ORBITAL WALKER WITH ACTIVITY TABLE
The invention is directed to a children's exercise and activity apparatus for providing cognitive development activities for small children and exercise functionality. The apparatus includes an activity table adapted for receiving one or more children's activity items, a seat for supporting a child above the floor, a connecting beam for connecting the seat to the activity table, and one or more legs connected to and depending downwardly from the seat to the floor to support the seat and prevent the seat from tipping over when a child is supported therein. The seat has a pair of leg openings that allow the child to touch the floor with its legs, and the connecting beam is rotatably connected to the activity table so that the child in the seat can travel in an orbital path around the activity table.
Latest Patents:
This application is a continuation of U.S. patent application Ser. No. 11/036,199 filed Jan. 14, 2005, which is hereby incorporated by reference in its entirety, and which claims priority from provisional U.S. Patent Application No. 60/536,784 entitled “Orbital Walker with Activity Table,” which was filed on Jan. 16, 2004 and which is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTIONStationary walkers are used to assist children in the development of the leg muscles and coordination needed for walking. A typical stationary walker includes a seat portion that is positioned in the center of a walker and is at least partially surrounded by an annular-shaped activity tray. The activity tray includes toys that entertain the child. The stationary walker is held in a stationary position by legs that extend downwardly from the activity tray. In most stationary walkers, the seat portion can rotate 360°, independently of the activity tray, about an axis of rotation that is defined by the center of the seat portion.
An orbital walker differs from a stationary walker in that the orbital walker includes a seat portion that is connected to a stationary platform and configured to move along an orbital path around the center of the stationary platform. A child in the seat portion can move his or her legs along the floor to cause the seat portion to travel along the orbital path. This type of walker allows the child to practice the skill of walking while preventing the child from moving outside of the orbital path.
U.S. Pat. No. 5,433,682 to Fermaglich (“the '682 patent”) discloses an orbital walker that includes a combined tray and seat that are attached to a stationary base such that the tray and seat can be revolved conjointly around the base in an orbital manner. However, because the tray, which can contain toys, moves with the child, the child has greatly reduced motivation to move itself around the stationary base.
U.S. Pat. No. 5,211,607 to Fermaglich (“the '607 patent”) discloses an orbital walker that includes a central activity tray separate from the seat portion, allowing the child to move in an orbital path around the activity tray. For one orbital walker, the seat assembly is attached to one end of a V-shaped mounting arm. The center of the mounting arm is rotatably connected to a central vertical rod extending upwardly from a support surface and supporting an activity table, and a counterweight is mounted to the opposite end of the arm to prevent the seat assembly from tipping over.
U.S. Pat. No. 3,127,170 to Caster (“the '170 patent”) discloses a play table top mounted on top of a vertical column and a chair that is attached to a horizontal rod extending from the vertical column. An L-shaped rod is provided that extends vertically from the bottom of the seat and then inwardly towards the vertical column. The end of the horizontal leg of the L-shaped rod engages a lower track, which is positioned around the perimeter of a lower base supporting the vertical column. The lower base is supported by wheeled legs above the support surface. The child moves around the table by using its arms to pull itself around the table and its legs to push against the lower base to move around the table. However, because the chair is not designed with the intent that the child can stand up while positioned therein, the walker does not assist a child with the development of the leg muscles needed for walking as much as a walker wherein a child can stand.
U.S. Pat. No. 2,499,164 to Richardson (“the '164 patent”) discloses a swing or seat that is suspended downwardly from the center of an inverted U-shaped frame. The center of the frame is attached to a horizontal arm, and the horizontal arm is rotatably attached to a vertical rod, allowing the frame and seat to rotate around the vertical rod. A play table is attached to the vertical rod between the floor and the position of the horizontal arm on the vertical rod. The seat is suspended from the center of the U-shaped frame by a tension spring. The spring allows a child seated in the swing to bounce vertically and swing through the frame, and wheels attached to the bottom of the frame allow the child to move the seat and frame in an orbital path around the activity table. However, the U-shaped frame and the members supporting the sling make it difficult for parents or other caregivers to place the child in the sling and remove the child from the sling. In addition, the assembly does not allow the child to rotate about the central axis of the seat, meaning that the walking function permits only a sideways walking direction.
Therefore, an unsatisfied need in the art exists for an orbital walker that is able to move in an orbital path around an activity table and provide an easily assembled support structure that prevents a child seated in the walker from tipping over.
BRIEF SUMMARY OF THE INVENTIONThe invention is directed to a children's exercise and activity apparatus for providing cognitive development activities for small children and exercise functionality. The apparatus includes an activity table adapted for receiving one or more children's activity items, a seat for supporting a child above the floor, a connecting beam for connecting the seat to the activity table at a location on the activity table below an upper surface of the activity table, and one or more legs connected to and depending downwardly from the seat to the floor to support the seat and prevent the seat from tipping over when a child is supported therein. The seat has a pair of leg openings that allow the child to touch the floor with its legs, and the connecting beam is rotatably connected to the activity table so that the child in the seat can travel in an orbital path around the activity table.
In one embodiment, the connecting beam includes an annular collar that fits around a pedestal that supports the activity table. The annular collar further includes a draw latch fastener to secure the collar around the pedestal quickly and easily, preventing the annular collar and connecting beam from moving away from the pedestal while a child is in the seat.
In another embodiment, the range of motion that the seat can travel around the activity table can be partially limited by engaging a locking pin through the connecting beam and into an annular raceway positioned on the underside of the activity table. The motion of the seat can also be fully limited by engaging the locking pin through the connecting beam and into a stop hole located on the underside of the activity table.
In another embodiment of the invention, a seat assembly is provided that includes a seat for supporting a child above a floor, a connecting beam for connecting the seat adjacent an activity table, an annular collar for securing the connecting beam to a pedestal supporting the activity table, and one or more legs depending from the seat to the floor to prevent the seat from tipping over when a child is supported therein. The seat includes a pair of leg openings that allow the child to touch the floor with its legs. The annular collar includes two segments that are hingedly connected at one end and move apart at the other ends to fit around the pedestal supporting an activity table, and the ends of the annular collar are fastened together after the collar is fit around the pedestal to prevent the connecting beam from moving away from the pedestal.
The activity table can advantageously be adapted for receiving one or more children's activity items and for use with a seat to support a child. A pedestal extends between a base supported on a floor and the activity table. The activity table has an upper surface for supporting activity items when placed thereon. The pedestal includes an annular upper shelf and an annular lower shelf, and the surface of the pedestal between the shelves is adapted for receiving an annular collar of a beam configured for rotatably connecting the seat to the table. In addition, the surface is adapted for allowing a child in the seat to travel in an orbital path around the table.
BRIEF DESCRIPTION OF THE DRAWINGSReference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Generally, the present invention is directed to an orbital walker that allows a child to travel in an orbital path around an activity table. The orbital walker includes a seat, an activity table, a connecting beam, and one or more legs depending downwardly from the seat to the floor. The activity table is mounted above the top of a base. The seat is advantageously connected to the activity table by the connecting beam, which is rotatably connected to the activity table to allow the seat to travel in the orbital path around the activity table. A wheel is mounted on the bottom of each leg, and each wheel is oriented to follow an orbital path around the table. In addition, the seat can be configured to rotate 360° about its own axis and bounce independently of the connecting beam and the activity table using shock absorbers. Furthermore, the connecting beam can be disengaged from the activity table to allow the table to serve as a stand-alone activity center for older children who have learned to walk.
As shown in
Connecting Beam and Pedestal
As shown in
In another embodiment, shown in
As shown in
As shown in
As described above in relation to
Referring to
In a further embodiment, as shown in
It should be understood that a hinged or separable annular collar 603 is not necessary in all applications of the invention. For example, for the pedestal embodiments illustrated in
Seat and Legs
As shown in
According to the embodiment shown in
According to one embodiment, the end 640 of the connecting beam 16 slides into the C-shaped beam mounting portion 232 such that the bottom surface of the end 640 of the connecting beam 16 rests upon the horizontal legs 250 of the beam mounting portion 232. A screw, snap-fit arrangement, or other suitable fastener known in the art can be utilized to secure the connecting beam 16 to the beam mounting portion 232. In a further embodiment, shown in
In the embodiment shown in
In the embodiments shown in
According to one embodiment, shown in
Referring back to
As mentioned above and as shown in
Furthermore, in one embodiment, as shown in
In one embodiment, a compression spring or other type of shock absorber is positioned between the shelf 233 and the bottom portion 223 of the seat carrier ring 201 that engages the shelf 233. The shock absorber allows the seat carrier ring 201 to bounce vertically independently of the seat support ring 202. The shock absorber can be a compression spring, a leaf spring, or other suitable shock absorbing material known in the art.
One embodiment of the shock absorber is mounted adjacent a wheel or bearing to allow the seat carrier ring 201 to facilitate the rotation of the seat carrier ring 201 relative to the seat support ring 202 while providing the seat carrier ring 201 with the ability to bounce vertically independently of the seat support ring 202. For example, in one embodiment, the shock absorber is attached to the seat carrier ring 201 and a bearing or wheel is mounted below the shock absorber. In another embodiment, the shock absorber is positioned on the shelf 233 of the seat support ring 202 and the bearing or wheel is mounted above the shock absorber to engage the bottom portion 223 of the seat carrier ring 201.
Referring back to
In one embodiment, as shown in
When the shock absorber tower 260 is mounted to the seat carrier ring 201 and the seat carrier ring 201 is mounted within the seat support ring 202, the wheel 264 is positioned adjacent the raceway defined by the shelf 233 of the seat support ring 202 and is configured to rotate about its axis when the seat carrier ring 201 rotates relative to the seat support ring 202.
Activity Table
In the embodiment of the activity table 11 shown in
The ability of being able to easily detach and attach the seat to the table using the connecting beam allows the table to be used in combination with the seat as a walker and allows the table to be used on its own as an interactive learning center. For example, a four month old child benefits from having the seat portion attached to the activity table because the seat allows the child to bounce and practice walking while the child is working to develop the strength required to support himself. In addition, smaller children have different interests than older children, so the activity table provides the stalk toys to mentally stimulate the younger children.
However, when the child grows older and the child's legs become strong enough to support the child and allow the child to walk, the child no longer needs the seat. At this stage, the seat can be readily removed from the table, and the table can serve as a stand-alone activity center. As mentioned earlier, the activity table includes activity items, such as the magnetic drawing pad, the electronic piano, and the mechanical items, that are more suitable for an older child.
The underside 104 of the activity table 11, shown in
Referring to
For example, in one embodiment, the apparatus can provide for at least three modes of operation: (1) 360° movement, or free-walking, which allows the child to move the seat 12 in an orbital path 15 360° around the table 11, (2) 180° arc movement, which allows the child to move the seat 12 in the orbital path 15 180° around the table 11, and (3) a lock, or stationary, mode, which locks the seat 12 in one position to prevent movement of the seat 12 along the orbital path 15. The lock, or stationary, mode is used in one embodiment to prevent movement of the child while the child is eating snacks.
In one embodiment, shown in
To disengage the pin 240, which prevents the top portion 241 of the pin 240 from limiting the movement of the seat 12, the bottom portion 244 of the pin 240 is pulled downwardly, causing the top portion 241 of the pin 240 to move below the upper surface of the connecting beam 16 and the bottom surface of the T-shaped bar 242 to move into engagement with the compression springs 245. To keep the pin 240 in this configuration, the pin 240 is moved to the right or left while being pulled downwardly, such that the engagement portion 246 on the pin is moved below the lower surface 649 of the connecting beam 16. When the pin 240 is released, the engagement portion 246 maintains frictional contact with the lower surface 649 of the connecting beam 16 due to the upward force provided by the compression springs 245. To engage the pin 240, the pin 240 is pulled downwardly and pivoted back towards its center position. The engagement portion 246 of the pin 240 fits through the hole 650 in the lower surface 649 of the connecting beam 16, which allows the compression springs 245 to disengage and push the T-shaped bar 242 upwardly, moving the top portion 241 of the pin 240 above the upper surface of the connecting beam 16.
If it is desired for the seat 12 to be able to rotate 360° along the orbital path 15 around the table 11, the pin 240 should be positioned in a disengaged position, as described above, wherein the top portion 241 of the pin 240 is positioned below the top surface of the connecting beam 16. If it is desired for the seat 12 to be able to rotate 180° around the table 11, the seat 12 is rotated to a position in which the connecting beam 16 is below the annular raceway 120 defined by the underside 104 of the table 11. The pin 240 is then released from its disengaged position, allowing the compression springs 245 to urge the T-shaped bar 242 upwardly, which pushes the top portion 241 of the pin 240 into the raceway. Having the pin 240 engaged into the raceway 120 limits the movement of the seat 12 along the orbital path 15 around the table 11. If it is desired to prevent the seat 12 from making any orbital movement, the seat 12 can be rotated until the connecting beam 16 is aligned with a stop hole 121. Once aligned, the pin 240 can be engaged, causing the top portion 241 of the pin 240 to extend past the upper surface of the connecting beam 16 and into a stop hole 121 defined by the underside 104 of the table 11. The pin 240 prevents the seat 12 from orbital movement relative to the table 11. In one embodiment, a stop hole 121 is located below the portion of the table 11 that receives a snack tray for holding food to keep the child focused on its snack. However, one or more stop holes 121 could be positioned at any location on the underside 104 of the table 11.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims
1. A children's exercise and activity apparatus for providing activities for small children and also exercise functionality, said apparatus comprising:
- an activity table adapted for receiving one or more children's activity items, the activity table having an upper surface for supporting the activity items when placed thereon;
- a seat for supporting a child above the floor, the seat defining a pair of leg openings that allow the child to touch the floor with its legs;
- a connecting beam for connecting the seat to the activity table at a location on the activity table below the upper surface of the activity table, the connecting beam being rotatably connected to the activity table so that the child in the seat can travel in an orbital path around the activity table; and
- one or more legs connected to and depending downwardly from the seat to the floor to support the seat and prevent the seat from tipping over when a child is supported therein.
2. The apparatus of claim 1 wherein said activity table comprises a pedestal and a base supporting the upper surface of the activity table.
3. The apparatus of claim 2, wherein the connecting beam further comprises an annular collar that is configured to fit around the pedestal and rotate with respect thereto.
4. The apparatus of claim 3 wherein said annular collar comprises a first segment and a second segment, said segments being hingedly connected to allow an end of each of said segments to be moved apart from the other end to fit around a periphery of said pedestal and moved towards each other to secure said collar in rotatable engagement with said pedestal.
5. The apparatus of claim 4 wherein said ends of said segments include fasteners and said fasteners are engaged with each other to prevent said ends from moving apart from each other.
6. The apparatus of claim 5 wherein said fastener on said first segment is a draw latch and said fastener on said second segment is a tab for engaging said draw latch.
7. The apparatus of claim 4 wherein said pedestal further comprises an annular upper shelf and an annular lower shelf, said upper and lower shelves extending outwardly from a central axis of said pedestal past the periphery of said pedestal, and wherein a top surface of said annular collar engages a bottom portion of said upper shelf, preventing said collar from moving upwardly above the upper shelf, and a bottom surface of said annular collar engages a upper portion of said lower shelf, preventing said collar from moving downwardly below the lower shelf.
8. The apparatus of claim 3 wherein said annular collar has a wall that fits adjacent said pedestal, said wall comprising one or more rollers for facilitating the rotation of the annular collar around the pedestal.
9. The apparatus of claim 3 wherein said pedestal further comprises an annular shelf extending outwardly from a central axis of said pedestal, and wherein a bottom surface of said annular collar engages a top portion of said annular shelf such that the connecting beam is prevented from moving downwardly below the annular shelf.
10. The apparatus of claim 1 wherein said seat comprises:
- a seat support ring having a first central vertical axis, an inner wall, an outer wall, and a shelf extending inwardly from a bottom of said inner wall in the direction of said first central axis, said outer wall having a beam receiving portion for connecting said seat support ring to said connecting beam; and
- a seat carrier ring having a second central vertical axis, an inner wall, an outer wall, and a bottom surface;
- wherein said outer wall of said seat carrier ring is positioned adjacent said inner wall of said seat support ring and said bottom surface of said seat carrier ring is positioned adjacent said shelf of said seat support ring such that said central axis of said seat support ring is coaxial with said central axis of said seat carrier ring and said seat carrier ring can rotate about said central axes independently of said seat support ring.
11. The apparatus of claim 10 further comprising a fabric sling for receiving a child, said sling having a top portion and a bottom portion, wherein said bottom portion defines a pair of holes for receiving a child's legs and said top portion includes one or more fasteners for engaging one or more fastener receiving portions positioned on the seat carrier ring.
12. The apparatus of claim 10 further comprising one or more resilient members, said resilient members positioned between said bottom surface of said seat carrier ring and said shelf of said seat support ring, wherein said seat carrier ring can bounce vertically substantially independently of said seat support ring.
13. The apparatus of claim 12 wherein a bottom of each of said one or more resilient members are mounted to a roller, such that said roller facilitates the rotation of said seat carrier ring around said central axes and independently of said seat support ring.
14. The apparatus of claim 1 wherein said seat includes one or more leg receiving portions, each leg receiving portion adapted for attaching each of said one or more legs to said seat, said one or more leg receiving portions being positioned on said seat along or outside of a radius extending from a central vertical axis of said activity table to a central vertical axis of said seat.
15. The apparatus of claim 1 wherein a wheel is attached adjacent a lower portion of said legs, said wheel having an axis of rotation oriented in a direction normal to a line tangent to a center axis of said activity table.
16. The apparatus of claim 1 wherein a roller is attached adjacent a lower portion of said legs, said roller configured to rotate in any direction.
17. The apparatus of claim 1, said activity table further comprising an underside, said underside defining an annular raceway for receiving a locking pin, wherein, in response to said locking pin being engaged into said annular raceway, the orbital movement of the seat is limited to a length of the annular raceway.
18. The apparatus of claim 1, said activity table further comprising an underside, said underside defining a stop hole for receiving a locking pin, wherein, in response to said locking pin being engaged into said stop hole, the orbital movement of the seat is prevented.
19. A seat assembly for securing adjacent an activity table, said seat assembly comprising:
- a seat for supporting a child above a floor, the seat defining a pair of leg openings that allow the child to touch the floor with its legs;
- a connecting beam for connecting the seat adjacent to a pedestal supporting an activity table, the connecting beam including an annular collar that is configured to fit around a pedestal and rotate with respect thereto,
- wherein said annular collar is hingedly attachable to said pedestal and can rotate around said pedestal so that a child in the seat can travel in an orbital path around the activity table.
20. A children's activity apparatus comprising:
- an activity table adapted for receiving one or more children's activity items and for use with a seat, the activity table having an upper surface for supporting the activity items when placed thereon; and
- a pedestal extending between a base supported on a floor and the activity table, said pedestal including an annular upper shelf and an annular lower shelf,
- wherein the pedestal defines a surface between the annular upper shelf and the annular lower shelf, said surface being adapted for receiving an annular collar of a beam configured for rotatably connecting the seat to the table and said surface being adapted for allowing a child in the seat can travel in an orbital path around the table.
Type: Application
Filed: May 3, 2007
Publication Date: Aug 30, 2007
Applicant:
Inventors: Peter Jackson (Alpharetta, GA), Jeffrey Tadin (Canton, GA), Stephen Burns (Cumming, GA), Jacob Sclare (Dacula, GA), James Cartabiano (Gainesville, GA)
Application Number: 11/743,952
International Classification: A47B 83/02 (20060101);