Automatic winder for an inside brushless stator

An apparatus for manufacturing an internal wound stator includes a winding arbor configured to receive a conductive wire. The apparatus also has a stator loader with a stator having a generally cylindrical shape with an interior opening and having a plurality of axial slots formed therein. The interior dimension of the stator is larger than the exterior dimension of the winding arbor such that the winding arbor and stator may traverse with respect to one another. The apparatus also has a first movable member configured for moving at least one of the winding arbor and the stator. The apparatus also has a second rotating member configured to rotate at least one of the stator and the winding arbor. The conductive wire is introduced through an interior of the winding arbor. The first movable member is configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a first longitudinal manner and into a first of the plurality of axial slots. The second rotating member is configured to rotate at least one of the first winding arbor or the stator relative to one another to align the wire relative to a second axial slot of the plurality of axial slots. The first movable member is configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a second opposite longitudinal manner and into the second axial slot.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 60/831,508, filed on Jul. 18, 2006, which is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to the manufacture of electric machines, such as a motor or a generator, and in particular to a machine that automates a wire winding of a stator. Manufacturing machines typically involve time and labor in order to wind or wrap wires around and/or within the axial slots of a stator. Such machines are costly and often involve complicated assemblies, which require a great deal of post manufacturing finishing operations in order to complete the stator. Accordingly, there is a need in the art for a manufacturing apparatus that is cost effective and that can rapidly manufacture a number of stators in a quick and automated manner.

SUMMARY OF THE INVENTION

According to a first embodiment, there is provided an apparatus for manufacturing an internal wound stator. The apparatus includes a winding arbor configured to receive a conductive wire. The apparatus also has a stator loader with a stator having a generally cylindrical shape with an interior opening and having a plurality of axial slots formed therein. The interior dimension of the stator is larger than the exterior dimension of the winding arbor such that the winding arbor and stator may traverse with respect to one another. The apparatus also has a first movable member configured for moving at least one of the winding arbor and the stator.

The apparatus also has a second rotating member configured to rotate at least one of the stator and the winding arbor. The conductive wire is introduced through an interior of the winding arbor. The first movable member is configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a first longitudinal manner and into a first of the plurality of axial slots. The second rotating member is configured to rotate at least one of the first winding arbor or the stator relative to one another to align the wire relative to a second axial slot of the plurality of axial slots. The first movable member is configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a second opposite longitudinal manner and into the second axial slot.

According to another aspect, the apparatus further includes a first spool providing at least a first conductive wire through a collector and a second spool. The second spool provides at least a second conductive wire through the collector. A composite conductive wire bundle is made from the first conductive wire and the second conductive wire.

In another aspect, the winding arbor may receive the conductive wire through a feed port in the arbor.

According to another embodiment, the apparatus has the second rotating member configured to rotate at least one of the first winding arbor or the stator relative to one another to align the feed port relative to another axial slot.

According to still another embodiment, the stator loader includes a cylindrical bushing member with an aperture surrounded by an orientation collet configured to align the stator therein.

In yet another aspect, the apparatus has a locking ring with a locking ring aperture. The locking ring is placed over the stator loader. The stator is placed in the collet and aligned with the locking ring aperture. The stator is held in the stator holder.

In a further aspect, the apparatus further comprises a controller. The controller is configured to control the movement of the first movable member and the second rotating member.

According to another embodiment, the apparatus has the winding arbor held stationary with the stator moving. In another configuration, the stator is held stationary while the winding arbor moves. In another aspect, the apparatus further comprises three or more spools that are configured to introduce at least three conductive strands to form the conductive wire bundle. In a further aspect, the apparatus has three conductive strands. The strands are configured to enter a respective first through third openings in the collector.

In yet another aspect, the apparatus has the second rotating member further comprising a pulley device. The pulley device has a band that is connected to a surface. The band surrounds the stator holder. The pulley device is operatively connected to a controller to rotate a predetermined amount. The predetermined amount of rotation is configured to move the conductive wire bundle into another axial slot.

In a further aspect, the apparatus has the first movable member comprising a support or trolley that rides on a track. The support is operatively coupled to a controller. The controller controls the support. The support moves relative to the track in a first direction. The support also moves in a second direction to wind the conductive wire in the axial slot. The support is also configured to stop momentarily and then traverse in a second direction to wind the conductive wire in a second slot.

In a further aspect, the apparatus has the stator rotated about three hundred sixty degrees, and then removed.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.

FIG. 1 is a perspective view of the apparatus for winding a stator according to the present disclosure;

FIG. 2 is a partial perspective view of the apparatus with the stator holder removed;

FIG. 3 is a partial perspective view of the apparatus showing a stator being loaded into the stator holder of the apparatus;

FIG. 4 is a partial perspective view of the apparatus showing a stator loaded into the stator holder of the apparatus for winding;

FIG. 5 is a partial perspective view of the apparatus showing a stator loaded into the stator holder of the apparatus and also a conductive wire bundle being loaded into a port of the arbor;

FIG. 6 is a perspective view of an arbor showing a feed port of the arbor;

FIG. 7 is a perspective view of a stator holder of the apparatus;

FIG. 8 is an exploded view of the stator holder of FIG. 7 showing a collet;

FIG. 9 is a perspective view of the stator of FIG. 2 showing a number of axially disposed slots;

FIG. 10 is a cross sectional view of the arbor having the conductive wire bundle traversing through the arbor and through the feed port for winding;

FIG. 11 is an enlarged view of the arbor being introduced into the stator for winding the conductive wire bundle in a first axial slot of the stator from the feed port of the arbor;

FIG. 12 is an enlarged view of the arbor winding the conductive wire bundle in the remaining axial slots of the stator from the arbor feed port; and

FIG. 13 shows the wound stator removed from the apparatus having a cap connected at an end for maintaining the conductive wire bundle in the stator.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention follows.

Turning now to FIG. 1, there is shown an apparatus 100 configured for internally winding a stator 102. One example of a stator 102 is shown in FIG. 9 in an enlarged view and has a number of inner axially disposed slots 104. The apparatus 100 is configured for manufacturing a plurality of wound stators 102 one after another in a sequential or at least partially automated manner. It is envisioned that the slots 104 of stator 102 (FIG. 9) may be linearly disposed in the stator 102 or include other configurations such as a herringbone, axially disposed or include a sinusoidal configuration. Generally, the apparatus 100 includes a feeding assembly 106 disposed on a stand 108. The apparatus 100 also has a bundling assembly 110 configured to feed a wire, or more preferably a bundle of a number of strands of conductive wire 112a through 112g from the feeding assembly 106 and for forming a single conductive wire bundle 114 that is wound into the number of inner axially disposed slots 104 of the stator 102.

The apparatus 100 further includes an arbor 116. The arbor 116 is configured for feeding the conductive wire bundle 114 into the stator 102 and for winding the conductive wire strands 112 that form the bundle 114 around each or substantially all of the axially disposed slots 104. The apparatus 100 also includes a device for moving the arbor 116 relative to the stator 102 in a precise and controlled manner. In one embodiment, the stator 102 may be held fixed and the arbor 116 moves relative to the stator 102. In another embodiment, the stator 102 may move and the arbor 116 may be held fixed. In a further embodiment, both the stator 102 and the arbor 116 may move together to achieve relative motion between the stator 102 and the arbor 116 for winding the conductive wire bundle 114 into slots 104 of the stator 102. Various configurations are possible and within the scope of the present disclosure.

In the embodiment shown, the apparatus 102 preferably includes devices for two relative motions. The first motion is for moving the stator 102 and the arbor 116 towards one another or in a longitudinal manner. The second motion is a rotating motion of the arbor 116 relative to the stator 102. In this aspect, the apparatus 100 further includes a first movable assembly 118 that rides on a track 120. The first movable assembly 118 may move the stator 102 relative to the arbor 116 in a first longitudinal manner and in a second opposite longitudinal manner. The first movable assembly 118 alternatively may ride on a rail or similar structure in order to move the stator 102 toward and away from the arbor 116.

The apparatus 100 also includes a stationary support structure 122 for which to hold the arbor 116 stationary. Alternatively, the arbor 116 may ride on the track 120 or rail while the stator 102 is disposed on the support structure 122. In another configuration, the apparatus 100 may be configured to include two movable devices for moving the arbor 116 and the stator 102 toward one another. Various configuration are possible and within the scope of the present disclosure.

The apparatus 100 further includes a rotating second assembly 124. The rotating second assembly 124 is disposed on the first movable assembly 118 and preferably rides with the first movable assembly 118. The rotating second assembly 124 preferably can rotate a portion of the first movable member 118 (housing the stator 102) either clockwise or counterclockwise at the same time when the first movable assembly 118 translates in the first longitudinal manner or in the second opposite longitudinal manner.

The apparatus 100 also has a stator holder 126. The stator holder 126 is disposed in the first movable assembly 118. The stator holder 126 preferably provides support in a radial manner around the stator 102 and is configured for quick loading and unloading of stator 102. The support provided by the stator holder 126 is such that the stator 102 will not move from the stator holder 126 during the intense force of the winding process. The stator 102 will only be released at the appropriate time for which to replace the wound stator 102 with a fresh unwound stator 102 to continue the manufacturing process. The stator holder 126 is configured to allow the stator 102 to be quickly loaded and unloaded from, and to, the stator holder 126 and then replaced with a fresh stator 102 for the next manufacturing operation. The stator holder 126 also permits the stator 102 to be securely disposed in the first movable assembly 118 during the winding operation.

The apparatus 100 also includes a rack support 128 that holds the stator 102 and the stator holder 126 on the track 120. On a distal side or side opposite the arbor 116, the apparatus 100 further includes an automation assembly 130. The automation assembly 130 is configured to operatively connect to the first movable assembly 118 to a controller 132. The controller 132 is preferably a digital signal processor connected to a memory 134 having a number of program instructions in order to exactly control the movement of the first movable assembly 118 and the second rotating assembly 124. In one embodiment, the automation assembly 130 may be connected to a Programmable Logic Controller (“PLC” controller) that includes a hydraulic apparatus for which to move the assembly 118 or assembly 124. It should be appreciated that the assembly 118 and the assembly 124 include two servo-motors for which to move the respective assemblies 118, 124. However, this arrangement is not limiting and the assemblies 118, 124 may have other motors or a single motor with a geared assembly.

Turning again to the wire feeding assembly 106 shown in FIG. 1, the feeding assembly 106 includes a number of conductive wire supports 136, or a first spool assembly support 136a, second spool assembly support 136b, third spool assembly support 136c, and fourth and fifth spool assembly supports 136d, 136e. Each of the spool assembly supports 136a through 136e includes a spool support bar 138 that is adapted to connect with the respective supports.

Although, one spool support bar 138 is shown it is envisioned that additional second through fifth spool supports include bars that may be placed on each of the remaining spool supports, 136b, 136c, 136d, and 136e. The spool support bar 138 is a generally longitudinal bar like member having a number of posts 140a, 140b, 140c, 140d, 140e, and 140f disposed along an axis of the spool support bar 138, or first spool support post 140a, second spool support post 140b and third through sixth spool support posts 140c through 140e. Each of the spool support posts 140a, 140b, 140c, 140d, 140e, and 140f is disposed through the spool support bar 138 through an aperture thereof and is configured to receive each first and second conductive wire spools 142a, 142b on either side of the spool support posts 140a, 140b, 140c, 140d, 140e, and 140f.

The spool support posts collectively as reference numeral 140 also include a pair of fingers 144a, 144b that corresponds to each of the spools 142a, 142b. Each of the fingers 144a, 144b are configured for orienting the first conductive wire 112a that comes off of the first spool 142a and for orienting a second conductive wire 112b that comes off of the second spool 142b in a taught manner to be introduced to the apparatus 100. Likewise, each of the other spools collectively as reference numeral 142 have similar arrangements with first and second fingers 144a, 144b orienting similar pairs of conductive wire strands 112b, 112g from the other remaining spools 142.

Each of the conductive wire strands generally as reference numeral 112 is tensioned an amount as shown. The strands 112 and are drawn into the bundling assembly 110. The bundling assembly 110 preferably includes a collector 110a. The collector 110a preferably includes a rigid plate 110b that includes a number of inlet ports 150. The number of inlet ports 150 are sized complementary to the strands 112 and circumferentially disposed around a circular plate 110b of the collector 110a to receive each of the conductive wire strands 112a through 112g. It should be appreciated that the apparatus 100 may be formed with several different collectors 110a corresponding to the number of conductive wire strands 112a through 112g that are desired to be wound, if more strands are desired.

The collector 110a is fixedly positioned on a support bar 110c. The collector 110a also includes a second plate 110d that is also supported on the support bar 110c in a mirror image to the circular plate 110b. The second plate 110d receives all of the conductive wire stands 112a through 112g into a single exit port 152 that is disposed on the adjoining second plate 110d. Each of the first through twelfth conductive wire strands 112a through 112g are pulled in tension through the inlet port 150. Each of the first through twelfth conductive wire strands 112a through 112g are then manipulated through an exit or through the exit port 152 to form the conductive wire bundle 114 as shown. It should be appreciated that although twelve spools 142 are shown to form the conductive wire bundle 114, the apparatus 100 may be used with any number of conductive wire strands 112a through 112g including up to sixty spools or more arranged on each of the spool supports 136a through 136e as shown.

Turning now to FIG. 2, there is shown a close up perspective view of the apparatus 100 without a stator 102, or during an initial operation before a loading of the apparatus 100. As shown the apparatus 100 includes a stationary support structure 122 for holding the arbor 116. The support structure 122 includes a first post 146 and a second post 148. The second post 148 includes an alignment port 154. The alignment port 154 is configured for receiving the conductive wire bundle (not shown) from the exit port 152. The first and second posts 146, 148 are supported on the stationary support 122 and are arranged in a cantilever arrangement relative to the stationary support 122.

The first and the second posts 146,. 148 each have complementary positions relative to one another so the conductive wire bundle 114 (shown in FIG. 1) may communicate with an entrance port 156 of the arbor 116 which is disposed in the first post 146 through an aperture 158. Alternatively, the first post 146 may support the arbor 116 in other manner so long as the arbor 116 may receive the conductive wire bundle 114 through the entrance port 156 of the arbor 116. The first and the second post 146, 148 are made of a rigid material such as titanium, steel, or another metal, and it should be appreciated that the arbor 116 is fixedly supported in the first post 146 through aperture 158. The first post 146 and the arbor 116 are rigidly attached to one another and will remain stationary during the winding process.

As also shown in FIG. 2, the second rotating assembly 124 will be now described. The second rotating assembly 124 comprises a motorized fly wheel 160 that is disposed underneath the stator holder 126 on the rack support 128. The fly wheel 160 is preferably connected to a servo-motor, which is PLC controlled, as discussed above. However, it is envisioned that the fly wheel 160 is not necessary and the stator holder 126 may be configured to rotate using a separate motor, or include multiple linkages to rotate the stator holder 126 using a shared motor with the first movable assembly 118. In this non-limiting embodiment, the second rotating assembly 124 also includes a band 162 that is in contact with a circumferential edge 164 of a stator wheel 166. The stator wheel 166 surrounds the stator holder 126. The stator wheel 166 is rigidly connected to the stator holder 126. The fly wheel 160 is connected to a motor (not shown) and is further connected to the controller 132. The controller 132 is configured to actuate the motor to control the rotation of the fly wheel 160. The controller 132 is preferably a PLC controller and is configured to actuate and rotate the flywheel 160 a predetermined radial amount. The controller 132 may the control the flywheel 160 and communicate a control signal to actuate the flywheel 160 and rotate the flywheel 160 a predetermined radial amount, and otherwise control the rotational direction of the flywheel 160 such as by communicating a control signal to rotate the flywheel 160 clockwise or counterclockwise.

In operation and upon being actuated, the flywheel 160 is controlled to rotate, either clockwise and/or counterclockwise and this rotation will rotate band 162. Band 162 in response will similarly rotate the circumferential edge 164 of the stator wheel 166. In one embodiment, the edge 164 includes a roughened surface conducive for frictional engagement between the band 162 and the edge 164, but it should be appreciated that the surface will not disturb an orientation of the band 162 on the edge 164 or otherwise damage the edge 164 or cut the band 162. The flywheel 160 is operatively coupled to the controller 132 and may be controlled by the controller 132 so as to rotate a minute amount to advance the conductive wire bundle (not shown) into a another slot 104 of the stator 102 as will be discussed herein.

The first movable assembly 118 preferably includes the support rack 128. The rack 128 is dimensioned to be sturdy and include both the stator wheel 166 and the stator holder 126 received therein. The support rack 128 is a rigid member that includes a horizontal support trolley 170 connected thereto. Horizontal support trolley 170 is located underneath the second rotating assembly 124 and provides support to the first movable assembly 118 and the support rack 128. The horizontal support trolley 170 rides along the track 120 which is disposed under the trolley 170. As shown, the track 120 includes a first lateral stop 172 and a second lateral stop 174 to ultimately limit the movement of the trolley 170 within a first and second defined limit. The trolley 170 also is operatively connected to an automation assembly 130 that is further connected to the PLC controller 132 and the automation assembly 130 may control the movement of the trolley 170 on the track 120 within the predetermined limits in a hydraulic manner.

The trolley 170 includes the automation chain 176 that operatively couples to the automation assembly 130 and permits the trolley 170 to be advanced distally and proximally in a longitudinal manner. For example, the trolley 170 may be controlled to travel in a first longitudinal manner such as six inches, and then stop. Thereafter, the trolley 170 may further include a braking device (not shown) to hold the trolley 170 at this fixed location on the track 120. The braking device (not shown) may permit the second rotating assembly 124 to rotate a predetermined amount without disturbing a longitudinal orientation of the trolley 170 on the track 120. Thereafter, after the second rotating assembly has concluded its rotation, the trolley 170 may be configured to release the braking device. Thereafter, the trolley 170 may be configured to move in an opposite direction on the track 120 or retracted in the opposite direction. In this manner, the support rack 128, that is supported by the trolley 170, may be advanced forward and backward and travel relative to the track 120 in a controlled manner. It should be appreciated that various other alternative configurations may be possible, such as the arbor 116 riding on the track 120 and the stator holder 126 fixedly connected to the post 146. It should be appreciated that in all embodiments, a safety casing may enclose the support rack 128, trolley 170 and the track 120, and that the trolley 170 and track 120 are well lubricated for repeated motion.

Turning now to FIG. 3, the apparatus 100 is shown with a fresh stator 102 disengaged from the apparatus 100. In one embodiment, the apparatus 100 may be configured to include separate discrete assemblies that form the stator 102 and form the axially disposed slots 104 in the stator 102. Once formed, the stator 102 is loaded with the axially disposed slots 104 into to the apparatus 100 as shown by reference arrow 180. This loading may be also performed in an automated or manual manner.

The apparatus 100 includes that the stator 102 having a number of axially disposed slots 104 is inserted into the stator holder 126 as shown by reference arrow 180. As shown, the stator 102 is opened at an end and is configured in size to receive the arbor 116 in an exact and precise manner. Moreover, in one embodiment, the stator 102 has a diameter which is slightly larger than the diameter of the arbor 116 and the arbor 116 is configured to remain stationary while the stator 102 is moved in order to wind the conductive wire (not shown) into the axially disposed slots 104 which will be discussed herein.

Turning now to FIG. 4, as shown, when the stator 102 is disposed in a loading aperture 182 in the stator holder 126, the stator 102 having the axially disposed slots 104 is in general alignment in height, width and length with the stationary arbor 116. It should be appreciated that at all times during the winding procedure no matter the rotation or the translation of the stator 102, the arbor 116 and the stator 102 remain in alignment with another.

Turning now to FIG. 5, the trolley 170 may be advanced forward or in a direction toward the arbor 116 so the arbor 116 is received in the stator 102 and may pass through the stator 102 so about a midpoint M of the arbor 116 will generally be brought into alignment with the slots 104 of the stator 102. It is understood that the conductive wire bundle 114 as shown in FIG. 5 will be wound in the slots 104 from a midpoint M of the arbor 116 through a port 184. In operation, the conductive wire bundle 114 passes through the alignment port 154 that is disposed on the second post 148. Thereafter, the conductive wire bundle 114 passes into the entrance port 156 of the arbor 116 and through the first post 146 as shown. The conductive wire bundle 114 will then pass through the interior space of the arbor 116 and to the feeding port 184 at a midpoint M on the arbor 116. The wire bundle then passes through the feed port 184 for loading into the stator 102 and to wind the conductive wire bundle 114 into the axially disposed slots 104 of the stator 102.

As shown in FIG. 5, to accomplish the winding of the stator 102, the first movable assembly 118 will move in a first direction or toward the arbor 116 so the arbor 116 is received in the stator 102 with the arbor feed port 184 releasing the conductive wire bundle 114 disposed in a first slot 186 of the axial slots 104 shown in FIG. 11. Preferably, the conductive wire bundle 114 (held in the feed port 184 of arbor 116) is held taught and the first movable assembly 118 is advanced in the first direction. This movement will lay the conductive wire bundle in a first slot 186 of the slots 104 in the stator 102 as shown in FIG. 11. Thereafter, after the conductive wire bundle 114 is in the first slot 186, the first movable assembly 118 will stop and hold its position on the track 120 as shown by reference arrow 200.

Thereafter, the arbor 116 will be rotated relative to the stator 102. The rotation will be accomplished by the second rotating assembly 124 rotating the stator holder 126. In this manner, the controller 132 will provide a control signal to the flywheel 160. The control signal causes the flywheel 160, in response, to rotate the band 162 which will physically turn the stator 102 positioned in the stator holder 126 clockwise or counterclockwise a predetermined amount in order to move the conductive wire bundle 114 into the next available or second axially disposed slot 188 (shown best in FIG. 11). In this manner, the conductive wire bundle 114 will be received in a second axially disposed slot 188 shown in FIG. 11 of the number of axially disposed slots 104 as shown by reference arrow 202. Thereafter, the trolley 170 will traverse in an opposite direction on the track 120 as shown by reference arrow 200. This moves the conductive wire bundle 114 in a direction to fill the second slot 188, or across the length of the second slot 188 of the stator 102. This process is repeated by the controller 130 so as to wind the remaining slots 104 (FIG. 11).

Turning now to FIG. 6, there is shown a close up perspective view of the arbor 116 detached from the first post 146 of the support structure 122. As shown the arbor 116 is a resilient cylindrical member. The arbor 116 includes a support end 206 and a free end 208. Disposed on a surface between the support end and the free end is a feed port 184. The feed port 184 is an aperture or slot that is disposed through the arbor surface M that tensions the conductive wire bundle 114 and holds the conductive wire bundle 114 outside of the arbor 116. It should be appreciated that the feed port 184 may be placed in other locations along the arbor 116, or the arbor may have multiple feed ports 184 to assist with the winding. The conductive wire bundle 114 is configured to be retained through the feed port 184 for winding into the axially disposed slots 104 of the stator 102.

Turning now to FIG. 7, there is shown the stator holder 126 in a perspective view or detached from the apparatus 100. The stator holder 126 includes loading aperture 182 and a housing 210. Preferably, the stator 102 is loaded into the loading aperture 182 from a rear of the stator holder 126. Alternatively, the stator 102 could be loaded from a front portion of the stator holder 126 through aperture 182. Various configurations are possible and within the scope of the present disclosure. Disposed on a circumference of housing 210 are a number of channels 212, 214, 216. Preferably, the channels 212, 214, and 216 engage with a complementary structure on the stator wheel 166 shown in FIG. 2 so as to permit the housing 210 to rotate in a similar manner with the stator wheel 166.

Turning now to FIG. 8, there is shown a rear exploded view of the stator holder 126. The stator holder 126 includes a bushing 220 with a locking ring 218 on a first rear side. The stator holder 126 also includes a stop ring 222 and an orientation ring 224 on a second opposite side that communicates with the arbor 116. The stator holder 126 includes a collet 226. The collet 226 is a flexible neck type structure that is disposed in the bushing 220. The collet 226 assists with orienting slightly differently sized stators 102 in the loading aperture 182. The lock ring 218 may be removed by screws 332, 334 which further communicate with springs 228 and 230 which are configured for biasing the locking ring 218 therein. Thereafter, a new unwound stator 102 is placed in the loading aperture 182 in the collet 226. Thereafter, the locking ring 218 may be closed over the bushing 220 that forms the housing 210 of the stator holder 126 with the stator 102 therein for winding. Once the winding is completed, the locking ring 218 may be removed again, and the wound stator 102 replaced with a new stator 102. The orientation ring 224 and the stop ring 222 are placed over and align over the loading aperture 182. The orientation ring 224 and the stop ring 222 are connected to the stator holder 126 using screws 228a through 228c or other similar fasteners. The orientation ring 224 preferably allows the arbor 116 to enter the loading aperture 182 in the correct manner so as to assist with aligning the arbor 116 therein.

FIGS. 9 through 13 show operation of the winding of the stator 102 in detail. As discussed previously, the stator 102 is made from a resilient material, or may be made from a composite structure and includes a distal opening 330 and proximal opening 332 and includes a number of axially disposed channels 104 or slots. It should be appreciated that the apparatus 100 is not limited to any specific channel 104 or geometry and instead may be fashioned as having linear or irregularly shaped slots 104. It is also envisioned that the slots 104 may be sinusoidal shaped, include a herringbone pattern, an elliptical shape, and various other configuration. Various channel configurations are possible and within the scope of the present disclosure.

Turning now to FIG. 10, there is shown a cross-sectional view of the arbor 116 of FIG. 5 with the conductive wire bundle 114 traversing from the entrance port 156 of the arbor 116 to the feed port 184. It should be appreciated that the conductive wire bundle 114 may easily traverse through the arbor interior 234 and from the spools collectively referred to as reference numeral 140 of the feeding assembly 106 shown from FIG. 1. Turning now to FIG. 11, there is shown the conductive wire bundle 114 traversing form the feed port 184 and into a first slot 186 of the stator 102. The arbor 116 moves relative to the stator 102 in a longitudinal manner as shown by reference arrow 200 to move along the first slot 186 with the movement corresponding to the movement of assembly 118 as previously described. Thereafter, the stator 102 is rotated relative to the arbor 116 to move the conductive wire bundle 114 from the port 184 into a second adjacent slot 188 of the stator 102 as shown by reference arrow 202. The rotating movement corresponds to the movement of assembly 124 as previously described. In one embodiment, the conductive wire bundle 114 may further include a varnish to assist with the winding.

Turning now to FIG. 12, the alternating longitudinal movement 200 and rotation 202 will continue for at least as many times for which to fill each of the slots 104 with the conductive wire bundle 114 in an uninterrupted manner. At the conclusion, the conductive wire bundle 114 is cut either manually or automatically to complete the process. Turning now to FIG. 13, when completion of the winding is achieved, some care must be exercised to not withdraw the stator 102 too quickly. Immediately withdrawing the stator 102 may disturb an orientation of the conductive wire bundle 114 disposed or wound in the stator 102. In this aspect, a plug 250 made from a thermoplastic or similar material and having a size suitable to that of the arbor 116 may be placed in the stator 102 to prevent the conductive wire bundle 114 from falling out of the stator 102. The plug 250 mimics the arbor 116 to retain the bundle 114 in the stator 102. In an alternative embodiment, a number of wooden sticks (not shown) or similar material and having a size suitable to that of the arbor 116 may be placed in each slot 104 across the diameter of the stator 102 to prevent the conductive wire bundle 114 from falling out of the stator 102. Moreover, a potting material (not shown) may be placed into the interior 252 of the stator 102 to permanently affix the conductive wire bundle 116 therein. The potting material may comprise ISONEL, another plastic resin, or an epoxy.

In another embodiment, the apparatus 100 may be configured to wind the conductive wire 114 externally relative to the stator 102. In this embodiment, the arbor 116 may be made larger than the stator 102 such that the arbor 116 may pass over the stator 102 to externally wind the stator 102 having a number of channels 104 on an outer surface thereof. It should be appreciated that the apparatus 100 may be configured to wind a number of internal or external stator patterns such as a herringbone, a sinusoidal configuration, a linear configuration or other configurations. The controller 132 may include suitable program instructions stored in memory in order to wind the conductive wire 114 in any desired channel 104 configuration.

While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims

1. An apparatus for manufacturing an internal wound stator, the stator having a generally cylindrical shape with an interior opening and having a plurality of axial slots formed therein, the apparatus comprising:

a winding arbor configured to receive a conductive wire;
a stator loader for supporting a stator, the stator having an interior dimension larger than an exterior dimension of the winding arbor such that the winding arbor and stator may traverse with respect to one another;
a first movable member moving at least one of the winding arbor and the stator;
a second rotating member configured to rotate at least one of the stator and the winding arbor;
the conductive wire being introduced through an interior of the winding arbor;
the first movable member configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a first longitudinal manner and into a first of the plurality of axial slots;
the second rotating member configured to rotate at least one of the first winding arbor or the stator relative to one another to align the conductive wire relative to a second axial slot of the plurality of axial slots; and
the first movable member configured to move at least one of the winding arbor and the stator relative to one another to wind the conductive wire in a second opposite longitudinal manner and into the second axial slot.

2. The apparatus of claim 1, further comprising a first spool providing at least a first conductive wire through a collector; and

a second spool providing at least a second conductive wire through the collector and to form a composite conductive wire bundle made from the first conductive wire and the second conductive wire.

3. The apparatus of claim 1, wherein the second rotating member is configured to rotate at least one of the first winding arbor or the stator relative to one another to align the conductive wire relative to another axial slot of the plurality of axial slots.

4. The apparatus of claim 1, wherein the stator loader comprises a cylindrical bushing member having an aperture surrounded by an orientation collet configured to align the stator therein.

5. The apparatus of claim 4, further comprising a locking ring having a locking ring aperture, the locking ring being placed over the stator loader with the stator in the collet and aligned with the locking ring aperture for holding the stator in the stator holder.

6. The apparatus of claim 1, further comprising a controller configured to control the movement of the first movable member and the second rotating member.

7. The apparatus of claim 1, wherein the winding arbor is stationary and the stator moves.

8. The apparatus of claim 1, wherein the stator is stationary and the winding arbor moves.

9. The apparatus of claim 2, further comprising three or more spools configured to introduce at least three conductive strands to form a conductive wire bundle.

10. The apparatus of claim 9, wherein the three conductive strands are configured to enter a respective first through third openings in the collector.

11. The apparatus of claim 1, wherein the second rotating member further comprises a pulley device connected to a contact surface surrounding the stator loader, the pulley device being operatively connected to a controller to rotate a predetermined radial amount, the predetermined radial amount moving the conductive wire bundle into another axial slot.

12. The apparatus of claim 1, wherein the first movable member comprises a support that rides on a track, the support being operatively coupled to a controller, the controller controlling the support to move relative to the track in a first axial direction and a second axial direction to wind the conductive wire in the first axial slot, and traverse in a second axial direction to wind the conductive wire in the second axial slot

13. The apparatus of claim 1, wherein the stator is rotated about three hundred sixty degrees, and then removed.

14. An apparatus for manufacturing an internal wound stator, the stator having a generally cylindrical shape with an interior opening and having a plurality of axial slots formed therein, the apparatus comprising:

a winding arbor configured to receive the conductive wire, the winding arbor mounted on a support structure;
a stator loader being configured to support the stator, the stator having an interior dimension larger than an exterior dimension of the winding arbor such that the winding arbor and stator may traverse with respect to one another;
a first movable member configured to move the stator relative to the arbor, the first movable member being disposed on a second support structure that rides along a track;
a second rotating member disposed on the second support structure and configured to rotate at least one of the stator and the arbor relative to the other;
the conductive wire introduced through an interior of the winding arbor;
the first movable member configured to move the stator relative to the arbor to wind the conductive wire in a first longitudinal manner and into a first of the plurality of axial slots;
the second rotating member configured to rotate the stator relative to the arbor to align the conductive wire relative to a second axial slot of the plurality of axial slots;
the first movable member configured to move the stator in an opposite direction relative to the arbor to wind the conductive wire in the second axial slot;
the first movable member and the second rotation member alternating translation and rotation until substantially a remainder of the plurality of axial slots are wound with the conductive wire; and
the first movable member separating the stator from the arbor while holding the conductive wire in each of the axial slots.

15. The apparatus of claim 14, further comprising a first spool providing at least a first conductive wire through a collector; and

a second spool providing at least a second conductive wire through the collector and to form a composite conductive wire bundle made from the first conductive wire and the second conductive wire.

16. The apparatus of claim 15, further comprising a cylindrical bushing member having an aperture surrounded by an orientation collet configured to align the stator in the first movable member.

17. The apparatus of claim 16, further comprising a locking ring having a locking ring aperture, the locking ring being placed over the stator loader with the stator in the collet and aligned with the locking ring aperture, the locking ring configured to hold the stator in the stator holder.

18. The apparatus of claim 14, further comprising a controller coupled to a memory and configured to control the movement of the first movable member and the second rotating member.

19. The apparatus of claim 14, wherein the second rotating member comprises a wheel and a pulley configured to rotate the stator holder.

20. A method of manufacturing an internal wound stator, the method comprising:

detachably supporting a stator having a number of internal axial slots relative to an arbor;
passing a conductive wire through a first end of the arbor;
gripping the conductive wire through a second end of the arbor;
passing the arbor relative to the stator in a first direction to wind the conductive wire in a first axial slot;
rotating at least one of the arbor and the stator to introduce the conductive wire into a second axial slot;
passing the arbor relative to the stator in a second opposite direction to wind the conductive wire in the second axial slot;
repeating passing and rotating until a remainder of the axial-slots are wound;
supporting the conductive wire in the axial slots; and
removing the internally wound stator.

21. The apparatus of claim 1, wherein the winding arbor is configured to receive a conductive wire bundle.

22. The apparatus of claim 1, wherein the winding arbor further comprises a feed port, and wherein the conductive wire is introduced to the interior of the arbor to the feed port with the feed port configured to introduce the conductive wire into the plurality of axial slots.

23. The apparatus of claim 14, wherein the winding arbor is configured to receive a conductive wire bundle.

24. The apparatus of claim 14, wherein the winding arbor further comprises a feed port, and wherein the conductive wire is introduced to the interior of the arbor to the feed port with the feed port configured to introduce the conductive wire into the plurality of axial slots.

Patent History
Publication number: 20080016676
Type: Application
Filed: Nov 30, 2006
Publication Date: Jan 24, 2008
Inventors: Robert M. Jones (Brooksville, FL), Joseph M. Lisiecki (Springhill, FL)
Application Number: 11/607,132
Classifications
Current U.S. Class: By Winding Or Coiling (29/605)
International Classification: H01F 7/06 (20060101);