SURFACE TRACKER
A surface tracker includes a tubular marker body having an interior electronic marker and a visual indicator attached to an upper end of the marker body which extends away from the marker body. When deployed, the marker body is mostly underground and the visual indictor extends upwardly from ground level to provide above-ground visual recognition. The electronic marker may be a passive electronic marker that includes a ferrite core assembly having a longitudinal axis which is generally parallel to a longitudinal axis of the marker body. The visual indicator may be a plurality of resilient filaments which pass through a hole in a tab portion of the marker body at its upper end, the filaments being folded about the tab portion and secured to the tab portion using a heat-shrink tube. In an exemplary embodiment, the filaments extend about six inches from the marker body and are brightly colored.
This application is a continuation of U.S. patent application Ser. No. 11/423,701 filed Jun. 12, 2006, which is a continuation of U.S. Pat. No. 7,081,820.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention generally relates to devices used to electromagnetically mark and locate obscured objects, and more particularly to a surface tracker adapted to visually mark a buried object or a location at the surface or ground level, which also provides a transponder or marker to enable the later location of the tracker when it becomes buried.
2. Description of the Related Art
Buried conduits are employed for supplying a wide variety of utilities, including pipelines for gas, water and sewage, and cables for telephone, optical fiber, power and television. It often becomes necessary to locate defective or damaged cables, pipes, etc., in order to repair or replace them. Conversely, it is important to know with as much accuracy as possible the approximate vicinity of such items in order to avoid disturbing them when digging or excavating for other purposes. Above-ground marking devices may be installed immediately after the conduit is buried, but they are often lost, stolen, or destroyed after a short period of use. Therefore, it is common to use underground marking devices or systems to enable the later location of a section or feature of an underground utility.
In the past, three different approaches have been used to indicate the presence of buried conduits, namely, warning tapes, trace wires, and electronic marker systems. A warning tape is simply a band of plastic which is placed above the conduit before burial. These tapes are used to alert the excavation team of the presence of the conduit before any damage thereto might occur. As the backhoe or other mechanical digger excavates the site, it will hopefully uproot a portion of the warning tape prior to contact with the conduit. The primary disadvantage of (non-metallic) warning tapes is that they cannot be detected by any surface instrumentation.
A single trace wire is sometimes buried with a utility line. The trace wire is used as a conductor for an AC signal which is applied to the wire at one accessible end, and then acts as an antenna and radiates an electromagnetic field above ground along its entire length. The electromagnetic field may be detected with an appropriate receiver, and the underground path of the line thereby determined. The earliest cable locators used a single sensor which detects a single null or peak (depending upon the orientation of the sensor) as the unit passes near the cable. Many later devices use two or more sensors that combine the signals to provide an indication of conductor proximity. The most common sensors are ferrite-core antennas, i.e., inductors. Although the conduit itself may act as a conductor (i.e., when steel pipe or copper wire cabling is used), most conduits are non-conductive and therefore require a trace wire. There are three significant disadvantages in the use of a trace wire. First of all, it is necessary to provide above ground access to the trace wire in order to couple the AC signal thereto. Secondly, if a break occurs in the wire (due to excavation, or natural causes such as corrosion, earth movement or burrowing animals), then the wire becomes useless. Finally, the trace wire is too thin to imprint a warning message thereon, precluding any visual warning. Additionally, a receiver cannot distinguish the trace wire from any other conductor in the vicinity.
Electronic marker systems for locating buried objects are known in the art, and generally consist of two types, namely, active and passive markers (transponders). Active markers require the use of a power supply which amplifies a signal source (usually an AC signal). The signal is radiated by the underground marker and detected by a receiver unit above ground. Passive markers, in contrast, have no power supply, but rather operate in a resonant mode, responsive to a transmitted electromagnetic field.
A passive marker is basically a wire coil and capacitor surrounded in a protective envelope, which is then buried adjacent to the cable, pipe, or other object to be located. The marker is self-contained, with no external, accessible connections. Passive markers are activated by radiating a signal into the ground in the area where the marker is expected to be found. The signal is emitted via an inductive coil held close to the surface (the transmitter portion of a transceiver). When the coil is directly over, or near, the passive marker (which is itself an inductive coil), the marker accepts energy within its bandpass and stores it, reaching a sustained amplitude during the transmission cycle. When the transmission cycle ends, the marker re-emits the energy at the marker's resonant frequency with an exponentially decaying amplitude. A second coil within the transceiver unit acts as a receiving antenna which detects the re-radiated energy, alerting the locating technician with an audible tone or other indicator means. See generally, U.S. Pat. No. 5,045,368.
Electronic markers, as well as warning tapes, are usually color-coded according to the particular type of utility line they mark. Specifically, gas line markers are yellow; telephone cable markers are orange; waste water tunnel markers are green; water pipe markers are blue; and power supply markers are red. Similarly, the passive marker is “coded” by tuning the coil for a specific resonant frequency. Five distinct frequencies have been designated: 83.0 kHz for gas; 101.4 kHz for telephone; 121.6 kHz for sewage; 145.7 kHz for water; and 169.8 kHz for power. In this manner, a locating technician searching for, say, a gas line, cannot accidentally activate a telephone marker since his transmitter will only be sending out an 83 kHz signal, which is not within the bandwidth for a telephone marker tuned for 101.4 kHz. Of course, these frequencies have been designated by convention, and are not meant to be restrictive.
There are hybrid systems wherein, for example, a signal is applied to a buried conductor (cable or trace wire), and coupled through the conductor to one or more markers buried adjacent the conductor. Also, a marker can be used to couple one conductor to another, so that the test signal may be conveyed to the second conductor without a direct physical connection.
While several of the foregoing articles can be used to alert an excavation team that a buried object is nearby, there continue to be problems regarding both locating and damaging the cables or conduits. Significantly, none of the foregoing designs offer any above-ground visual indication of the desired location, so a fair amount of trial and error searching must be performed before the signal from the subsurface marker is detected. If there are several underground markers in the same general vicinity, it is very likely that the searcher will mistakenly identify one of the other markers as the target marker, resulting in a mislocate of the obscured object which is only revealed after the site has been excavated. Although a location can be marked above-ground with stakes, paint, flags, etc., these implements can be removed or easily obscured by growth over time. Stakes and flags can further be re-positioned at the surface so there is no guarantee that such an implement will still be marking the proper location at later dates.
In light of the foregoing, it would be desirable to devise an improved article for more accurately locating a buried object during interim construction which also has long-term locatability. It would be further advantageous if the article could provide a visual indication which is easily detected by an excavator.
SUMMARY OF THE INVENTIONIt is therefore one object of the present invention to provide an improved electronic marker for locating a buried or obscured object such as an underground conduit or cable.
It is another object of the present invention to provide such a marker which provides an above-ground visual indication of the presence of the marker.
It is yet another object of the present invention to provide an electronic marker which provides for long-term locatability.
The foregoing objects are achieved in a surface tracker generally comprising a tubular marker body having an electronic marker located inside an interior chamber, and a visual indicator attached to an upper end of the marker body which extends away from the marker body. In the illustrative implementation, the surface tracker is partially buried, with the marker body being mostly underground, while the visual indictor extends upwardly from the ground level to provide above-ground visual recognition. An end cap may be bonded to the lower end to seal an opening that allows insertion of the electronic marker. The electronic marker may be a passive electronic marker that includes a ferrite core assembly having a longitudinal axis which is generally parallel to a longitudinal axis of the marker body. The visual indicator may comprise a plurality of resilient filaments which pass through a hole in a tab portion of the marker body at the upper end thereof, the filaments being folded about the tab portion and secured to the tab portion using a heat-shrink tube. In an exemplary embodiment, the filaments extend about six inches from the marker body. Multiple trackers can be deployed to mark the path of a buried utility. Due to the resilient and durable nature of the filaments, they are resistant to wear and tear and the elements. The visual indication, along with the ability to electronically detect the marker, provides a tracker with superior locating capability.
The above as well as additional objectives, features, and advantages of the present invention will become apparent in the following detailed written description.
The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings indicates similar or identical items.
DESCRIPTION OF THE PREFERRED EMBODIMENT(S)With reference now to the figures, and in particular with reference to
In the illustrative embodiment, visual indicator 14 comprises a plurality of whiskers or filaments 20 that generally extend away from marker body 12 along its longitudinal axis, i.e., vertically or upwardly during actual use of surface tracker 10. Marker body 12 has a tab 22 integrally formed (molded) therewith at its upper end, with a grommet or eyelet 24 which is used to attach indicator filaments 20. The filaments are further secured at tab 22 using elastic or thermoelastic (heat-shrink) tubing 25. Other means, such as adhesives, rings or clamps, could be used to secure the visual indicator to the marker body. The number of filaments employed can vary considerably, for example, 20-25 filament sections which are folded at eyelet 24 to yield 40-50 filaments. The filaments may be constructed of any material which can be formed into durable fibers or strands, preferably a polymer such as nylon or polypropylene. Filaments 20 are preferably resilient so as to snap back from any bending or deformation and retain their vertical orientation to facilitate visual observation. Filaments 20 may have a bright color like orange to be readily identifiable. Other visual indicators besides the filaments could be used, such as ribbons, rods, flags, etc. A battery may optionally be included to power a light source as part of the visual indicator. To extend battery life, the light source may have control electronics which sense a locator-marker signal and power the light source only when the locator signal is present.
Referring now to
The dimensions of surface tracker 10 may vary considerably according to the particular application. The following dimensions are exemplary. Marker body 12 is about 4½″ long (not including end cap 16 or tab 22) with a ⅞″ outer diameter, and tab 22 is about 1″ long. Ferrite core 28 is about 2″ long with a ¼″ diameter. The filament sections are about 12″ long which, after folding, provides 6″ long filaments. The overall length of surface tracker 10 is about 11″.
Surface tracker 10 may be manufactured according to a variety of methods depending upon the particular embodiment selected. For the depicted embodiment, it is preferable to complete the assembly of mark body 12 before attachment of visual indicator 14. Marker body 12 is assembled by inserting electronic marker 26, filling the remainder of the interior chamber with sealing gel, and then fitting end cap 16 onto the lower end of marker body 12. As noted above, the end cap can further be bonded to the marker body, e.g., using a hot-melt adhesive applied with a glue gun. After marker body 12 has been assembled, the filament sections are cut to the desired length and inserted through eyelet 24, and folded to extend away from marker body 12. A piece of heat-shrink tubing is threaded over the filaments after folding, placed about the upper end of tab 22, and then heated to shrink down the tubing and clamp the filaments in place. The foregoing process steps may be automated.
With further reference to
When the tracker is first buried, the construction crew can optionally determine the global positioning satellite (GPS) coordinates for the tracker using a GPS receiver, and record a log entry for those coordinates. If a later field crew is having difficulty visually recognizing the above-ground indicator features (e.g., new vegetation growth hides the filaments), the GPS coordinates can be used to establish a general vicinity to search for the marker with an electronic receiver.
In addition to electronically marking a buried object, surface tracker 10 acts as a visible anti-dig warning device, even if the tracker itself becomes buried. The bright orange filaments alert the digger of the close proximity of the object. Once the surface tracker is recognized, the excavation team can hand-dig to the underground utility structure.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It is therefore contemplated that such modifications can be made without departing from the spirit or scope of the present invention as defined in the appended claims.
Claims
1.-8. (canceled)
9. An article comprising:
- an elongate casing having a longitudinal axis;
- passive electronic marker sealed in an interior portion of said casing, said passive electronic marker having a wire coil defining a longitudinal axis which is generally aligned with the longitudinal axis of said casing; and
- a visual indicator attached to an end of said casing, said visual indicator including at least one resilient member extending away from said casing along the longitudinal axis thereof.
10. (canceled)
11. The article of claim 9 wherein said electronic marker includes a ferrite core assembly.
12. (canceled)
13. The article of claim 9 wherein said casing includes an end cap which seals an open end of said casing.
14. The article of claim 9 wherein said visual indicator comprises a plurality of resilient filaments extending away from said casing.
15. The article of claim 14 wherein portions of the filaments are bundled in different length sections with flags bearing height/depth indications.
16. The article of claim 14 wherein said casing has a tab at one end with a hole in said tab, and said plurality of filaments pass through said hole and are folded about said tab.
17. The article of claim 16 wherein said filaments are secured to said tab using a heat-shrink tube.
18. A surface tracker comprising:
- a tubular marker body having an interior chamber, a lower end, and an upper end;
- a protrusion at said lower end of said tubular marker body to facilitate insertion of said tubular marker body into the ground;
- an electronic marker located inside said interior chamber of said tubular marker body; and
- a visual indicator attached to said upper end of said tubular marker body and extending away from said tubular marker body.
19. The surface tracker of claim 18 wherein said lower end of said tubular marker body has an opening, and further comprising an end cap which seals said opening.
20. The surface tracker of claim 18 wherein said electronic marker is a passive electronic marker and includes a ferrite core assembly having a longitudinal axis which is generally parallel to a longitudinal axis of said tubular marker body.
21. The surface tracker of claim 18 wherein said visual indicator comprises a plurality of resilient filaments.
22. The surface tracker of claim 21 wherein portions of the filaments are bundled in different length sections with flags bearing height/depth indications.
23. The surface tracker of claim 21 wherein said filaments pass through a hole in a tab portion of said tubular marker body at said upper end thereof, and are folded about said tab portion to extend away from said tubular marker body and are secured to said tab portion using a heat-shrink tube.
24. The surface tracker of claim 21 wherein said filaments extend about six inches or more from said marker body.
25.-27. (canceled)
28. A method of deploying a surface tracker having a body portion and a visual indicator attached to and extending away from the body portion, the method comprising:
- orienting the surface tracker such that the visual indicator extends vertically upward from the body portion;
- placing the body portion in the ground, with an electronic marker located inside the body portion adapted to emit an electromagnetic locating signal; and
- substantially burying the body portion in the ground with the visual indicator extending vertically above the ground.
29. The method of claim 28 wherein the visual indicator includes at least one resilient filament, and further comprising attaching a flag to said filament, the flag bearing a height/depth indication.
30. The method of claim 28 further comprising:
- determining global positioning satellite (GPS) coordinates of the buried electronic marker; and
- recording a log entry indicative of the GPS coordinates.
Type: Application
Filed: May 23, 2008
Publication Date: Oct 23, 2008
Inventor: Joe T. Minarovic (Georgetown, TX)
Application Number: 12/126,851