COMPRESSIBLE FIXATION APPARATUS FOR SPINAL SURGERY
A spinal fixation apparatus is configured with a pair of endpieces and an intermediate compressible portion. The compressible portion may comprise a pair of mating sliders comprising toothed arms attached to the endpieces. A gear engages the toothed arms. When the gear is rotated, the sliders bring the endpieces together, compressing the apparatus.
Latest NAS Spine, Inc. Patents:
This application is a continuation of related U.S. Application Ser. No. 10/628,079, filed Jul. 24, 2003, which claims priority to U.S. Provisional Application No. 60/398,623, filed on Jul. 24, 2002. The disclosures of the above-identified applications are hereby incorporated by reference in their entireties.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to the field of medical equipment, specifically to a device for use in spinal surgery such as a diskectomy and spinal fusion.
2. Description of the Related Art
Anterior cervical diskectomy and corpectomy have been utilized for the treatment of cervical radiculopathy, myelopathy, and myeloradiculopathy for over 50 years. The traditional methods for treatment of the single level and two-level decompressions have been the Cloward technique and the Smith-Robinson technique. Both techniques typically involve removing the disk and a portion of the end plate and inserting a graft. In the Cloward technique, a circular bone dowel of autologous or allograft bone is inserted into the defect in order to fuse the two adjacent vertebrae. In the Smith-Robinson technique, a horseshoe shaped graft is taken either from the patient's iliac crest or from allograft bone and inserted in the interspace.
The literature over the years shows that such fusions have a relatively poor success rate without stabilization with plate fixation. Some of the reasons for failure include pesudarthrosis, poor fixation (improper placement of the screws), improper placement of the graft, poor fixation of the graft, poor preparation of the cartilaginous end plates, and improper placement of the plate. As fusions, and especially multi-level fissions become more common, the need to improve the fusion rate in these surgeries is becoming more pronounced.
SUMMARY OF THE INVENTIONIn one embodiment, the invention comprises an apparatus for the enhancement of fusion of at least two adjacent vertebrae comprising at least a superior and an inferior endpiece, wherein the superior endpiece is adapted to be affixed to a superior vertebral body, and the inferior endpiece is adapted to be affixed to an inferior vertebral body. The apparatus farther comprises a compressible portion located between the superior and inferior endpieces. The compressible portion may comprise a sliding mechanism.
In another embodiment, the invention comprises a method of enhancing fusion between vertebral bodies comprising accessing a spinal portion, affixing respective endpieces to superior and inferior vertebral bodies, adjusting the distance between the endpieces into a compressed position, and locking the apparatus in the compressed position.
In another embodiment, the invention comprises a method of manufacturing an apparatus for the enhancement of fusion between at least two adjacent vertebrae comprising attaching a compressible coupling to a superior and an inferior endpiece, wherein the superior and inferior endpieces are adapted to be affixed to a superior and an inferior vertebral body, respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 6A-D illustrate one embodiment of the endpiece of the device of FIGS. 5A-C.
FIGS. 7A-D illustrate one embodiment of the housing of the device of FIGS. 5A-C.
FIGS. 8A-G illustrate one embodiment of a slider of the device of FIGS. 5A-C.
Embodiments of the invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
The fixation plate described herein differs from existing plates by allowing compression of the graft, and fixation of the plate in the vertebral bodies. Compression of the graft will improve fixation and reduce failure rates. According to Wolff's law, bone that is under compression will fuse. Currently, plates are placed without compression. This practice may create a permanent distraction component which could ultimately result in failure for osteointegration. On the other hand, the compressible plates described herein allow compliance with Wolff's law, thereby significantly improving the chances of successful fusion. Thus, the compressible fixation plate described herein offers important advantages over present-day plate fixation. These plates are especially useful for cervical spinal surgery, but can be used on all portions of the spine with appropriate sizing.
One embodiment of a compressible spinal fixation plate is illustrated in
It will be appreciated that a variety of implementations of a compressible region 20 may be implemented.
The inwardly directed faces of the inner arms 32, 38 include teeth 40, 42 respectively. These teeth mate with the teeth of a central gear 44. Thus, when the gear 44 is rotated counter-clockwise, the endpieces 30, 31 are drawn toward each other in the direction of arrows 46, 48. This reduces the overall length of the device by compressing this middle region of the apparatus, and accordingly compresses any intermediate disk space as described above.
For multi-level fusions, the device in
A more detailed illustration of one specific embodiment of a compressible plate 50 is illustrated in
The sliding compression mechanism 56 comprises a first slider 62 and a second slider 64 each having an approximately U-shaped geometry, wherein at least one arm of each slider 62, 64 has a plurality of teeth 66 for engaging a gear (not shown). In the embodiment shown, each slider 62, 64 has a flange 68 configured to engage the port 58A-B on the endpiece 52A-B. In an alternative embodiment, the sliders may be integral to the endpieces. The arms of the slider pieces 62,64 are configured to slide over each other within the housing 70. Shown are first and second sliders 62, 64 designed so that each slider has a toothed arm and a non-toothed arm, wherein the toothed and non-toothed arms are parallel to each other. In the embodiment shown, the first and second sliders 62, 64, are configured such that the toothed arm of first slider 62 slides over the non-toothed arm of second slider 64, and the toothed arm of the second slider 64 slides over the non-toothed arm of first slider piece 62.
In the embodiment shown in
An additional embodiment of a compressible plate is illustrated in
The traditional approach to the anterior cervical spine may be the same for the placement of the plate described herein when used in a cervical application. A transverse or oblique incision is made on the right or left side of the neck. The medial border of the sternocleidomastoid is retracted along with the carotid sheath. The trachea and the esophagus are retracted to the opposite side, providing surgical access down to the prevertebral fascia. Sweeping in a cephalad and caudal direction enables access to the anterior vertebral column. This allows identification of vertebral bodies and disk spaces, including the disk or vertebral body affected by the pathology. Use of interoperative x-rays at this stage confirms the location of the pathology. A surgeon then removes the affected disk(s) or vertebral body. If a diskectomy is performed, following removal of the disk, some of the cartilaginous end plate may be denuded to allow better incorporation of bone on bone surfaces in compression.
Those skilled in the art of orthopedic and neurosurgery can install the device described herein using standard surgical tools. The plate may, for example, be applied in a similar manner in the midline of the anterior cervical region spanning a distance of the graft. The present invention allows the surgeon to advantageously place the upper and cervical portions in the mid-substance of the vertebral bodies. By affixing the plate to the mid-substance of the vertebral bodies, the best purchase in the bone as well as avoidance of abutment between the plates and adjacent disks is achieved. This placement minimizes the possibility of adjacent segment disease or break out of the screws from the vertebral body and subsequent loosening of the graft. In short, placement of the screws in the upper and lower cervical vertebral bodies such that the graft is now capable of being compressed, provides the best possible construct for ensuring a cervical fusion. The capability of compressing the graft as well as anchoring in the best bone superior and inferior to the graft minimizes the risk for pseudarthrosis, graft migration, and/or screw dislodgment.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
Claims
1. A method of enhancing fusion of a graft in the cervical spine comprising:
- accessing an anterior portion of cervical vertebrae;
- affixing endpieces of a compressible fixation device to the vertebral bodies on either side of a graft;
- adjusting the distance between said endpieces into a compressed position, thereby compressing the graft; and
- locking the device into the compressed position.
2. The method of claim 1, wherein the endpieces are affixed to the mid-substance of the vertebral bodies.
3. The method of claim 1, wherein said affixing comprises screwing the endpieces to the vertebral bodies.
4. The method of claim 1, wherein said adjusting comprises rotating a gear that mates with teeth located on the endpieces to draw the endpieces toward each other.
5. The method of claim 4, where said locking is achieved by installing a set screw to prevent the gear from rotating.
6. The method of claim 1, wherein said adjusting comprises sliding the endpieces toward each other.
7. A method of enhancing fusion of a graft in a multilevel cervical vertebral fusion comprising:
- accessing an anterior cervical spinal portion;
- removing some or all of at least two cervical spinal disks to create a space between cervical vertebrae;
- placing at least one graft in the space created by the removal of some or all of the at least two cervical spinal disks;
- affixing respective endpieces of a compressible fixation device to vertebral bodies superior and inferior to the graft;
- affixing at least one intermediate endpiece of a compressible fixation device to an intermediate vertebral body between said superior and inferior vertebral bodies;
- adjusting the distance between said endpieces into a compressed position, thereby compressing the graft; and
- locking the device into the compressed position.
8. The method of claim 7, wherein the endpieces are affixed to the mid-substance of the vertebral bodies.
9. The method of claim 7, wherein said affixing comprises screwing the endpieces to the vertebral bodies.
10. The method of claim 7, wherein said adjusting comprises rotating a gear that mates with teeth located on the endpieces to draw the endpieces toward each other.
11. The method of claim 10, where said locking is achieved by installing a set screw to prevent the gear from rotating.
12. The method of claim 7, wherein said adjusting comprises sliding the endpieces toward each other.
Type: Application
Filed: Apr 13, 2007
Publication Date: Dec 13, 2007
Applicant: NAS Spine, Inc. (La Jolla, CA)
Inventor: Neville Alleyne (La Jolla, CA)
Application Number: 11/735,338
International Classification: A61B 17/70 (20060101);