Self-contained refrigerant powered system

A self-contained refrigerant powered system is provided having a plurality of boilers each for heating a liquid refrigerant to form a gaseous refrigerant; a motor in fluid communication with each of the plurality of boilers for receiving the gaseous refrigerant, wherein the gaseous refrigerant is used to power the motor; and a condenser in fluid communication with the motor for receiving the gaseous refrigerant and for converting the gaseous refrigerant to a liquid refrigerant; and a return pipe in fluid communication with the condenser and the plurality of boilers for returning the liquid refrigerant to at least one of the plurality of boilers.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
SUMMARY

The present disclosure is directed to a self-contained refrigerant powered system for powering a motor using a refrigerant which is continuously converted from a liquid to a gas for use in powering the motor and back to a liquid. A plurality of boilers is provided in one embodiment for receiving the liquefied refrigerant and converting the liquefied refrigerant to a gas. After the gas is used to power the motor, the gaseous refrigerant is directed to a condenser of the self-contained refrigerant powered system where it is converted to a liquid prior to being redirected to at least one of the plurality of boilers.

A control mechanism having a plurality of sensors and a controller with at least one processor is provided for controlling the flow of the liquefied refrigerant to the plurality of boilers. The at least one processor receives boiler-related data from the plurality of sensors, where the data can include at least one of temperature, operational status (on or off), pressure and capacity data, and the at least one processor determines at least one boiler of which to direct the liquefied refrigerant to by appropriately controlling one or more valves. After processing the boiler-related data and determining at least one boiler to direct the liquefied refrigerant to, the controller generates and transmits signals to the one or more valves for opening and closing the same, and the liquefied refrigerant is directed to the at least one boiler.

In an alternate embodiment of the self-contained refrigerant powered system in accordance with the present disclosure, one boiler is provided instead of a plurality of boilers. Further, a return pump is provided between the condenser and the boiler for controlling the flow of liquefied refrigerant to the boiler.

Other features of the presently disclosed self-contained refrigerant powered system will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the presently disclosed self-contained refrigerant powered system.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the presently disclosed self-contained refrigerant powered system will be described hereinbelow with reference to the figures, wherein:

FIG. 1 is a block diagram of a self-contained refrigerant powered system according to an embodiment of the present disclosure; and

FIG. 2 is a block diagram of a self-contained refrigerant powered system according to an alternate embodiment of the present disclosure.

DETAILED DESCRIPTION

Referring now to the drawing figures, wherein like references numerals identify identical or corresponding elements, various embodiments of the presently disclosed refrigerant powered system will now be described in detail.

The present disclosure describes two embodiments of a self-contained powered system. Self-contained as used herein describes the systems of the present disclosure as being able to power a motor with a predetermined amount of refrigerant for a plurality of operational cycles without requiring an operator to add additional refrigerant. An operational cycle is a cycle where the liquefied refrigerant is converted to gas using heat energy and then back to a liquid using a condenser. Optimally, the systems are designed such that they do not lose any refrigerant due to exhaust or waste and can be operated for a long period of time using the predetermined amount of refrigerant without the need to refuel or add additional refrigerant.

With initial reference to FIG. 1, a self-contained refrigerant powered system in accordance with the present disclosure is illustrated and described and is designated generally by reference numeral 100. During each operational cycle, the system 100 as described herein uses a refrigerant to power a motor, where the refrigerant is converted from a liquid to a gas for use in powering the motor and back to a liquid. Several refrigerants that can be used in system 100 include freon, butane, helium and nitrogen.

With continued reference to FIG. 1, self-contained refrigerant powered system 100 includes a motor 102 in fluid communication with a main outlet pipe 104 and an outlet pipe 106, and a plurality of boilers 108a-c each capable of heating a liquid refrigerant using a heating mechanism as known in the art. Each of the boilers 108a-c is in fluid communication with a respective inlet branch pipe 111a-c of a main inlet pipe or return pipe 111 and with a respective outlet branch pipe 104a-c of the main outlet pipe 104. Each inlet branch pipe 104a-c includes a check valve 115a-c for preventing backflow of the gaseous refrigerant to the boilers 108a-c. Additionally, each of the outlet branch pipes 111a-c includes a check valve 114a-c for preventing backflow of the liquefied refrigerant to main inlet pipe 111.

Each of the plurality of boilers 108a-c is adapted for heating under pressure the liquefied refrigerant received via one of the inlet branch pipes 111a-c and for converting the refrigerant from a liquid to a gas using heat energy. The gaseous refrigerant is outputted into outlet branch pipes 104a-c and directed towards check valve 105 positioned in main outlet pipe 104.

The gaseous and high temperature refrigerant is received via the main outlet pipe 104 by the motor 102 and is used for powering the motor 102 before being outputted to outlet pipe 106. Powering a motor using a gaseous refrigerant having a high temperature is well known in the art and is not described in detail herein. The motor 102 may be a turbine and/or internal combustion engine.

The gaseous refrigerant outputted to outlet pipe 106 is provided to a condenser 110 in fluid communication with the outlet pipe 106. Condenser 110 is a heat exchanger for condensing the gaseous and high temperature refrigerant and converting it from a gas to a liquid as known in the art. During the condensation process, the gaseous and high temperature refrigerant releases latent heat energy which can be harnessed for powering a cooling mechanism of condenser 110 or for other applications, such as powering a mechanism of a system in proximity to system 100. The cooling mechanism of condenser 110 may include, for example, a cooling fan (i.e. air cooled condenser), a water cooling mechanism, and other cooling mechanisms known in the art. The condensed and liquefied refrigerant flows from condenser 110 to main inlet pipe 111.

With continued reference to FIG. 1, a control mechanism 120 can be integrated with system 100 to the opening and closing of control valves 114a-c and thereby, control to which boiler or boilers 108a-c the liquefied refrigerant is provided to. It is contemplated that the control mechanism 120 can also be adapted and configured for controlling the opening and closing of the other valves of system 100, e.g., check valves 105 and 115a-c.

The control mechanism 120 includes a plurality of sensors 116a-c and a controller 112 having at least one processor in order to control the flow of the liquefied refrigerant to the plurality of boilers 108a-c. The at least one processor receives boiler-related data from the plurality of sensors 116a-c via wires 117a-c, where the data can include at least one of temperature, operational status (on or off), pressure and capacity data, and the at least one processor determines at least one boiler of which to direct the liquefied refrigerant to by appropriately controlling one or more of the check valves 114a-c. The plurality of sensors 116a-c are selected from the group consisting of temperature sensors, sensors capable of sensing the operational status of the boiler (on or off), pressure sensors and sensors capable of sensing the amount or volume of the refrigerant in the boiler.

After processing the boiler-related data and determining at least one boiler to direct the liquefied refrigerant to, the controller 112 generates and transmits signals to the one or more check valves 114a-c via wires 119a-c for opening and closing the same, and the liquefied refrigerant is directed to the at least one boiler. It is provided that if the at least one processor determines that none of the boilers 108a-c are capable of receiving the liquefied refrigerant, the at least one processor is programmed to shut down the motor 102 or the entire system 100.

Alternatively, the at least one processor can be programmed to direct the liquefied refrigerant to a storage unit 122 in fluid communication with the condenser 110 for temporarily storing the liquefied refrigerant to prevent the main inlet pipe 111 from being over-pressurized in the case where none of the boilers 108a-c are able to receive the liquefied refrigerant. As such, the controller 112 generates and transmits signal via wire 129 to a first check valve 123 positioned along main inlet pipe 111 to cause the valve 123 to open for directing the liquefied refrigerant to the storage unit 122 via storage inlet pipe 121. The controller 112 further generates and transmits a signal via wire 128 to a second check valve 124 also positioned along main inlet pipe 111 to cause the valve 124 to close for maintaining the liquefied refrigerant in the storage unit 122.

When the at least one processor determines that one or more boilers 108a-c is ready to receive the liquefied refrigerant, the controller 112 generates and transmits a signal via wire 129 to the first check valve 123 to cause the valve 123 to close for preventing any additional liquefied refrigerant from entering the storage unit 122. The controller 112 also generates and transmits a signal to the second check valve 124 via wire 128 to cause the valve 124 to open for enabling the stored, liquefied refrigerant to flow to the main inlet pipe 111 and to one or more of the boilers 108a-c. A pump 125 is operatively associated with the storage unit 122 for pumping the liquefied refrigerant out from the storage unit 122 and into the main inlet pipe 111 via storage outlet pipe 126. When the liquefied refrigerant has been pumped out of the storage unit 122 as relayed by sensor 127 to the controller 112, the controller generates and transmits a signal to the second check valve 124 via wire 128 to cause the valve 124 to close. During normal operation (i.e., when one or more boilers 108a-c are capable of receiving the liquefied refrigerant), the first and second check valves 123, 124 are both closed.

With reference to FIG. 2, a self-contained refrigerant powered system according to an alternate embodiment of the present disclosure is illustrated and described and is designated generally by reference numeral 200. The self-contained refrigerant powered system 200 of FIG. 2 is substantially similar to system 100 described hereinabove and thus will only be discussed in detail herein to the extent necessary to identify differences in construction and/or operation.

As illustrated in FIG. 2, self-contained refrigerant powered system 200 includes a motor 202 in fluid communication with a main outlet pipe 204 and an outlet pipe 206, and a boiler 208 having a heating mechanism as known in the art in fluid communication with the main outlet pipe 204 and a main inlet pipe 213. Boiler 208 is adapted for heating under pressure a liquid refrigerant for converting the refrigerant from a liquid to a gas. The gaseous and high temperature refrigerant is then provided to main outlet pipe 204 and directed to motor 202 for operating motor 202. A safety valve 214 is provided in main inlet pipe 213 for controlling the amount of liquefied refrigerant going to the boiler 208. A check valve 215 is positioned in main outlet pipe 204 for preventing backflow of the gaseous refrigerant to the boiler 208.

With continued reference to FIG. 2, motor 202 is adapted for receiving the gaseous and high temperature refrigerant from boiler 208 via main outlet pipe 204. After using the gaseous refrigerant to power the motor 202, the gaseous and high temperature refrigerant flows to outlet pipe 206 which is in fluid communication with a condenser 210.

Condenser 210 condenses the refrigerant and converts it from a gas to a liquid in the same manner as described above with reference to condenser 110. The liquefied refrigerant then flows to a return pump 212 via pipe 216. The return pump 212 pumps the liquefied refrigerant towards the boiler 208 via main inlet pipe 213.

One or more components of the systems 100, 200, such as the valves, the controller 112, the pump 125, the sensor 127, and the return pump 212, can be solar and/or wind powered. It is envisioned that the system 100 can be designed as a cascaded system.

Therefore, it will be understood that numerous modifications and changes in form and detail may be made to the embodiments of the present disclosure. Accordingly, the above description should not be construed as limiting the disclosed self-contained refrigerant powered systems but merely as exemplifications of the various embodiments thereof. Those skilled in the art will envision numerous modifications within the scope of the present disclosure as defined by the claims appended hereto.

Claims

1. A self-contained refrigerant powered system comprising:

a plurality of boilers each for heating a liquid refrigerant to form a gaseous refrigerant;
a motor in fluid communication with each of the plurality of boilers for receiving the gaseous refrigerant, wherein the gaseous refrigerant is used to power the motor;
a condenser in fluid communication with the motor for receiving the gaseous refrigerant and for converting the gaseous refrigerant to a liquid refrigerant; and
a return pipe in fluid communication with the condenser and the plurality of boilers for returning the liquid refrigerant to at least one of the plurality of boilers.

2. The system as recited in claim 1, further comprising a control mechanism having a plurality of sensors and a controller for receiving data from said plurality of sensors and determining none or at least one boiler for returning the liquid refrigerant.

3. The system as recited in claim 2, wherein the controller controls a valve associated with a respective boiler of the plurality of boilers for controlling the amount of liquid refrigerant provided to said respective boiler.

4. The system as recited in claim 2, further comprising a storage unit for storing the liquid refrigerant if it is determined that none of the plurality of boilers can be used to return the liquid refrigerant.

5. The system as recited in claim 4, further comprising at least one valve for controlling the flow of the liquid refrigerant to said storage unit.

6. The system as recited in claim 4, further comprising a sensor disposed within said storage unit and in operative communication with said controller.

7. The system as recited in claim 4, further comprising a return pump operatively associated with said storage unit for pumping the liquid refrigerant stored within said storage unit to a pipe in fluid communication with said return pipe.

8. The system as recited in claim 1, wherein the liquid refrigerant is selected from a group consisting of freon, butane, helium and nitrogen.

9. The system as recited in claim 1, wherein the motor is selected from a group consisting of a turbine and an internal combustion engine.

10. A self-contained refrigerant powered system comprising:

a boiler for heating a liquid refrigerant to form a gaseous refrigerant;
a motor in fluid communication with the boiler for receiving the gaseous refrigerant, wherein the gaseous refrigerant is used to power the motor; and
a condenser in fluid communication with the motor for receiving the gaseous refrigerant and for converting the gaseous refrigerant to a liquid refrigerant; and
a return pump in fluid communication with the condenser for pumping the liquid refrigerant receiving from the condenser to the boiler via a return pipe.

11. The system as recited in claim 10, further comprising a valve positioned between the boiler and the motor for controlling fluid flow to the motor.

12. The system as recited in claim 10, further comprising a valve positioned between the return pump and the boiler for controlling fluid flow to the boiler.

13. The system as recited in claim 10, wherein the liquid refrigerant is selected from a group consisting of freon, butane, helium and nitrogen.

14. The system as recited in claim 10, wherein the motor is selected from a group consisting of a turbine and an internal combustion engine.

15. A method for operating a self-contained refrigerant powered system, the method comprising:

heating a liquid refrigerant to form a gaseous refrigerant using at least one of a plurality of boilers;
powering a motor using the gaseous refrigerant;
converting the gaseous refrigerant to a liquid refrigerant; and
returning the liquid refrigerant to at least one of the plurality of boilers.

16. The method as recited in claim 15, further comprising determining one of none and at least one of the plurality of boilers for returning the liquid refrigerant to.

17. The method as recited in claim 16, further comprising storing the liquid refrigerant in a storage unit if it is determined that the liquid refrigerant can be returned to none of the plurality of boilers.

18. The method as recited in claim 17, further comprising providing a sensor within said storage unit.

19. The method as recited in claim 15, wherein the liquid refrigerant is selected from a group consisting of freon, butane, helium and nitrogen.

20. The method as recited in claim 15, wherein the motor is selected from a group consisting of a turbine and an internal combustion engine.

Patent History
Publication number: 20070266708
Type: Application
Filed: May 18, 2006
Publication Date: Nov 22, 2007
Inventors: Marios K. Rapitis (Coram, NY), Markos Rapitis (Port Jefferson, NY)
Application Number: 11/436,785
Classifications
Current U.S. Class: Including Vaporizing A Motive Fluid Other Than Water (60/651); Including Plural Distinct Boilers, Heat Supplies Or External Sources Of Vapor (60/676)
International Classification: F01K 25/08 (20060101); F01K 13/00 (20060101);