SYSTEM AND METHOD FOR A SONDE SENSOR CLEANING SYSTEM
A sonde cleaning brush is disclosed that has a plurality of bristles extending from the brush surface. The bristles have a stiffener attached to the bristles causing the stiffness of the bristles to increase along the length of the brush while preserving the flexibility of the bristles perpendicular to the brush length. There may be one or more stiffeners attached to the brush bristles.
Latest Hach Company Patents:
- METHODS AND CONTROLLER FOR DETERMINING HYDROGEN SULFIDE TREATMENT DOSAGE
- DETECTION OF PER AND POLYFLUOROALKYL SUBSTANCES USING TOTAL ORGANIC FLUORIDE
- Square wave voltammetry variable acquisition window
- Repeated cycles square wave voltammetry
- Method for measuring monochloramine with a thiocarbamate indicator and buffer
This application claims the benefit of U.S. provisional application No. 60/564,456 filed on Apr. 22, 2004 entitled “A System and Method for A Sonde Sensor Cleaning System,” which hereby is incorporated by reference into this application.
BACKGROUND OF THE INVENTION1. Field of the Invention
The invention is related to multi-parameter sondes, and in particular, to a cleaning system and method for multi-parameter sonde sensors.
2. Statement of the Problem
Multi-parameter sondes are typically deployed in surface waters (rivers, lakes, estuaries, etc.) to take measurements for a plurality of parameters. Examples of some of the types of measurements taken are: pH, dissolved oxygen, turbidity, temperature, conductivity, etc. Some sonde are deployed for extended periods of time, for example up to 7 months. Some of the measurements require shining light into the water and measuring the amount of light reflected or scattered back into the sensor. These sensors typically have a window through which the light passes. During extended deployment, the windows may become fouled by sediment or biological growth. Some sensors have wipers that are meant to clean the surface of the window. However the wipers typically are only for one sensor, do not work well and are hard to replace. Other sensor types may not use light to take the measurement, but may still need the active area of the sensor cleaned. For example, a dissolved oxygen measurement may use membrane-covered polarographic detector to take the measurement. The membrane may need to be cleaned during deployment. Without cleaning the membrane will need to be replaced often at considerable time and expense.
Therefore there is a need for a system and method for cleaning sensors in a sonde.
SUMMARY OF THE SOLUTIONA system and method for cleaning sensors is disclosed.
The height and placement of stiffener 428 can be varied to adjust the amount of force the bristles apply to the active sensor areas. For example, moving the stiffener closer to the ends of the bristles, causes a higher stiffness of the brush in the anti-splay direction. The stiffness of the individual bristles can also be varied by changing the diameter of the bristles, changing the number of bristles per inch, or changing the material of the bristles. For example, metal bristles are typically stiffer than plastic bristles. The angle the brush makes with respect to the cleaning direction may also be varied along with the stiffness of the brush to adjust the amount of force the bristles apply to the sensor area to be cleaned.
In another example embodiment of the invention, there may be multiple stiffeners attached to the bristles.
Controlling the stiffness of the brush allows brushes to be created for different conditions. For example, a stiffer brush may be used in the summer when there is higher biological growth and a softer brush may be used in the winter when the brush is primarily cleaning sediment.
In one example embodiment of the invention, the bristle in the bush may be treated with an anti-fouling compound. One example of an anti-fouling agent is material 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (CAS registry number: 64359-81-5) used by Kuraray Co., Ltd. Of 12-39, 1-chrome, Umeda, Kita-Ku. Osaka, Japan. Other parts of the cleaning arm assembly may also be treated with an anti-fouling agent. In another example embodiment of the current invention, the brush bristles would be hollow and the hollow spaces in the bristles would be filled with an anti-fouling agent. The anti-fouling agent may be a time release anti-fouling compound.
In one example embodiment of the invention, the brush in the cleaning arm assembly would be configured to be field replaceable.
Because the brush is easily field replicable, the sonde may track when the brash needs to be replaced. When the brush needs replacement the sonde may set an alarm or warning so that the user will be notified. There are a number of ways to determine when the brush may need to be replaced. For example, the brush may need replacement after a set number of cleaning cycles or after a time period has expired. In another example embodiment of the invention, the sonde would contain two sensors for the same parameter, for example 2 dissolved oxygen sensors. The sonde would be configured to clean one sensor and to leave the second sensor uncleaned. As the uncleaned sensor accumulated sediment and biological growth, the response time between the two sensors to a change in the measured parameter would diverge. When the response time of the cleaned sensor began to shift to match the response time of the second uncleaned sensor, the brush would need to be replaced.
Claims
1. A method for replacing a cleaning brush in a sonde cleaning arm assembly, comprising:
- removing a clip configured to hold the cleaning brush in the cleaning arm assembly;
- removing the cleaning brush from the cleaning arm assembly;
- installing a replacement cleaning brush into the cleaning arm assembly;
- reattaching the clip to the cleaning arm assembly such that the replacement brush is held in place in the cleaning arm assembly.
2. A sonde cleaning brush, comprising:
- a brush body, the brush body including a bottom surface and a length;
- a plurality of bristles extending from the bottom surface of the brush body, the plurality of bristles including a plurality of first bristle ends attached to the brush body and a second plurality of bristle ends forming a working brush face opposite the plurality of first bristle ends; and
- one or more stiffeners that surround and bind all bristles of the plurality of bristles at one or more stiffener positions located between the brush body and the working brush face.
3. The sonde cleaning brush of claim 2 where the sonde cleaning brush has a cleaning direction that is generally perpendicular to the brush body length and where the plurality of bristles form an angle θ with respect to the cleaning direction.
4. The sonde cleaning brush of claim 3 where the angle θ with respect to the cleaning direction is approximately 110 degrees.
5. The sonde cleaning brush of claim 2 where the plurality of bristles are coated with an anti-fouling compound.
6. The sonde cleaning brush of claim 2 where the stiffener is closer to the bristle tips than to the bottom surface of the brush body.
7. The sonde cleaning brush of claim 2 where the stiffener is configured to provide a varying level of bristle stiffness along the length of the brush.
8. (canceled)
9. A sonde cleaning arm assembly, comprising:
- a cleaning arm configured to attach to a driver in a sonde whereby the cleaning arm rotates in a cleaning direction;
- a brush comprising: a brush body including a bottom surface and a length; a plurality of bristles extending from the bottom surface of the brush body, the plurality of bristles including a plurality of first bristle ends attached to the brush body and a second plurality of bristle ends forming a working brush face opposite the plurality of first bristle ends; and one or more stiffeners that surround and bind all bristles of the plurality of bristles at one or more stiffener positions located between the brush body and the working brush face; and
- a clip snapped to the cleaning arm where the clip is configured to hold the brush to the cleaning arm.
10. The sonde cleaning arm assembly of claim 9 where the bristles are coated with an anti-fouling compound.
11. The sonde cleaning brush of claim 9 where the bristles are angled by a predetermined amount θ off of a plane perpendicular to the cleaning direction.
12. The sonde cleaning arm assembly of claim 9 where θ is equal to approximately 20 degrees.
13. A method for cleaning a sonde, comprising:
- brushing an active sensor element of a sensor installed in a sonde with a cleaning brush in a cleaning direction, where the cleaning brush has a plurality of bristles having a first end attached to a brush base and a second end opposite the first end and where a stiffener is attached between the first end and the second end of the bristles.
14. The method of claim 13 where the bristles are tilted at an angle with respect to a plane that is perpendicular to the cleaning direction.
15. The method of claim 14 where the angle is equal to approximately 20 degrees.
16. The method of claim 13 where the active sensor element is a window.
17. A method, comprising:
- tracking the performance of a cleaning brush used to clean the active sensor elements for a sensor installed in a sonde;
- signaling when the performance of the cleaning brush falls below a predetermined threshold.
18. The method of claim 17 where the performance is tracked by cleaning a first sensor with the cleaning brush and leaving a second sensor un-cleaned and comparing the response time between the first and second sensors.
19. (canceled)
20. (canceled)
Type: Application
Filed: Apr 4, 2008
Publication Date: Sep 4, 2008
Applicant: Hach Company (Loveland, CO)
Inventors: Elijah L. Scott (Loveland, CO), Thomas O. Mitchell (Fort Collins, CO)
Application Number: 12/062,748
International Classification: A46B 9/02 (20060101); A46D 3/00 (20060101); A46D 1/00 (20060101); A46B 15/00 (20060101);