAC TCCCTGCTTT TAAACGTCTC CGATGTTTCT
CCCTGAGACA GGGCCTCACT TCCGTCAGCC GGGCTTTTCT
ACGGTATAAT TTTCCTTGTT TGCTTTTGTC CAAATTAGAA
CTTTTTATTT CACCTCTAGG AAACGTTGAT CCATTATCAC
ATACGTATGG AAATATTATC ACACATGCTG TGAGATACGT
TGTTTTTATT TTCATCAATT CTTTAATAAA CAAACGGTTA
TAGCTGGGAT ACCTTCTGAG TTCTCAAGTT TTTTGTTTCG
TGTTTTCTTA AACTGCCGTC GCACGTCCGA AACCGCTCAC
TATGCAGTGT CATGACCGTC TCTCTTTTCT GGCAAACATA
AATTTGGGGA TTGTCATCAA TTAGTCTCTC GGGGATTGCA
TGATTTCCCC AAAGGCTTTC ACAGTCTACT TTGTGCACTG
AGTATCTCTT CAAACTTCAG TGCATGTTTC TACCATTTGA
TGCTTTATTA TTTGGCAATC TAGCTTCCAC AAGAGCATTT
CATGCAAAGA CTTGTCTTCT TCTCCACTGG CAGGTAATTT
CACTTGGACA GAGAATCAAT AGGCTCAACG TGGAAAGGTT
ATCGCTGGAA GGTCTGTTTG ATTCCACGGA TCTCTCCTTT
CTCATTAGGG AAGAAAATAC GCTGTGCTAA ATACTATACT
TCATTGACTA TTCTCAGGTC AGAAAGCGCA CTTTCGACTT
CTTGTCCTTC CGTCGCTGAG AGGATGATGG CAGCTGCCAA
AAGTACATAC TTGGAGGTTC ATCCCAGCAC AAACACACAC
ACACACGCGC CCCCCCCACA CACACACACA CGAACACAAT
CACACACACA CACTCACACG GTTTCCTACG TAAAGATTTC
TTCCCTGCCA TTGCTTTACC TAAAATAAGG CAACTGTGTG
GCCACTGTCC CAACCCGGTT ACACTCCTAT TATATGTGCC
TATCATCCTG AGGAGTAATT TGATTCAGGT GTTCTGGAAG
TCATGCTGTG GGCTGTGTCT GTTGAATACC CAGCGATGCA
AGGGGACACA CCCTGTGACT CCTTCCTGAA TTGAGTGCTG
ATATTTGATT GGCTTATCGC GCACCTGATG AGTGGGTGGG
GTGTTCGCGG TTGGTGGGGG TGACTTACAG AAGGGCTGAT
G
HDUB4.9 putative promoter sequence upstream of
initiation ATG
gcatctttct agtcagcgct cttttcttcg cccaggacac
tttacatccg gcacacgaag ccttctgatg gagcacacct
ggcccatgaa aagccaaggg aaagaaacgg ggccaaaggt
cacagtcctc tcctcccatc atcctcctta aaatcatcct
aatttcctgg ccctgaagcc agggctgttt ctttacacct
agaggccttg gcgccgggcc tcaattccgc cctgttcctt
accgtctaag acatgttggg aaaatcccta gagccaggat
cttcattcct gctaagccag acagccggaa gacacaccca
aattctgtcc ctcttacttc agggaacatg tccactttcg
gcagcattac aattttggca ccaaatgtgc taactgcaat
tccaccatac aatgcctaac tggaaatgga ggcaacatct
ccgatcctga acgatcgatg cgagaatcca ggatatgcac
ggcttatttt ggccttttcc cactgaaaca agggccagta
ttaaaaatgg cacgctatcc tctgtttcac tccctgcttt
taaacgtctc cgatgttgct ccctgagaca ggacctcact
tccgtcagcc gggcttttct acggtataat tttccttgtt
tgcttttgtc caaattagaa ctttttattt catctctagg
aaacgttgat ccattatcac atacgtatgg aaatattatc
acacatgctg tgagatacgt tgtttttatt ttcatcaatt
ctttaataaa caaaaggtta tagctgggat accttctgag
ttctcaagtt ttttgtttcg tgttttctta aactgccgtc
gcacgtccga aaccgctcac tatgcagtgt catgaccgtc
tctcttttct ggcaaacata aatttgggga ttgtcatcaa
ttagtctctc ggggattgca tgatttcccc aaaggctttc
acagtctact ttgtgcactg agtatctctt caaacttcag
tgcatgtttc tacaatttga tgctttatta tttggcaatc
tagcttccac aagagcattt catgcaaaga cttgtcttgt
tctccactgg caggtacttt cactcggaca gagaatcaat
aggctcaacg tggaaaggtt ttcgctggaa ggtctgtttg
attccacgga tctctccttt ctcattaggg aagaaaatac
actgtgctaa atactatact tcattgacta ttctcaggtc
agaaagcgca ctttcgactt cttgtccttc cgtcgctgag
aggatgatgg cagctgccaa aagtacatac ttggaagttc
atcccagcac aaacacacac acacgcgccc ccccacacac
acacacaaac acaatcacac acacacacaa tcacacggtt
tcctaggtaa agatttcttc cctgccatgg ctttacctaa
aataaggcaa ctgtgtgacc actgtcccaa cccggttaca
ctcctattat atgtgcctat catcctgagg agtaatttga
ttcaggtgtt ctggaagtca tgctgtggga tgtgtctgtt
gaattcccag cgatgccagg gggacacacc ctgtgactcc
ttcctgaatt gagtgctgat atttgattgg cttatcgcgc
acctgatgag tgggtggggt gttcgcggtt ggtgggggtg
acttacagaa gggctgatgc ggccagagag ctcgtcattt
gaagactctc tcggaaggga tagcgtcttt ctgcaacctg
cggtcccagc agaaaaacct tgtgatcctt gttccagtcg
acatg
HDUB4.10 putative promoter sequence upstream of
initiation ATG
agcaagcttt ggaacagttg gtgaagcccg aagaactcaa
tggagagaat gcctatcatt gtggtgtttg tctccagagg
gcgccggcct ccaagacgtt aactttacac acctctgcca
aggtcctcat ccttgtattg aagagattct ccgatgtcac
aggcaacaag attgccaaga atgtgcaata tcctgagtgc
cttgacatgc agccatacat gtctcagcag aacacaggac
ctcttgtcta tgtcctctat gctgtgctgg tccacgctga
gtggagttgt cacaacggac attacttctc ttatgtcaaa
gctcaagaag gccagtggta taaaatggat gatgccgagg
tcaccgccgc tagcatcact tctgtcctga gtcaacaggc
ctacgtcctc ttttacatcc agaagagtga atgggaaaga
catagtgaga gtgtgtcaag aggcagggaa ccaagagccc
ttggcgcaga agacacagac aggcgagcaa cgcaaggaga
gctcaagaga gaccacccct gcctccaggc ccccgagttg
gacgagcact tggtggaaag agccactcag gaaagcacct
tagaccactg gaaattcctt caagagcaaa acaaaacgaa
gcctgagttc aacgtcagaa aagtcaaagg taccctgcct
cccgacgtac ttgtgattca tcaatcaaaa tacaagtgtg
ggatgaagaa ccatcatcct gaacagcaaa gctccctgct
aaacctctct tcgtcgaccc cgacacatca ggagtccatg
aacactggca cactcgcttc cctgcgaggg agggccagga
gatccaaagg gaagaacaaa cacagcaaga gggctctgct
tgtgtgccag tgatctcagt ggaagtaccg acccacacgt
aggggtgcac acacacacgc acacacacag acacacacat
aactacaccc agaagcgcgc acgcaaacac acacacaccc
acacaaacac gaacaccgtc aatcctacat aaactaatga
ggagcccaag tttctgtctc tacaacaggg acaactggat
agtgatggct acatctcagg atgagcccgc atatgggaaa
catcaagttt tggggtcgtg agtcttccga acctctggag
ggactgtctg agtgtttgtg ttcatgatag gtgacattca
gtgtgtattt ctgaatatga cctaccgacg tgtaggtttg
cgtgtgaggt aattgcaggg gactcggttt cgtattttct
cttggggtgt gtttcattcg tcagttgttg gtcggcatga
gaaggtgaaa tgtggctcat gtgggacatc cgtggatcat
tctcgccacc ttgaatagtg gaaactggaa tgcatttgga
agagaagaac ggtgctcttc tttcttcccc gggctcgccg
tttttacact ggttcctgaa tggacctcag gcgccctggg
acttgtgctc ttgctggaac ccacataacg ccggaagcgg
acagaccgac ttgcctgttt cacggtgccc gcttcccatg
agtccaaacg gaaaattttc ccacgggcat gtaagtcatc
tggaagtaag ctgtattgat aataaaggaa agcaaacaca
ggagtgtgtg tattcaactg aaataaattc agaaagccct
gaaatcaatc tcactgggtg tgtttaaaaa tggcatttgg
ggaatttctg ggtcatttgt ccagctgcga aagctgcatc
tctgaagcac agtccctgtc ccgcagtgag acttattgat
ccgacgtggt gtttccgtgg aaatgattgt gggaaatggc
cccttccttt tctctatttg ctgattagac ttcatggtcc
ctttctcgtc aggtacagtg atcaaagttg accagcccca
gaggaaagct gcccagggca caactcaggg ctccgtagaa
ccacagaatc ttgggcgcaa ccctgctcaa gcacccaaat
g
HDUB4.11 putative promoter sequence upstream of
initiation ATG
cagcaagctt tggaacagtt ggtgaagccc gaagaactca
atggagagaa tgcctatcat tgtggtgttt gtctccagag
ggcgccggcc tccaagacgt taactttaca caactctgcc
aaggtcctca tccttgtatt gaagagattc cccgatgtca
caggcaacaa aattgccaag aatgtgcaat atcctgagtg
ccttgacatg cagccataca tgtctcagca gaacacagga
cctctcgtct atgtcctcta tgctgtgctg gtccacgctg
ggtggagttg tcacaacgga cattactcct cttatgtcaa
agctcaagaa ggccagtggt ataaaatgga tgatgccgag
gtcaccgcct ctagcatcac ttctgtcctg agtcaacagg
cctacgtcct cttttacatc cagaagagtg aatgggaaag
acacagtgag agtgtgtcaa gaggcaggga accaagagcc
cttggcgtag aagacacaga caggcgagca acgcaaggag
agctcaagag agaccacccc tgcctccagg cccccgagtt
ggacgagcac ttggtggaaa gagccactca ggaaagcacc
ttagaccact ggaaattcct tcaagagcaa aacaaaacga
agcctgagtt caacgtcaga agagtcgaag gtacggtgcc
tcccgacgta cttgtgattc atcaatcaaa atacaagtgt
cggatgaaga accatcatcc tgaacagcaa agctccctgc
taaacctctc ttcgacgacc ccgacagatc aggagtccat
gaacactggc acactcgctt ccctacgagg gaggaccagg
agatccaaag ggaagaacaa acacagcaag agggctctgc
ttgtgtgcca gtgatctcag tggaagtacc gacccacacg
taggggtgca tacacacaca cacacacaca cacacacaca
taactacacc cagaagcgcg cacgcaaaca cacacacacc
cacacaaaca cgaacaccgt caatcctaca taaactaatg
aggagcccaa gtttctgtct gtacaacagg gacaactgga
tagagatggc tacatctcag gatgagcccg catatgggaa
acatcaagtt ttggggtcgt gagtcttccg aacctctgga
gggactgtct gagtgtttgt gttcatgata ggtgacattc
agtgtgtatt tatgaatatg acctaccgac gtgtaggttt
gcgtgtgagg taattgcagg ggactcggtt tcgtattttc
tcttggggtg tgtttcattc gacagttgtt ggtcggcacg
agaaggtgaa atttggctca tgtgggacat ccgtggatca
ttctcgccac cttgaatagt ggaaactgga atgcatttgg
aagagaagaa cggtgctctt ctttcttccc cgggctcgcc
gtttttacac tagttcctga atggacctca ggcgccctgg
gacttgtgct cttgctggaa cccacataac gccggaagca
gacagaccga cttgcctgtt tcacggtgcc cgcttcccat
gagtccaaac ggaaaatttt cccacgggca tgtaagtcat
ctggaagtaa gctgtattga taataaagga aagcaaacac
aggagtgtgt gtattcaaca gaaataaatt cagaaagccc
tgaaatcaat ctcactgggt gtgtttaaaa atggcatttg
gggaatttct gggtcatttg tccagctgcg aaagctgcat
ctctgaagca cagtccctgt cccgcagtga gacttattta
tccgacgtgg tgtttccgtg gaaatgattg tgggaaatgg
ccccttcctt ttctctattt gctgactaga cttcatggtc
cctttctcgt caggtacagt gatcaaagtt gaccaacccc
agaggaaagc tgcccagggc acaactcagg gctccataga
accacagaat cttgggagca accctgctca agcacccaaa
tg