RING MAGNETS FOR SURGICAL PROCEDURES
A medical device and procedure is provided for rapidly forming an anastomosis between two viscera, while minimizing the potential of breaching the mural boundary. The medical device generally includes a first magnet assembly and a second magnet assembly. Each of the magnet assemblies includes a magnetic core defining an axial opening and at leas one includes a transverse passageway. The axial openings are sized to correspond with the size of the desired anastomosis. The transverse passageway is size to permit passage of a wire guide therethrough for placement of the first and second magnet assemblies. The medical device approximates the tissues of the two viscera, such that endoscopic excision and affixation of the tissues may be performed to create the anastomosis.
Latest WILSON-COOK MEDICAL INC. Patents:
This application claims the benefit of U.S. Provisional Application Ser. No. 60/857,901 filed on Nov. 10, 2006, entitled “RING MAGNETS FOR SURGICAL PROCEDURES” the entire contents of which are incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention relates generally to methods and devices for forming an anastomosis between two viscera, and more particularly relates to such methods and devices employing magnets.
BACKGROUND OF THE INVENTIONHistorically, gastrointestinal (GI) surgery has been performed to create a channel between two viscera for the purpose of redirecting bodily fluids, i.e. an anastomosis. For example, intestinal contents or bile may be redirected in patients who have developed an obstruction of the bowel or bile duct due to such conditions as tumors, ulcers, inflammatory strictures or trauma. With reference to
During surgery to form an anastomosis, the two tissues are often brought together and affixed to one another using fixators such as sutures, staples, or some other fixation means. While fixators are being placed, the tissues of the respective viscera are held in proximity to one another using various means. In open surgery this is usually accomplished with graspers, forceps, or other tissue holding instruments that are manipulated by clinicians. In laparoscopic surgery, similar instruments may be used, except that the laparotic access limits the number of instruments to a few percutaneous “ports,” making the technical challenge of the procedure much greater.
When these types of GI surgery are performed, there exists the potential to breech the mural boundary. Thus, extreme care must be taken to prevent contamination of the pleural and abdominal cavities with GI contents, which are laden with bacteria that do not naturally occur in those locations. If significant contamination occurs, then serious infection can set-in, which can lead to serious illness or death if not treated early and vigorously.
To address these limitations and minimize the invasiveness of such surgeries, magnetic anastomosis devices (MADs) have been developed for forming anastomosis. An exemplary MAD is disclosed in U.S. Pat. No. 5,690,656, the disclosure of which is incorporated herein by reference in its entirety. Generally, the MAD of the '656 patent includes first and second magnet assemblies comprising magnetic cores which are surrounded by thin metal rims. The first and second magnet assemblies are positioned in the two viscera between which the anastomosis is desired and brought into close proximity to each other. Due to the magnetic attraction between the two magnetic cores, the walls of two adjacent viscera are compressed between the magnet assemblies and in particular the metal rims, resulting in ischemic necrosis of the walls to produce an anastomosis between the two viscera.
MADs may be delivered through surgical intervention such as laparotomy, over a wire guide using a pushing catheter (and typically under fluoroscopy), by simply swallowing the magnet assemblies of the MAD and using massage under fluoroscopy to align the two magnet assemblies, or endoscopically using grasping forceps. Within about ten days the visceral tissues surrounding the magnets fuse together, and the magnets and entrapped necrotic tissue subsequently detach from the surrounding tissue to leave an opening between the viscera. The detached magnet pair may pass through the remainder of the GI tract naturally, and uneventfully, but are preferably grasped with forceps (ideally just prior to complete detachment) and removed during a follow-up endoscopic procedure.
BRIEF SUMMARY OF THE INVENTIONThe present invention provides a medical device and procedure for rapidly forming an anastomosis between two viscera, while reducing the technical challenge and minimizing the potential of breeching the mural boundary. In this manner, the anastomosis may be formed with surety before the patient leaves the medical facility and eliminates the need for a follow-up procedure. An additional protection against breach of the mural bounding is also provided and there is minimal risk of the anastomosis becoming separated or forming a leak while the patient is not in the medical facility.
According to one embodiment constructed in accordance with the teachings of the present invention, a medical device for approximating the tissues of two viscera includes a first magnet assembly and a second magnet assembly. Each of the magnet assemblies includes a magnetic core defining an axial opening and a transverse passageway. The axial openings are sized to permit formation of the anastomosis therein. The transverse passageway is sized to permit passage of a wire guide therethrough for placement of the first and second magnet assemblies. Once the tissues have been approximated with the medical device, tissue excision and affixation may be performed, preferably endoscopically.
According to more detailed aspects of the medical device, the first and second axial openings may be substantially the same size or may be different in size. The first and second magnet assemblies preferably define first and second rims projecting axially from the first and second magnetic cores. The first and second rims are sized to nest within each other. In one embodiment, the first and second rims are positioned proximate the outer periphery of the first and second magnetic cores, and in a second embodiment the first and second rims are positioned proximate the first and second axial openings of the magnetic cores. The first and second rims preferably define atraumatic engagement surfaces such as flat or rounded edges.
A method for forming an anastomosis between two viscera is also provided in accordance with the teachings of the present invention. Generally, a pair of magnet assemblies is provided having a construction as described above. One magnet assembly is placed into one viscera and the other magnet assembly is placed into the other viscera such that the pair of magnet assemblies are magnetically attracted and compress the tissue of the two viscera between the magnet assemblies. A portion of the tissue of the two viscera located within the axial openings is excised. The tissues of the two viscera are affixed together, thereby forming a secure anastomosis.
According to more detailed aspects of the method, the placing step preferably includes introducing a wire guide into one of the viscera and translating one of the magnet assemblies along the wire guide into the viscera. The excising step includes introducing a cutting instrument into one of the viscera and manipulating the cutting instrument. The cutting instrument may be an electrosurgical device, although numerous other cutting instruments may be employed. The excising step may be performed endoscopically, and the cutting instrument may be introduced through a working channel of an endoscope. The affixing step includes affixing together the tissue of the two viscera located within the axial openings, such as by suturing or stapling. Preferably, the affixing step is also performed endoscopically.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
Turning now to the figures,
Turning now to
A method of forming an anastomosis employing the magnetic assemblies 32, 34 of the medical device 30 will now be described with reference to
As one example, gastrojejunostomy is typically performed by delivery of a first (jejunal) magnet assembly (e.g. magnet assembly 34) over a wire guide and through the oral cavity. A pushing catheter (not shown) is used to push the jejunal magnet assembly along the wire guide to a point within the jejunum 16 that is adjacent to the stomach wall 14. This is usually accomplished with the aid of dynamic radiographic imaging (fluoroscopy). A second (gastric) magnet assembly (e.g. magnet assembly 32) is then introduced into the stomach using an endoscope and grasping forceps. When the gastric magnet is manipulated into a position that is near the jejunal magnet, the force of attraction between the magnets increases to a level that is sufficient to approximate the jejunal and stomach walls, thereby compressing these tissues together between the two magnet assemblies, as shown in
As shown in
Removal of the magnet assemblies 32, 34 may be accomplished by traditional methods used with MADs. For example, grasping forceps can be used to take a hold of one of the magnet assemblies 32, 34 and withdraw the magnet assembly from the site. The second magnet may then pass naturally through the body, or may also be removed endoscopically using grasping forces. The second grasping forceps may be used to engage the other magnet assembly to provide sufficient traction to overcome the magnetic force. Finally, it will be recognized that the magnet assemblies 32, 34 could be left in place to cause necrosis of the remaining portion 28b of the tissues 24, 26, thereby forming an even larger anastomosis than the initial anastomosis 56. In this case, the jackets 40, 42 may be provided with sharp engagement surfaces 43 to facilitate the necrosis of tissues 24, 26, although this is not necessary. After formation of the larger anastomosis, the magnet assemblies 32, 34 may be removed manually or naturally or a combination thereof.
It will be recognized by those skilled in the art that during these anastomosis formation procedures, the ring of compression of the tissues 24, 26 provides an additional barrier that guards against leakage of the GI contents or other bodily fluids depending on the viscera involved. Likewise, the anastomosis is formed with surety before the patient leaves the medical facility, eliminating the need for a follow-up procedure.
In the embodiment of
In
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. For example, the medical can be applied in many different situations other than GI surgery, for example in forming anastamoses between vascular structures, or any body structures. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Claims
1. A medical device for approximating tissues of two viscera for formation of an anastomosis using a surgical instrument, the medical device comprising:
- a first magnet assembly having a first magnetic core defining a first axial opening;
- a second magnet assembly having a second magnetic core defining a second axial opening;
- the first and second axial openings being sized to receive the surgical instrument and permit formation of the anastomosis therein; and
- at least one of the first and second magnet assemblies having a transverse passageway sized to receive and permit passage of a wire guide therethrough for placement of the first and second magnet assemblies.
2. The medical device of claim 1, wherein the first and second axial openings are substantially the same size.
3. The medical device of claim 1, wherein the first and second axial openings are different in size.
4. The medical device of claim 1, wherein the first and second magnet assemblies define first and second rims projecting axially from the first and second magnetic cores.
5. The medical device of claim 4, wherein the first and second rims are sized to nest within each other.
6. The medical device of claim 5, wherein the first and second axial openings are substantially the same size.
7. The medical device of claim 4, wherein the first and second rims are positioned proximate the outer periphery of the first and second magnetic cores.
8. The medical device of claim 4, wherein the first and second rims are positioned proximate the first and second axial openings of the first and second magnetic cores.
9. The medical device of claim 4, wherein the first and second rims define atraumatic engagement surfaces.
10. The medical device of claim 4, wherein the first and second magnet assemblies are disc shaped.
11. The medical device of claim 1, wherein the first magnet assembly defines a first rim projecting axially from the first magnetic core, and wherein the second magnet assembly does not include a rim and is sized to nest within the first rim.
12. The medical device of claim 1, wherein the surgical instrument is a electrosurgery device.
13. The medical device of claim 1, wherein the surgical instrument is an affixation device.
14. Of claim 1, wherein the first and second axial opening have a diameter of at least 10 mm.
15. A method for forming an anastomosis between two viscera, the method comprising:
- providing a pair of a magnet assemblies each having a magnetic core defining an axial opening, the axial openings being sized to correspond with the desired size of the anastomosis;
- placing one magnet assembly into one viscera and placing the other magnet assembly into the other the viscera such that the pair of magnet assemblies are magnetically attracted and compress the tissues of the two viscera between the magnet assemblies;
- excising a portion of the tissues of the two viscera located within the axial openings; and
- affixing together the tissues of the two viscera.
16. The method of claim 15, wherein at least one of the pair of magnet assemblies includes a transverse passageway size to permit passage of a wire guide therethrough, and wherein the placing step includes introducing a wire guide into one of the viscera and translating one of the magnet assemblies along the wire guide and into the viscera.
17. The method of claim 15, wherein the excising step includes introducing a cutting instrument into one of the viscera and manipulating the cutting instrument.
18. The method of claim 15, wherein the excising step is performed endoscopically.
19. The method of claim 15, wherein the affixing step includes suturing together the tissues of the two viscera located within the axial openings.
20. The method of claim 15, wherein the affixing step includes suturing or stapling the tissues of the two viscera located within the axial openings.
21. The method of claim 15, wherein the affixing step is performed endoscopically.
22. The method of claim 15, wherein the pair of magnet assemblies compress the tissues over a ring-shaped area located radially outward of the axial openings.
Type: Application
Filed: Nov 9, 2007
Publication Date: May 15, 2008
Applicant: WILSON-COOK MEDICAL INC. (WINSTON-SALEM, NC)
Inventors: KENNETH J. CHANG (Cerritos, CA), KENNETH C. KENNEDY (CLEMMONS, NC)
Application Number: 11/937,862
International Classification: A61B 17/11 (20060101);