Water extraction panels system
A modular water drainage device for relieving water-logged land underneath sealed and partially sealed surfaces, such as roads and buildings, is described. Vertical planks provide support to the water conduit as well as structural integrity to the module. The planks are connected to top and bottom pans, where the bottom pan serves as an impermeable trough-like structure for the collection of water. Wire screens fastened to the exterior of the module retain particulate outside the module. Openings in the top panel of the module allow a vacuum hose into the interior space between the vertical planks, for easy removal of accumulated silt. Modules can be arranged individually, connected linearly, in parallel, or perpendicular to each other. The present invention may also contain a system for controlling, recording and communicating the operation of a building ground water extraction device. This way, the building owner or operator is immediately and continuously informed about the ground water problem, if any, around or under the building. Also, if there is a ground water problem, there are accurate and up-to-date records about it. Therefore, proper remedial efforts may be planned and undertaken.
This application claims priority of Provisional Application Ser. No. 60/799,241, filed May 9, 2006, and entitled “Water Extraction Panels System”, and Provisional Application Ser. No. 60/902,454, filed Feb. 20, 2007, and entitled “Ground Water Extraction Control and Communication System for Buildings, which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to drainage for land areas. More particularly, the present invention relates to a modular system for draining the ground in water-logged areas, especially in the vicinity of roads and buildings, to provide relief to the surface structure. Also, this invention relates to a system for controlling the extraction of ground water near buildings, and for recording and communicating the operation of the system for the benefit of the building owner or operator.
2. Description of the Prior Art
Construction and the development of land usually requires the installation of drainage infrastructure underneath partially or fully sealed surfaces. The problem with most drainage systems today lies in the fact that, over time, the drain pipes clog up with soil and fine silt, and servicing these pipes can be a very complex, difficult, and expensive undertaking.
Hurley, U.S. Pat. No. 4,988,235, describes a system for draining land areas through siphoning from a permeable catch basin. A principle catch basin is situated below ground level, having side walls partially constructed of permeable geotextile fabric, which allows for sub-surface water and air flow into the basin. The system includes a siphon that automatically drains the collected water to a distant collection point or exit point.
Urriola, U.S. Pat. No. 5,810,510, describes an underground drainage system, in which storage tanks with perforated wall modules are wrapped in water permeable geotextile. This system is preferably buried in clean sand, whereby rainwater and runoff is directed to flow into the piping connected to the storage tanks, and back through the walls of the piping into the first available strata where the surrounding ground is not saturated.
Kupke et al., U.S. Pat. No. 6,048,132, describes a filter underdrain with prefabricated cells. The prefabricated cells may have a one piece construction with side walls and a bottom, in which the side walls may include a porous plate support ledge with a ridge at the center of the ledge. The ridge helps ensure that the sealant forms an effective gasket when the porous plates are installed.
Wagner et al., U.S. Pat. No. 6,079,903, describes a drain channel system, in which a lower channel section incorporates a continuous cavity that is open toward the bottom, and underneath a seepage area is located for draining off surface water. The cavity is connected to a reservoir having a dirt filter, or alternatively the dirt filter is between the reservoir and the cavity.
Wilkerson, U.S. Publication No. 2003/0118403, describes a drainage system for sports fields, in which a receptacle is positioned below the surface for receiving drain water and for discharging the water through an outlet. A perforated pipe water collection system can be attached to the receptacle to direct water to the receptacle interior space, and access to the interior space of the receptacle is granted through a removable receptacle cover. The receptacle cover is sufficiently strong to hold the overlying weight of people and equipment.
Froehly, U.S. Pat. No. 6,712,554, describes a modular drainage unit, characterized by an elongated body, traversed by a longitudinal collecting conduit, and comprising flow passages opening on the peripheral walls of the body and emerging into the conduit. Drainage water circulates by gravity toward the collecting conduit. The invention is to be used for draining grounds in general and around buildings.
Parker, U.S. Publication No. 2004/0091320, describes a subterranean drain device with improved filtration. The invention features a monolithic “sandwich” construction consisting of a planar top and base sheets which are set apart by an array of supports integrally joined to the sheets. A filtering adjunct is provided that assures exclusion of particulate in soil. The fabric used for filtration is prevented from occluding most drainage apertures by being fixed to a permanent stand-off network of supportive projections from the top or bottom sheets.
A primary objective of the present invention is to provide an efficient modular underground drainage system for the relief of roads, highways, and other sealed surface structures.
Another objective of the present invention is to provide a drainage system in which soil and silt does not build up in the drainage pipe.
Another objective of the present invention is to provide a drainage system in which the access to and removal of collected silt is both simple and efficient.
SUMMARY OF THE INVENTIONThe present invention is a modular water drainage system for relieving water-logged land underneath sealed and partially sealed surfaces, such as roads or buildings. A single module of the system includes top and bottom pans, and vertical planks that provide support to the water conduit as well as structural integrity to the module. The bottom pan is an enclosed, trough-like structure that fills with water to the level of the conduit. The conduit may be a short upstream inlet pipe section into the box, and a short downstream outlet pipe section out of the box, with flow-through holes in each vertical plank. Alternatively, a pipe can be inserted through the length of the module, which carries water to a collection tank or reservoir, or to a storm sewer.
Wire screens are fastened to the exterior of the module to retain outside earth particulate, and an impermeable pan is sealed to the lower portion of the module to provide a reservoir for water collection, and to prevent silt and other fine particulate from flooding the module upon installation. The top panel of the module includes holes for inserting a vacuum hose into the interior of the module, between the vertical planks, for easy removal of accumulated silt over time. Multiple modules can be connected to each other directly for a linear arrangement, placed in a parallel arrangement and connected to a central drain pipe, or connected perpendicularly, depending upon greatest drainage efficiency for the land area.
Also, the present invention is a system for controlling, recording and communicating the operation of a building ground water extraction device. Typically, the subject system:
-
- 1. detects the presence of water to be extracted;
- 2. initiates the operation of equipment, typically pump(s), to extract the detected water;
- 3. records the operation of detector(s) and extraction equipment, and optionally, the volume of water extracted; and
- 4. optionally, communicates the recorded data from the system to a remote building owner or operator.
This way, the building owner or operator is immediately and continuously informed about the ground water problem, if any, around or under the building. Also, if there is a ground water problem, there are accurate and up-to-date records about it. Therefore, proper remedial efforts may be planned and undertaken.
A preferred embodiment of the present invention is described, a modular water extraction system for draining the ground underneath sealed and partially sealed surfaces, in particular, ground in the vicinity of roads and buildings.
Galvanized wire screens (16) are fastened to the exterior of the module on both sides, allowing water to enter the module while retaining particulate outside the module. Screen strength is sheer so as to maintain its integrity against pressure from without. Additionally, the bottom pan (12) is impermeable, and is sealed around the lower exterior portion of the module, enclosing the lower portion of the module in a trough-like structure for water collection. Once the water reaches the height of the outlet conduit, it will enter the conduit and drain to the desired region. This lower pan (12) also prevents silt and other fine particulate from flooding inside the module upon installation.
The preferred embodiment has openings (18) in the lower section of the vertical planks (14) to allow flow-through access between each compartment of the module, and possesses a short upstream inlet pipe (20) and a short downstream outlet pipe (20′). Alternatively, the module need not have an inlet pipe (20), but may have only an outlet pipe (20′). In another embodiment, a PVC pipe can be inserted through the length of the module. With either embodiment, water collects in the lower trough-like pan (12) of the module until it reaches a level in the pan (12) where the water can enter the outlet pipe (20′) and begins to drain out of the module. Water is collected and removed through the outlet pipe (20′) to a collection tank, reservoir, or storm sewer.
The top pan (10) of the preferred embodiment of the invention includes slots (22), most directly seen in
Multiple module units can be arranged in a single land area, depending upon the drainage requirements and available land space. In one arrangement, seen in
The height and shape of each module unit may also vary depending on the level of ground to be drained and the specific surrounding area of the ground. A module may be taller or shorter. A module may also be circular, conical (
The present invention is also ideal for buildings in wetland regions, where certain restrictions require that the area remain a natural wetland and disallow the total drainage and removal of underground water. A module can positioned upstream in the ground adjacent to a building, so that the water conduit is just below the foundation level of the building. The water is siphoned away from the building foundation into the module and carried to another module downstream that is positioned in the desired wetland region. This second module can then act to redistribute the water to the surrounding region. In this way, the water flow underneath the building is halted and redirected to a region where it can be redistributed, preserving both the natural wetland and the building integrity.
In
In
In
In
In a preferred embodiment of the present invention, Applicant's special water extraction panels system is integrated with the present invention. In this respect, in
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the scope of the following claims.
Claims
1. A water drainage system, comprised of modular units; wherein each module has a top piece, a bottom piece, open side wall, and an empty central space; wherein the bottom piece is an impermeable pan sealed to a lower part of the side wall; wherein at least one pipe extends out from the impermeable pan; and wherein a non-biodegradable screen is fastened to the open side wall.
2. The water drainage system of claim 1, wherein the module is rectangular in shape.
3. The water drainage system of claim 1, wherein the module is wedge shaped.
4. The water drainage system of claim 1, wherein the module is cylindrical in shape.
5. The water drainage system of claim 1, wherein the module is cone shaped.
6. The water drainage system of claim 1, wherein the top piece has a plurality of openings into the central space.
7. The water drainage system of claim 1 for extraction of ground water near buildings wherein the drainage system's operation is recorded and communicated immediately and continuously for the benefit of the building owner or operator.
8. The water drainage system of claim 7 which
- 1. detects the presence of water to be extracted;
- 2. initiates the operation of equipment, typically pump(s), to extract the detected water; and,
- 3. records the operation of detector(s) and extraction equipment, and optionally, the volume of water extracted
Type: Application
Filed: May 9, 2007
Publication Date: May 29, 2008
Inventor: Darrell Riste (Nampa, ID)
Application Number: 11/801,579
International Classification: E02B 11/00 (20060101);