LOCAL SYSTEM FOR THE RELEASE OF ACTIVE PRINCIPLE AND PROCESS FOR ITS MANUFACTURE

- Heraeus Kulzer GmbH

A local system for the release of active principle is described which consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles, in particular antibiotics, and which are produced by radical polymerisation, radical polymerisation activators effective in the temperature range of 10-80° C. or residues of these polymerisation activators from the groups of aromatic amines, heavy metal salts and barbiturates not being contained therein. A process for the production of the local system for the release of active principle in the case of which a) a paste is produced by mixing methyl methacrylate, polymethyl methacrylate or poly-methyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity such that it cannot be deformed at room temperature by the effect of gravity; b) the paste is injection moulded by an injection moulding device without heating at room temperature into approximately spherical or rotation-symmetrical bodies or the approximately spherical or rotation symmetrical bodies are injection-moulded onto a wire; c) the bodies are heated to a temperature at which the polymerisation initiator decomposes.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The object of the invention is a locally effective system for the release of active principle which system consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles.

One of the major challenges in bone surgery is even today posed by the treatment of osteomyelitis. Osteomyelitis can be hematogenous, post-traumatic or postoperative. Particularly difficult to treat is the chronic form of osteomyelitis which, in extreme cases, can lead to the loss of limbs and even to septicaemia.

A common method is surgical remediation by radical surgical debridement. During this procedure, the infected or necrotic bone is excised extensively. Subsequently, the bone cavity is filled with a local carrier of antibiotics or treated by repeated rinse-suction drainage. As a result of the local release of large quantities of antibiotics, the bacterial germs remaining in the adjacent bone areas, too, are effectively controlled when using a sufficiently bone-accessible bactericidal antibiotic such as gentamicin sulphate and clindamycin hydrochloride.

Spherical local systems for the release of active principle composed of polymethyl methacrylate, zirconium dioxide and an antibiotic were described for the first time by Klaus Klemm in 1975 (DE 23 20 373). This concept proved to be basically successful although it had the disadvantage that only a small part of the active principle contained in the spheres was released.

As a further development of this active principle carrier, it was proposed by Heuser and Dingeldein in 1978, to add glycine or other amino acids to improve the release of the antibiotic (DE 26 51 441). Following contact with the discharge from the wound, the incorporated amino acids are dissolved and form pore systems from which the active principle is able to diffuse out. In this way an improved release of active principle is achieved.

Local systems for the release of active principle composed mainly of polymethyl methacrylate, an opaquer for x-ray beams and an antibiotic can be produced either by a special injection moulding process (DE 23 20 373) or by casting antibiotic-containing polymethyl methacrylate bone cements in special moulds (EP 796 712). Injection moulding has the crucial disadvantage that temperatures of >120° C. are required in order to melt the polymer. As a result, it is not possible to integrate thermally labile antibiotics or other thermally labile active principles into these local systems for the release of active principles. As a result, the system for the release of active principle charged with gentamicin, which is produced by conventional injection moulding, has been the only one to be available on the market under the name of Septopal®. Gentamicin is an antibiotic which is extremely thermally stable. In view of the increasing spread of resistant and, in particular, multi-resistant bacteria, however, further antibiotics are desirable in local systems for the release of active principle. Unfortunately, these antibiotics, such as vancomycin and teicoplanin are thermally unstable. As a result, it has not been possible so far to produce local systems for the release of active principle with these antibiotics by injection moulding.

An alternative in this respect is suggested in EP 796 712, according to which it is possible to produce implant materials using thermally labile active principles. During this process, a conventional PMMA bone cement is mixed with one or several antibiotics and transferred into corresponding moulds made of plastic, for example. Conventional PMMA bone cements consist of a powder component—composed of a polymer powder, an opaquer for x-ray beams and a polymerisations initiator—and a liquid monomer component containing methyl methacrylate, a stabilisator and a polymerisation activator. After mixing both components, the polymerisation activator and the polymerisation initiator meet each other and radical polymerisation of the methyl methacrylate is initiated. After a few minutes, the PMMA bone cement has been cured. As a result of this curing behaviour, it is possible to produce chain-type systems for the release of active principle by means of the moulds proposed in EP 796 712 by using conventional PMMA bone cements only in a batchwise process. Continuous production under industrial conditions is consequently not possible. In the case of this manufacturing process, N,N-dimethyl-p-toluidine is used as polymerisation activator in the PMMA bone cement.

The invention is based on the object of developing a locally effective system for the release of active principle which can be produced continuously. The production process is to make it possible to integrate also thermally labile antibiotics into the systems for the release of active principle. The disadvantages of the processes described in DE 23 20 373 and EP 796 712 are to be overcome.

The object has been achieved by developing a local system for the release of active principle which system consists of spherical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and a pharmaceutical active principle and which are produced by radical polymerisation, radical polymerisation activators effective in the temperature range of 10-80° C. or residues of such polymerisation activators, in particular from the groups of aromatic amines, heavy metal salts and barbiturates not being contained therein.

In particular, the system for the release of active principle according to the invention does not contain N,N-dimethyl aniline, N,N-dimethyl-p-toluidine, N,N,-bis-hydroxyethyl-p-toluidine or their consequential products formed during the initiation of radical polymerisation.

The invention also relates to a process for the production of the local active principle system in the case of which

    • a) a paste is produced by mixing methyl methacrylate, polymethyl methacrylate or poly-methyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity such that it is not deformed at room temperature by the effect of gravity;
    • b) the paste is injection moulded by an injection moulding device without heating at room temperature into approximately spherical or rotation symmetrical bodies or the approximately spherical or rotation symmetrical bodies are injection-moulded onto a wire;
    • c) the bodies are heated to a temperature at which the polymerisation initiator decomposes.

Heating can be effected e.g. by the effect of infrared radiation or by the effect of hot air or by the effect of microwaves.

It is important for the bodies produced from the paste to be mechanically stable before curing to such an extent that these are not deformed as a result of their inherent mass by the effect of gravity or, if the bodies are injection-moulded onto threads, become detached from the threads.

Thermally decomposing radical initiators which the expert would consider as commonly used are in particular those from the group consisting of dibenzoyl peroxide, dilauroyl peroxide and azoisobutyrodinitrile.

In step b) a wire is preferably used which is preheated to a temperature in the region of the de-composition temperature of the thermal initiator. By preheating the wire it is possible to initiate polymerisation in the interior of the injection moulded body before curing is effected by the effect of infrared radiation, hot air or by microwaves. As a result, the bodies adhere in a particularly stable manner on the wire.

The injection moulding tool is preferably made of Teflon or another inert plastic.

The invention will be explained by the following examples though without restricting the invention.

EXAMPLE 1

A paste of 570.0 g of polymethyl methacrylate co-methyl acrylate (molecular weight 800,000 g/mole), 285.0 g of methyl methacrylate, 89.0 g of zirconium dioxide, 42.0 g of gentamicin sulphate (AK 600), 8.8 g of a mixture of dibenzoyl peroxide and water in a weight ratio of 3:1 and 15.0 g of glycine is produced by intense mixing. Using this viscous paste, approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. The spray moulding process takes place at room temperature. Subsequently, the bodies are hardened in a dryer tunnel at a temperature of 80° C. The bodies formed have a mass of ˜240 mg.

EXAMPLE 2

A paste of 570.0 g of polymethyl methacrylate co-methyl acrylate (molecular weight 800,000 g/mole), 285.0 g of methyl methacrylate, 89.0 g of zirconium dioxide, 45.0 g of vancomycin hydrochloride, 8.8 g of a mixture of dibenzoyl peroxide and water in a weight ratio of 3:1 and 15.0 g of glycine is produced by intense mixing. Using the paste formed, approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. Immediately afterwards, the bodies are hardened continually with a heating radiator while the injection-moulded bodies are heated to 60-70° C. by the effect of IR radiation and polymerisation is initiated. The cured bodies have a mass of ˜240 mg.

Claims

1. A local system for the release of active principle which consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles, and which are produced by radical polymerisation, wherein radical polymerisation activators effective in the temperature range of 10-80° C. or residues of these polymerisation activators selected from the group consisting of aromatic amines, heavy metal salts and barbiturates are not contained therein.

2. Local system for the release of active principle according to claim 1, wherein N,N-dimethyl aniline, N,N-dimethyl-p-toluidine, N,N,-bis-hydroxyethyl-p-toluidine or their consequential products formed during the initiation of radical polymerisation are not contained therein.

3. Process for the production of the local system of claim 1 which comprises

a) producing a paste by mixing methyl methacrylate, polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity sufficient to prevent deformation at room temperature by the effect of gravity;
b) injection moulding the paste by an injection moulding device without heating at room temperature into approximately spherical or rotationally symmetrical bodies or injection moulding approximately spherical or rotation symmetrical bodies onto a wire;
c) heating the bodies to a temperature at which the polymerisation initiator decomposes.

4. Process according to claim 3, wherein in step c) heating is by the effect of infrared radiation or by the effect of air or by the effect of microwaves.

5. Process according to claim 3, wherein the decomposing radical initiator is one or more of the substances selected from the group consisting of dibenzoyl peroxide, dilauroyl peroxide and azoisobutyrodinitrile.

6. Process according to claim 3, wherein in step b) a wire is used which is preheated to a temperature in the region of the decomposition temperature of the thermal initiator.

7. Process according to claim 3, wherein the injection moulding tool is made of Teflon or another inert plastic.

8. The local system of claim 1, wherein said active principles are antibiotics.

Patent History
Publication number: 20070190105
Type: Application
Filed: Jan 5, 2007
Publication Date: Aug 16, 2007
Applicant: Heraeus Kulzer GmbH (Hanau)
Inventors: Klaus-Dieter Kuhn (Marburg-Elnhausen), Sebastian Vogt (Erfurt)
Application Number: 11/620,172
Classifications
Current U.S. Class: Surgical Implant Or Material (424/423)
International Classification: A61F 2/02 (20060101);