Rational Probe Optimization for Detection of MicroRNAs

A method for the rational optimization of probes for the detection of miRNAs from different species is provided.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application claims priority to U.S. provisional Application 60/620,343 filed Oct. 21, 2004, the entire contents of which are incorporated by reference herein.

FIELD OF THE INVENTION

This invention relates to the fields of molecular biology and the regulation of gene expression. More specifically, the invention provides an improved method for designing oligonucleotide probes for use in nucleic acid detection technologies, including the creation of DNA microarrays for the detection of biologically important microRNA molecules.

BACKGROUND OF THE INVENTION

Several publications and patent documents are cited throughout the specification in order to describe the state of the art to which this invention pertains. Each of these citations is incorporated by reference herein as though set forth in full.

MiRNAs represent a class of small (˜18-25 nt), endogenous, non-coding RNA molecules that function in post-transcriptional regulation of specific target mRNAs (1-5). While several hundred miRNAs have been identified to date, the functions of only a few have been described in detail. This has been hindered in part by their small size and imperfect base pairing to target mRNAs, although several computational methods have been proposed to identify miRNA-target mRNA interactions (6-9). The functions of miRNAs that have been elucidated indicate that these miRNAs influence a wide range of biological activities and cellular processes. miRNAs have been implicated in developmental patterning and timing (1), restriction of differentiation potential (10, 11), maintenance of pluripotency, hematopoietic cell lineage differentiation (10), regulation of insulin secretion (12), adipocyte differentiation (11), proliferation of differentiated cell types (13), genomic rearrangements (14), and carcinogenesis (14-17).

The recent discovery of miRNAs has led to the development of several species specific, high-throughput detection methods. In several reports, spotted oligonucleotide microarray technology has proven to be effective (11, 15, 16, 18-26). However, design of spotted oligonucleotide probes for mature miRNAs presents several challenges. For example, strong conservation between miRNA family members makes it difficult to design probes that are specific at the level of a single nucleotide out of a 20 nucleotide sequence. Thus, it is an object of the invention to provide an improved design strategy for the generation of highly specific probes for miRNA detection.

SUMMARY OF THE INVENTION

In accordance with the present invention, an algorithm for the design of highly selective probes for the detection of miRNAs has been developed. Probes have been designed and validated for miRNAs from six species, thereby providing the means by which to identify novel miRNAs with homologous probes from other species. These methods are useful for high-throughput analysis of micro RNAs from various sources, and allow analysis with limiting quantities of RNA. The system design can also be extended for use on Luminex beads or on 96-well plates in an ELISA-style assay. We optimized hybridization temperatures using sequence variations on 20 of the probes and determined that all probes distinguish wild-type from 2 nt mutations, and most probes distinguish a 1 nt mutation, producing good selectivity between closely-related small RNA sequences. Results of tissue comparisons on our microarrays created using probes designed using the algorithm of the invention reveal patterns of hybridization that agree with results from Northern blots and other methods.

Thus, in one embodiment of the invention, a computer assisted method for optimizing design of probes which selectively hybridize to target miRNAs obtained from a database using a programmed computer, including a processor, an input device and an output device is provided. An exemplary computer assisted method entails inputting into the computer, miRNA sequence data, upper and lower ranges of sequence length and upper and lower ranges of Tm and determining, using the processor, those probes which satisfy the inputted Tm parameters and sequence length following truncation of the sequences at either the 3′ or 5′ end of said sequence. Once such sequences are identified they are then outputted by the program. Also provided in the present invention is a computer program for implementing the method described above. In one aspect of the method, the sequences are truncated at the 5′ end only. In yet another approach, sequences are truncated at the 3′ end only, although truncation at the 5′ end is preferred.

Also encompassed within the invention is a computer-readable medium having recorded thereon a program that provides at least one miRNA probe which specifically hybridizes to the target miRNA according to the method set forth above. A computational analysis system comprising a computer-readable medium described above is also provided.

In yet another aspect, a kit for identifying a sequence of a nucleic acid that is suitable for use as an probe for a target miRNA is disclosed. An exemplary kit comprises (a) an algorithm that identifies a sequence of a nucleic acid that is suitable for use as a probe according to the methods provided herein, wherein said algorithm is present on a computer readable medium; and (b) instructions for using said algorithm to identify said sequence of a nucleic acid that is suitable for use as a probe for said miRNA target nucleic acid.

The invention also provides a method for rational probe optimization for detection of Mi RNA molecules comprising: a) providing a database of known miRNA sequences; b) performing the miRMAX algorithm on said sequences to identify probes having enhanced sequence specificity, substantially similar hybridization temperatures and sequence length; and c) obtaining the probe sequences identified in step b) and optionally synthesizing the same. The method of the invention may also comprise generating the reverse complement of the sequences obtained using the MiRMAX algorithm and preparing concatamers of said probe sequences. Such multimeric probe sequences are useful in a variety of different detection platforms.

In a preferred embodiment, the probes so identified are affixed to a solid support. Exemplary solid supports include, without limitation, glass slides, magnetic beads, glass beads, latex beads, luminex beads, filters, multiwell plates and microarrays.

Finally, the invention also provides an oligonucleotide array comprising an array of multiple oligonucleotides with different base sequences fixed onto known and separate positions on a support substrate, said oligonucleotides being synthesized using the outputted sequences identified using the MiRMAX algorithm of the invention, wherein said oligonucleotides specifically hybridize to miRNA sequences or the complement thereof, and the said oligonucleotides are classified according to their sequence of origin, wherein the fixation region on the support substrate is divided into the said classification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1—Probe design algorithm FIG. 1A shows evaluation of probe design algorithms. Test microarrays were printed with various versions of oligonucleotide probes to compare hybridization signals (sequences of numbered probes are shown in Table 1 hereinbelow). Results show the median intensity values of hybridization to synthetic miR-9 and miR-103, for each of several different probe design truncation patterns. The numbers following the hyphen are codes for various versions of the probe using different design strategies. The patterns chosen by our final probe design algorithm are indicated in bold italics and show hybridization levels equivalent to or, in most cases, stronger than that of the wt (unaltered) probe sequences while retaining appropriate hybridization results. FIG. 1B shows the selected probe design algorithm. A flow chart shows the steps in the selected design algorithm.

FIG. 2—Sequence selectivity by hybridization temperature. Control probe median intensity values (background subtracted) were obtained from hybridization to a pool of synthetic miRNAs, each ˜700 pg. Probes spotted onto the microarray for each control set included a wild-type, anti-sense monomer oligo (Monomer), a designed probe (miRMAX), the designed probe with one nucleotide mismatch (Mut1) or two nucleotides of mismatch (Mut2), a reverse complement probe (Rev) and a randomly shuffled sequence (Shuf). Individual lines indicate values obtained at various hybridization temperatures (see legend). The two predominant patterns of results obtained are demonstrated by the hybridization of (FIG. 2A) miR-16, in which the Mut1 intensities are decreased regardless of hybridization temperature, and (FIG. 2B) miR-152 in which the Mut1 probe showed comparable or slightly greater hybridization to the synthetic miRNA. This greater hybridization was almost entirely removed if more stringent hybridization temperatures were utilized. In an attempt to find if specific mutation types affect the selective hybridization to our designed probes, we plotted the percentage ratio of Mut1 median intensities (mm; mismatch) to probe (pm; perfect match) intensities against the calculated melting temperatures of the miRNA:probe dimer. Individual points are keyed by type of mutation (see legend). While a general trend was observed for all data, no obvious patterns emerged when comparisons were made between relative position of the mutation within the miRNA sequence (C) or type of nucleotide change that was made (D).

FIG. 3—Northern validation of microarray results. (FIG. 3A) Northern blots of three mature miRNA species, miR-191, miR-16, and miR-93, from liver (L) and brain (B) LMW RNA samples are shown. Probes for Northern and dot blots consisted of traditional antisense oligo probes coupled with StarFire detection sequences (IDT). Mean intensity values from the three liver/brain microarray hybridizations are shown in (FIG. 3B) for liver (grey) and brain (black). The integrated volume for each of the Northern images (FIG. 3C) shows similar patterns of relative miRNA levels between the two tissues for each of the three miRNAs. (FIG. 3D) Dot blots compared sequence specificity of synthetic miRNAs spotted on nylon membranes using traditional oligo probes. Synthetic miR-191 miRNA (wt), or a single mutation (mut1) or double-mutation (mut2) RNAs were spotted and detected with probes matching mut1 or wt sequence. Each probe detected its perfect complement as well as a 1 nt mismatch. Interestingly, the mut1 probe hybridized primarily with mut2 RNA over wt RNA, even though both synthetic RNAs were 1 nt different from probe.

FIG. 4—Tissue-specific hybridization. Scatterplot depicts average log2 fluorescence intensity values for each rat and mouse miRNA probe for three liver and brain miRMAX hybridizations.

FIG. 5—Hierarchical clustering of miRNA expression levels in neural stem cell clones. A hierarchical clustering heat map shows rat and mouse miRNA expression levels in various stem cell lines as well as in adult liver and brain LMW RNA. Several miRNAs appear to be expressed more intensely in the stem cell lines as compared to the adult tissue (expanded region), including members of a previously identified “ES-cell specific” miRNA cluster (42).

FIG. 6 shows the MiRMAX algorithm of the invention.

DETAILED DESCRIPTION OF THE INVENTION

We have designed and validated a method for designing oligonucleotide probes for a DNA microarray specific for micro RNAs (miRNA). miRNAs are short (18-22 nt) molecules processed from longer cellular precursors that inhibit translation of mRNA into protein, apparently under tissue-specific and other regulatory control. Using fluorescent labeling technologies developed by Genisphere Inc. (3DNA dendrimers) we have labeled miRNA mixtures directly with large numbers of fluorescent dyes. This method, since it directly labels the miRNA, requires an “anti-sense” DNA probe for construction of a microarray. Others have suggested merely synthesizing trimeric repeated sequences for designing oligo probes. We found that dimeric sequences were adequate, and possibly more sensitive than trimeric sequences. Furthermore, since most of the specificity of the miRNA for target mRNA is near the 5′ terminus, we have developed an algorithm for selecting sequence subsets. Our method optimizes melting temperature for uniform hybridization, retains sequences thought to be relevant for target mRNA binding, and removes nucleotides as needed to produce uniform-sized probes. We tested our algorithm by synthesizing several variations of our design, spotting them onto microarrays and hybridizing them with fluorescence-tagged synthetic miRNAs. Results of this hybridization were used to validate the optimal design algorithm.

Our method provides a straightforward way to produce anti-sense oligonucleotide probe sequences for constructing a microarray specific for miRNAs. The resulting microarray is uniquely suited to the labeling technologies developed by Genisphere, Inc.

The following definitions are provided to facilitate an understanding of the present invention.

The term “micro RNA” refers to small (approximately 18-25 nucleotide), endogenous, non-coding RNA molecules that function in post-transcriptional regulation of specific target mRNAs.

“Nucleic acid” or a “nucleic acid molecule” as used herein refers to any DNA or RNA molecule, either single or double stranded and, if single stranded, the molecule of its complementary sequence in either linear or circular form. In discussing nucleic acid molecules, a sequence or structure of a particular nucleic acid molecule may be described herein according to the normal convention of providing the sequence in the 5′ to 3′ direction. With reference to nucleic acids of the invention, the term “isolated nucleic acid” is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous in the naturally occurring genome of the organism in which it originated. For example, an “isolated nucleic acid” may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a prokaryotic or eukaryotic cell or host organism. When applied to RNA, the term “isolated nucleic acid” refers primarily to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from other nucleic acids with which it would be associated in its natural state (i.e., in cells or tissues). An isolated nucleic acid (either DNA or RNA) may further represent a molecule produced directly by biological or synthetic means and separated from other components present during its production.

The phrase “consisting essentially of” when referring to a particular nucleotide or amino acid means a sequence having the properties of a given SEQ ID NO:. For example, when used in reference to a nucleic acid sequence, the phrase includes the sequence per se and molecular modifications that would not affect the basic and novel functional characteristics of the sequence.

The phrase “solid support” as used herein refers to any surface to which a nucleic acid may be affixed. Such supports include, without limitation, glass slides, magnetic, glass and latex beads, multiwell plates, filters and microarrays.

The term “probe” as used herein refers to an oligonucleotide; polynucleotide or nucleic acid, either RNA or DNA, whether occurring naturally as in a purified restriction enzyme digest or produced synthetically, which is capable of annealing with or specifically hybridizing to a nucleic acid with sequences complementary to the probe. A probe may be either single-stranded or double-stranded. The exact length of the probe will depend upon many factors, including temperature, source of probe and the method used. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide probe typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides. The probes herein are selected to be “substantially” complementary to different strands of a particular target nucleic acid sequence. Such probes must, therefore, be sufficiently complementary so as to be able to “specifically hybridize” or anneal with their respective target strands under a set of pre-determined conditions. Therefore, the probe sequence need not reflect the exact complementary sequence of the target. For example, a non-complementary nucleotide fragment may be attached to the 5′ or 3′ end of the probe, with the remainder of the probe sequence being complementary to the target strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the sequence of the target nucleic acid to anneal therewith specifically. Most preferably, the probes of the invention are selected using the algorithm provided herein which generates probes having annealing characteristics within a specified range by reducing the length of the probe at one or both ends.

The term “specifically hybridize” refers to the association between two single-stranded nucleic acid molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally used in the art (sometimes termed “substantially complementary”). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.

For example, hybridizations may be performed, according to the method of Sambrook et al. using a hybridization solution comprising: 5×SSC, 5× Denhardt's reagent, 1.0% SDS, 100 μg/ml denatured, fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42° C. for at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2×SSC and 1% SDS; (2) 15 minutes at room temperature in 2×SSC and 0.1% SDS; (3) 30 minutes-1 hour at 37° C. in 1×SSC and 1% SDS; (4) 2 hours at 42-65° C. in 1×SSC and 1% SDS, changing the solution every 30 minutes.

One common formula for calculating the stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology is as follows:


Tm=81.5° C.+16.6 Log [Na+]+0.41(% G+C)−0.63 (% formamide)−600/#bp in duplex

As an illustration of the above formula, using [Na+]=[0.368] and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the Tm is 57° C. The Tm of a DNA duplex decreases by 1-1.5° C. with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42° C.

The stringency of the hybridization and wash depend primarily on the salt concentration and temperature of the solutions. In general, to maximize the rate of annealing of the probe with its target, the hybridization is usually carried out at salt and temperature conditions that are 20-25° below the calculated Tm of the hybrid. Wash conditions should be as stringent as possible for the degree of identity of the probe for the target. In general, wash conditions are selected to be approximately 12-20° C. below the Tm of the hybrid. In regards to the nucleic acids of the current invention, a moderate stringency hybridization is defined as hybridization in 6×SSC, 5×Denhardt's solution, 0.5% SDS and 100 μg/ml denatured salmon sperm DNA at 42° C., and washed in 2×SSC and 0.5% SDS at 55° C. for 15 minutes. A high stringency hybridization is defined as hybridization in 6×SSC, 5× Denhardt's solution, 0.5% SDS and 100 μg/ml denatured salmon sperm DNA at 42° C., and washed in 1×SSC and 0.5% SDS at 65° C. for 15 minutes. A very high stringency hybridization is defined as hybridization in 6×SSC, 5× Denhardt's solution, 0.5% SDS and 100 μg/ml denatured salmon sperm DNA at 42° C., and washed in 0.1×SSC and 0.5% SDS at 65° C. for 15 minutes.

A “specific binding pair” comprises a specific binding member (sbm) and a binding partner (bp) which have a particular specificity for each other and which in normal conditions bind to each other in preference to other molecules. Examples of specific binding pairs are nucleotide sequences and nucleotide sequence-binding proteins, antigens and antibodies, ligands and receptors and complementary nucleotide sequences. The skilled person is aware of many other examples and they do not need to be listed here. Further, the term “specific binding pair” is also applicable where either or both of the specific binding member and the binding partner comprise a part of a large molecule. In embodiments in which the specific binding pair are nucleic acid sequences, they will be of a length to hybridize to each other under conditions of the assay, preferably greater than 10 nucleotides long, more preferably greater than 15 or 20 nucleotides long.

The term “substantially pure” refers to a preparation comprising at least 50-60% by weight of a given material (e.g., nucleic acid, oligonucleotide, polypeptide etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-95% by weight of the given compound. Purity is measured by methods appropriate for the given compound (e.g. chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).

The term “dendrimer” as used herein refers to a branched macromolecule useful for the detection of nucleic acid molecules. See for Example U.S. Patent Applications 20020051981, 20040185470, and 20050003366.

The term “tag,” “tag sequence” or “protein tag” refers to a chemical moiety, either a nucleotide, oligonucleotide, polynucleotide or an amino acid, peptide or protein or other chemical, that when added to another sequence, provides additional utility or confers useful properties, particularly in the detection or isolation, to that sequence. Thus, for example, a homopolymer nucleic acid sequence or a nucleic acid sequence complementary to a capture oligonucleotide may be added to a primer or probe sequence to facilitate the subsequent isolation of an extension product or hybridized product. Chemical tag moieties include such molecules as biotin, which may be added to either nucleic acids or proteins and facilitate isolation or detection by interaction with avidin reagents, and the like. Numerous tag moieties are known to, and can be envisioned by, the trained artisan, and are contemplated to be within the scope of this definition.

A “computer-based system” refers to the hardware means, software means, and data storage means used to analyze the information of the present invention. The minimum hardware of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention. The data storage means may comprise any manufacture comprising a recording of the present information as described above, or a memory access means that can access such a manufacture.

To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.

A “processor” references any hardware and/or software combination that will perform the functions required of it. For example, any processor herein may be a programmable digital microprocessor such as available in the form of a electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.

Labeling Methods/Strategies

In a preferred embodiment, the interaction of specific binding pairs (e.g., nucleic acid complexes), are detected by assessing one or more labels attached to the sample nucleic acids, polypeptides, or probes. In a particularly preferred embodiment, the interaction of hybridized nucleic acids is detected by assessing one or more labels attached to the sample nucleic acids or probes. The labels may be incorporated by any of a number of means well known to those of skill in the art. In one approach, the label is simultaneously incorporated during the amplification step in the preparation of the sample nucleic acids or probes. For example, polymerase chain reaction (PCR) with labeled primers or labeled nucleotides will provide a labeled amplification product. The nucleic acid (e.g., DNA) may be amplified, for example, in the presence of labeled deoxynucleotide triphosphates (dNTPs). For some applications, the amplified nucleic acid may be fragmented prior to incubation with an oligonoucleotide array, and the extent of hybridization determined by the amount of label now associated with the array. In a preferred embodiment, transcription amplification, using a labeled nucleotide (e.g. fluorescein-labeled UTP and/or CTP) incorporates a label into the transcribed nucleic acids.

Alternatively, a label may be added directly to the original nucleic acid sample (e.g., mRNA, polyA mRNA, cDNA, etc.) or to the amplification product after the amplification is completed. Such labeling can result in the increased yield of amplification products and reduce the time required for the amplification reaction. Means of attaching labels to nucleic acids include, for example, nick translation or end-labeling (e.g. with a labeled RNA) by kinasing of the nucleic acid and subsequent attachment (ligation) of a nucleic acid linker joining the sample nucleic acid to a label (e.g., a fluorophore).

Detectable labels suitable for use in the present invention include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., Dynabeads™), fluorescent dyes (e.g., see below and, e.g., Molecular Probes, Eugene, Oreg., USA), radiolabels (e.g., .sup.32P, .sup.33P, .sup.35S, .sup.125I, and the like), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold (e.g., gold particles in the 40-80 nm diameter size range scatter green light with high efficiency) or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads. Patents teaching the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241, which are incorporated by reference herein.

Fluorescent moieties or labels of interest include coumarin and its derivatives, e.g. 7-amino-4-methylcoumarin, aminocoumarin, bodipy dyes, such as Bodipy FL, cascade blue, fluorescein and its derivatives, e.g. fluorescein isothiocyanate, Oregon green, rhodamine dyes, e.g. Texas red, tetramethylrhodamine, eosins and erythrosins, cyanine dyes, e.g. Cy3 and Cy5, macrocyclic chelates of lanthanide ions, e.g. quantum dye™, fluorescent energy transfer dyes, such as thiazole orange-ethidium heterodimer, TOTAB, ALEXA etc. As mentioned above, labels may also be members of a signal producing system that act in concert with one or more additional members of the same system to provide a detectable signal. Illustrative of such labels are members of a specific binding pair, such as ligands, e.g. biotin, fluorescein, digoxigenin, antigen, polyvalent cations, chelator groups and the like, where the members specifically bind to additional members of the signal producing system, where the additional members provide a detectable signal either directly or indirectly, e.g. antibody conjugated to a fluorescent moiety or an enzymatic moiety capable of converting a substrate to a chromogenic product, e.g. alkaline phosphatase conjugate antibody; and the like. For each sample of RNA, one can generate labeled oligos with the same labels.

Alternatively, one can use different labels for each physiological source, which provides for additional assay configuration possibilities.

A fluorescent label is preferred because it provides a very strong signal with low background. It is also optically detectable at high resolution and sensitivity through a quick scanning procedure. The nucleic acid samples can all be labeled with a single label, e.g., a single fluorescent label. Alternatively, in another embodiment, different nucleic acid samples can be simultaneously hybridized where each nucleic acid sample has a different label. For instance, one target could have a green fluorescent label and a second target could have a red fluorescent label. The scanning step will distinguish sites of binding of the red label from those binding the green fluorescent label. Each nucleic acid sample (target nucleic acid) can be analyzed independently from one another utilizing the methods of the present invention.

Suitable chromogens which may be employed include those molecules and compounds which absorb light in a distinctive range of wavelengths so that a color can be observed or, alternatively, which emit light when irradiated with radiation of a particular wave length or wave length range, e.g., fluorescers.

A wide variety of suitable dyes are available, being primarily chosen to provide an intense color with minimal absorption by their surroundings. Illustrative dye types include quinoline dyes, triarylmethane dyes, acridine dyes, alizarine dyes, phthaleins, insect dyes, azo dyes, anthraquinoid dyes, cyanine dyes, phenazathionium dyes, and phenazoxonium dyes.

A wide variety of fluorescers may be employed either alone or, alternatively, in conjunction with quencher molecules. Fluorescers of interest fall into a variety of categories having certain primary functionalities. These primary functionalities include 1- and 2-aminonaphthalene, p,p′-diaminostilbenes, pyrenes, quaternary phenanthridine salts, 9-aminoacridines, p,p′-diaminobenzophenone imines, anthracenes, oxacarbocyanine, marocyanine, 3-aminoequilenin, perylene, bisbenzoxazole, bis-p-oxazolyl benzene, 1,2-benzophenazin, retinol, bis-3-aminopyridinium salts, hellebrigenin, tetracycline, sterophenol, benzimidzaolylphenylamine, 2-oxo-3-chromen, indole, xanthen, 7-hydroxycoumarin, phenoxazine, salicylate, strophanthidin, porphyrins, triarylmethanes and flavin. Individual fluorescent compounds which have functionalities for linking or which can be modified to incorporate such functionalities include, e.g., dansyl chloride; fluoresceins such as 3,6-dihydroxy-9-phenylxanthhydrol; rhodamineisothiocyanate; N-phenyl 1-amino-8-sulfonatonaphthalene; N-phenyl 2-amino-6-sulfonatonaphthalene: 4-acetamido-4-isothiocyanato-stilbene-2,2′-disulfonic acid; pyrene-3-sulfonic acid; 2-toluidinonaphthalene-6-sulfonate; N-phenyl, N-methyl 2-aminoaphthalene-6-sulfonate; ethidium bromide; stebrine; auromine-0,2-(9′-anthroyl)palmitate; dansyl phosphatidylethanolamine; N,N′-dioctadecyl oxacarbocyanine; N,N′-dihexyl oxacarbocyanine; merocyanine, 4(3′pyrenyl)butyrate; d-3-aminodesoxy-equilenin; 12-(9′anthroyl)stearate; 2-methylanthracene; 9-vinylanthracene; 2,2′(vinylene-p-phenylene)bisbenzoxazole; p-bis[2-(4-methyl-5-phenyl-oxaz-olyl)]benzene; 6-dimethylamino-1,2-benzophenazin; retinol; bis(3′-aminopyridinium) 1,10-decandiyl diiodide; sulfonaphthylhydrazone of hellibrienin; chlorotetracycline; N(7-dimethylamino-4-methyl-2-oxo-3-chro-menyl)maleimide; N-[p-(2-benzimidazolyl)-phenyl]maleimide; N-(4-fluoranthyl)maleimide; bis(homovanillic acid); resazarin; 4-chloro-7-nitro-2,1,3benzooxadiazole; merocyanine 540; resorufin; rose bengal; and 2,4-diphenyl-3(2H)-furanone.

Fluorescers are generally preferred because by irradiating a fluorescer with light, one can obtain a plurality of emissions. Thus, a single label can provide for a plurality of measurable events.

Detectable signal can also be provided by chemiluminescent and bioluminescent sources. Chemiluminescent sources include a compound which becomes electronically excited by a chemical reaction and can then emit light which serves as the detectible signal or donates energy to a fluorescent acceptor. A diverse number of families of compounds have been found to provide chemiluminescence under a variety or conditions. One family of compounds is 2,3-dihydro-1,-4-phthalazinedione. The must popular compound is luminol, which is the 5-amino compound. Other members of the family include the 5-amino-6,7,8-trimethoxy- and the dimethylamino[ca]benz analog. These compounds can be made to luminesce with alkaline hydrogen peroxide or calcium hypochlorite and base. Another family of compounds is the 2,4,5-triphenylimidazoles, with lophine as the common name for the parent product. Chemiluminescent analogs include para-dimethylamino and -methoxy substituents. Chemiluminescence can also be obtained with oxalates, usually oxalyl active esters, e.g., p-nitrophenyl and a peroxide, e.g., hydrogen peroxide, under basic conditions. Alternatively, luciferins can be used in conjunction with luciferase or lucigenins to provide bioluminescence.

Spin labels are provided by reporter molecules with an unpaired electron spin which can be detected by electron spin resonance (ESR) spectroscopy. Exemplary spin labels include organic free radicals, transitional metal complexes, particularly vanadium, copper, iron, and manganese, and the like. Exemplary spin labels include nitroxide free radicals.

A label may be added to the target (sample) nucleic acid(s) prior to, or after the hybridization. So called “direct labels” are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization. In contrast, so called “indirect labels” are joined to the hybrid duplex after hybridization. Often, the indirect label is attached to a binding moiety that has been attached to the target nucleic acid prior to the hybridization. Thus, for example, the target nucleic acid may be biotinylated before the hybridization. After hybridization, an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected. For a detailed review of methods of labeling nucleic acids and detecting labeled hybridized nucleic acids see Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., (1993)).

Fluorescent labels are preferred and easily added during an in vitro transcription reaction. In a preferred embodiment, fluorescein labeled UTP and CTP are incorporated into the RNA produced in an in vitro transcription reaction as described above.

The labels may be attached directly or through a linker moiety. In general, the site of label or linker-label attachment is not limited to any specific position. For example, a label may be attached to a nucleoside, nucleotide, or analogue thereof at any position that does not interfere with detection or hybridization as desired. For example, certain Label-ON Reagents from Clontech (Palo Alto, Calif.) provide for labeling interspersed throughout the phosphate backbone of an oligonucleotide and for terminal labeling at the 3′ and 5′ ends. For example, labels may be attached at positions on the ribose ring or the ribose can be modified and even eliminated as desired. The base moieties of useful labeling reagents can include those that are naturally occurring or modified in a manner that does not interfere with their function. Modified bases include but are not limited to 7-deaza A and G, 7-deaza-8-aza A and G, and other heterocyclic moieties.

In a preferred embodiment, miRNAs may be detected using the dendrimer based labeling technology of Genisphere, Inc.

Aspects of the invention may be implemented in hardware or software, or a combination of both. However, preferably, the algorithms and processes of the invention are implemented in one or more computer programs executing on programmable computers each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described herein and generate output information. The output information is applied to one or more output devices, in known fashion.

Each program may be implemented in any desired computer language (including machine, assembly, high level procedural, or object oriented programming languages) to communicate with a computer system. In any case, the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device (e.g., ROM, CD-ROM, tape, or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

Thus, in another embodiment, the invention provides a computer program, stored on a computer-readable medium, for generating optimal probes for the detection of miRNAs from a variety of species and tissue types. The computer program includes instructions for causing a computer system to: 1) assemble and record known miRNA sequences; 2) inputting upper and lower parameters of sequence length and Tm; 3) selectively truncating the sequences at either the 3′ or 5′ end or both; and 4) outputting those probes that satisfy the inputted Tm parameters. The computer program will contain the algorithm shown in FIG. 6.

The following example is provided to illustrate various embodiments of the invention. It is not intended to limit the invention in any way.

EXAMPLE I

We report here the development of miRMAX (MicroRNA MicroArray X-species), a cross-species, sensitive, and specific microarray platform for the detection of mature miRNAs. To facilitate detection of the miRNA we have employed a technique which sequence-tags mature miRNAs directly so that they may be detected with high specific-activity fluorescent dendrimers (27). Using these techniques, we identify and validate selected tissue-specific differences in miRNA expression in rat liver and brain tissues, as well as a limited number of embryonic and neural stem tissues.

The following materials and methods are provided to facilitate the practice of the present invention.

Probe Oligo Design

A local MySQL database was developed and populated with mature miRNA sequences obtained from miRBase (http://microrna.sanger.ac.uk, formerly known as the Sanger Registry). While use of this particular database is exemplified herein, other databases are available to the skilled person. All known and categorized sequences for H. sapiens, M. musculus, R. Norvegicus, C. elegans, D. rerio, and D. melanogaster were utilized to create reverse-complementary microarray probes. Probes identified and verified using the miRMAX algorithm are set forth in Table 2 at the end of the specification.

Probe sequences were trimmed as described in Results to balance the Tm of each of the sequences. Several negative control probes were created for each species, with C→A or G→C mutations introduced to create mismatches. A 1 nt mismatch, a 2 nt mismatch, a random sequence, a shuffled sequence, and a monomer probe were generated for each selected control spot to serve as control. Shuffled sequences were randomized using the same base composition and tested for a lack of matches in GenBank by BLAST (28). Artificial miRNAs were synthesized (IDT, Inc., Coralville, Iowa) for each of the 20 miRNAs exemplified hereinto act as positive controls.

Probe sequences were synthesized by IDT, Inc., and suspended in Pronto Glymo Buffer (Coming Life Sciences, Acton, Mass.) at a concentration of 30 μM. Each control spot was printed in duplicate onto the array using an OmniGrid 100 (Genomic Solutions, Ann Arbor, Mich.) and Stealth SMP2 pins (Telechem, Inc., Sunnyvale, Calif.). Probes were arranged by species into different sub-arrays and were printed using an arraying robot on Coming Epoxide slides. Slides were dried overnight in nitrogen, and then placed in a humid chamber for 3 hours to complete coupling. Slides were then washed sequentially in 0.1% Triton-X100, 0.1 M HCl, and 0.1 M KCl, water, and then unreacted groups were blocked with 50 mM ethanolamine in 100 mM Tris-HCl pH 9.0 and 0.1% SDS, followed by water washes. The arrays were then allowed to dry overnight prior to hybridization.

RNA Preparation and Labelling

Individual liver and brain tissue samples were obtained from three adult Long-Evans rats. Low molecular weight (LMW) RNA was extracted from each sample using the mirVana™ miRNA extraction kit (Ambion, Austin, Tex.). LMW RNA was quantified using the RiboGreen™ kit (Invitrogen, Carlsbad, Calif.) high-range assay. 100 ng of LMW RNA was typically used as input for the labelling reaction. Quality of LMW RNA was judged indirectly by running the high molecular weight fraction from the same preparation on an Agilent Bioanalyzer. We observed that low quality high molecular weight RNA produced poor hybridization results on arrays (not shown).

miRNAs were labelled using the Array900 miRNA Direct kit (Genisphere Inc, Hatfield, Pa.). Briefly, 100 ng of enriched miRNA was polyadenylated using poly(A) polymerase (2 U) and ATP (8 μM final concentration) in the provided reaction buffer (1× reaction buffer: 10 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 2.5 mM MnCl2) in 25 μl for 15 minutes at 37° C. Polyadenylated miRNAs were sequence tagged by adding 6 μl of 6× Cy3 or Cy5 ligation mix and 2 μl of T4 DNA Ligase (1 U/μl) and incubating at 20° C. for 30 min in a final volume of 36 μl. For these experiments, 6× Ligation Mix consists of two prehybridized oligonucleotides, a Cy3 or Cy5 capture sequence tag and the appropriate bridging oligonucleotide, in 6× concentrated ligation buffer diluted from 10× Ligation Buffer (Roche). The capture sequence tag is a 31 base oligonucleotide complementary to an oligonucleotide attached to a 3DNA dendrimer labeled with either Cy3 or Cy5. The bridging oligonucleotide (19 nt) consists of 9 nt that are complementary to the capture sequence tag and 10 nt complementary to the added poly A tail (dT10). After terminating the ligation reaction by adding 4 μl of 0.5 M EDTA, the tagged miRNAs were purified a MinElute PCR Purification kit (Qiagen) according to the manufacture's protocol for DNA cleanup.

Array Hybridization

Sequence-tagged LMW RNA was hybridized to the miRNA microarrays using the Ventana Discovery System (Ventana Medical Systems, Tuscon Ariz.) as described below. Tagged miRNA samples were hybridized for 12 hours in ChipHyb buffer (Ventana) containing 8% formamide. After 12 hours, slides were washed with 2×SSC at 37° C. for 10 min; and then with 0.5×SSC at 37° C. for 2 min. After this initial hybridization, a mixture of Cy3 and Cy5 labelled 3DNA dendrimers was applied to each microarray and a second hybridization proceeded for 2 hours at 45° C. Arrays were washed with 2×SSC at 42° C. for 10 min and then removed from the hybridization system. Slides were then manually washed (1 min each) twice in Reaction Buffer (Ventana) and a final, room temperature wash in 2×SSC. Arrays were dried and coated with DyeSaver (Genisphere) to preserve Cy5 intensities. Arrays were scanned using an Axon GenePix 4000B scanner (Molecular Devices, Union City, Calif.) and median spot intensities collected using Axon GenePix 4.0 (Molecular Devices). Data analysis and manipulation were conducted in either GeneSpring 7.0 (Agilent, Redwood City, Calif.), or GeneTraffic Duo (Stratagene, La Jolla, Calif.).

Northern Blots

For each Northern blot, 3 μg of LMW rat brain or rat liver RNA was electrophoretically separated in a 15% urea-polyacrylamide gel. RNAs were again electroblotted onto Hybond-N+ membrane, UV-crosslinked and baked for one hour at 80° C. StarFire probes (29) against miR-93 (5′-CTACCTGCACGAACAGCACTTT-3′), miR-16 (5′-CGCCAATATTTACGTGCTGCTA-3′), and miR- 191 (5′-AGCTGCTTTTGGGATTCCGTTG-3′) were radio-labelled with [α-P32]-dATP at 6000 Ci/mmol. Membranes were probed with one of the StarFire Probes overnight for 50° C.

For the dot blot series of Northern hybridizations, 2 ng of either synthetic wt miR-191 RNA (5′-caacggaaucccaaaagcagcu-3′), a 1 nt mismatch miR-191 RNA (5′-caacgCaaucccaaaagcagcu-3′; mismatch underlined), or a 2 nt mismatch miR-191 (5′-caacgCaaucccaaaagAagcu-3′), was spotted to Hybond-N+ membrane followed by UV-crosslinking and baking at 80° C. for 1 hour. The quantity of synthetic miRNA was determined by comparing a serial dilution to 3 μg of LMW RNA (not shown). The membranes were then probed with StarFire probes (IDT) for either the miRMAX probe sequence for miR-191 or the mut-1 control probe for miR-191 that were radioactively labelled with [α-P32]-dATP 6000 Ci/mmol following the vendor's recommendation. The membranes were probed overnight at 55° C. Dot intensities were recorded using a PhosphorImager (GE Biosciences, Niskayuna, N.Y.) and dot volume was measured using ImageQuant (GE Biosciences) software.

Neural Stem Cell Culture

Neural stem cell cultures were created and maintained as described previously (30, 31). The N01 NS clone was prepared from rat fetal blood and grown as neurospheres using similar methods (D. Sun, unpublished). For comparison, tissues were prepared from adult rat olfactory bulb, brain or liver.

RESULTS Probe Oligo Design

The initial probe design incorporated several concepts, including: (1) trimming of miRNA sequences to adjust for an inherently wide variance in melting temperatures, (2) constructing reverse-complement probes to allow direct hybridization to labelled miRNAs, and (3) comparing monomer, dimer, and trimer probe sequences to maximize sensitivity.

We decided to truncate miRNA sequences in an attempt to reduce the large range of Tm values across all known miRNA sequences. Several different miRNA truncation algorithms were evaluated to determine the effect on hybridization to a labelled extract. Initially, we judged hybridization intensity with reverse-complement dimer probes using several variations in probe sequence content. Initial truncation algorithms removed 1 nt from 3′ or 5′ ends in alternating succession from probes with high Tm. Further refinement of our approach involved calculating which end of the miRNA allowed for the most precise adjustment of Tm during truncation. Additionally, it has been shown that the 5′ “seed” region of a miRNA is conserved among miRNA family members (7, 32-34). Additional weight and preference was therefore given to truncation at the 5′ end, so as to preserve the more variable 3′ sequence, and allow for better discrimination between closely related miRNAs. The final adopted design algorithm created probe sequences with a mean Tm of 66.72° C. with a 95% CI ranging from 66.47 to 66.97° C., as compared to the wider distribution of the original miRNA sequences (mean 68.07° C., 95% CI 67.75 to 68.39° C.). This adjustment in melting temperature is expected to allow more uniform hybridization among different probe sequences with minimal loss of selectivity.

Previous methods for spotting probes for miRNAs have demonstrated the efficacy of constructing multimeric probe sequences to maximize the availability of a complementary sequence for hybridization (18, 20). One potential method would be to add a terminal amine group for attachment to epoxy groups on the glass slides, but since all oligos also contain internal amine groups that would compete for this reaction, we chose to eliminate the use of terminal amines. Using unmodified oligos also greatly reduces the cost of manufacture. We reasoned that multimers of probe sequence would covalently attach to epoxy groups via internal bases with primary amines without significantly affecting hybridization efficiency. With this in mind, we constructed monomer, dimer, and trimer probe sequences for comparison. While both dimer and trimer probes showed enhanced hybridization signal intensity as compared to the monomer sequence, there was no significant advantage to trimer sequences over dimer sequences as both yielded comparable intensities (not shown). For this reason, dimer probe sequences were utilized.

Low molecular weight (LMW) rat brain RNA extracts, hybridized to microarrays with probes of various truncation patterns (Table 1), indicated that our final probe design algorithm provides comparable intensities to wt (full-length, reverse-complement dimer) probe sequences (FIG. 1). In all but a few test cases, the designed probe showed an intensity equal to or greater than that of the wild-type probe. Those with weaker intensities than the wt probe showed only slight variation across different truncation patterns as well, indicating a minimal threshold of intensity for that given miRNA. We conclude that our probe design algorithm produces hybridization results that are indistinguishable from unaltered sequences. Furthermore, dimer probes produce improved hybridization over monomer probes and are similar to trimer probes. Probes were created for each mature miRNA from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster in the Sanger miRNA Registry (35). We designed a total of 457 unique probe sequences targeting 225 human, 198 rat, 229 mouse, 85 fly, and 117 worm miRNAs. See Table 2 at the end of the specification.

TABLE 1 Sequences of oligo probes used in FIG.1A. All sequences are 5′ to 3′, left to right. Target miRNA Variant Printed Probe miR-9 Wt TCATACAGCTAGATAACCAAAGATCATACAGCTAGATAACCAAAGA 1 TCATACAGCTAGATAACCAAAGTCATACAGCTAGATAACCAAAG 2 CATACAGCTAGATAACCAAAGCATACAGCTAGATAACCAAAG 3 TCATACAGCTAGATAACCAATCATACAGCTAGATAACCAA 4 CATACAGCTAGATAACCAAACATACAGCTAGATAACCAAA 5 TCATACAGCTAGATAACCATCATACAGCTAGATAACCA 6 TCATACAGCTAGATAACCTCATACAGCTAGATAACC 7 TCATACAGCTAGATAACCAAATCATACAGCTAGATAACCAAA Tri TCATACAGCTAGATAACCAAAGATCATACAGCTAGATAACCAAA GATCATACAGCTAGATAACCAAAGA miR-103 Wt TCATAGCCCTGTACAATGCTGTCATAGCCCTGTACAATGCTG 1 TCATAGCCCTGTACAATGCTTCATAGCCCTGTACAATGCT 2 CATAGCCCTGTACAATGCTGCATAGCCCTGTACAATGCTG 3 CATAGCCCTGTACAATGCTCATAGCCCTGTACAATGCT 4 TCATAGCCCTGTACAATGCTCATAGCCCTGTACAATGC 5 ATAGCCCTGTACAATGCTGATAGCCCTGTACAATGCTG 6 ATAGCCCTGTACAATGCTATAGCCCTGTACAATGCT 7 TCATAGCCCTGTACAATGTCATAGCCCTGTACAATG 8 TAGCCCTGTACAATGCTGTAGCCCTGTACAATGCTG 9 TCATAGCCCTGTACAATTCATAGCCCTGTACAAT

As compared with traditional microarrays, the miRNA labelling method faces unique limitations and challenges. Importantly, mature miRNAs are not normally polyadenylated, so traditional methods of priming with oligo d(T) will not work. Furthermore, since miRNAs are so small, either reverse transcription into labelled cDNA or direct coupling of fluorescent dyes to miRNAs often produces relatively low specific activities and may also tend to interfere with sequence-specific hybridization. Finally, reverse transcription might label precursors to miRNAs with more dye molecules, enhancing hybridization signals disproportionately from non-mature species.

Parallel to the testing of our probe design algorithm, a direct miRNA labelling reaction developed by Genisphere, Inc., was utilized. In this reaction, LMW RNA is 3′ extended with poly(A) polymerase and then ligated to a “capture” sequence tag via a bridging oligo. The sequence-tagged miRNA is hybridized directly to the anti-sense oligo probes and detected by hybridization to a complementary capture sequence on a fluorescent dendrimer. This protocol allows detection of a single molecule of miRNA with as many as 900 molecules of fluorescent dye, greatly amplifying the signal. While this protocol is designed to label mature miRNA we did not evaluate relative labelling efficiency of mature miRNA versus precursor species. After testing a series of diluted RNA samples, we chose to routinely begin with 100-200 ng of LMW RNA per sample, corresponding to 1 μg of total cellular RNA or less, since this gave median hybridization intensities near the center of our fluorescence detection range (not shown). Using 50-fold less input RNA produced essentially undetectable hybridization, and using 50-fold more RNA produced strong hybridization signals for mismatch probes. Other miRNA microarray labelling methods require 5-7 μg (16, 19, 21) or much more (22, 36).

Optimization of Hybridization

After validation of our probe design algorithm, we examined the ability to select specific miRNA sequences over different hybridization temperatures. Of the probes designed, a subset of 20 was chosen and additional control probes were designed to test sequence selectivity. The control probes included a 1 nt mismatch, 2 nt mismatch, reverse complement, shuffled sequence and monomer probe. The 1 and 2 nt mismatch control probes allowed for determination of the specificity and selectivity of our probes. An equimolar mix of synthetic miRNAs corresponding to the 20 control probe miRNAs was labelled and hybridized to the array. Median signal intensities were calculated for each of the wt probes, 1 nt mutant, 2 nt mutant, reverse complement, shuffled, and monomer sequences and compared for each of the 20 control miRNAs (example results in FIG. 2A and B). As anticipated, signal intensities for the 2 nt mismatch, reverse complement, and shuffled control probes were all but abolished in each case. As in earlier results, monomer probe sequences were also significantly less intense than the dimer sequence. Two distinct patterns emerged from the 1 nt mismatch results. In the majority of the 1 nt mismatch sequences, the intensity was only slightly reduced compared to the miRMAX probe (FIG. 2A). In a few instances however, at less stringent hybridization temperatures, the 1 nt mismatch probe yielded a slightly greater intensity than that obtained from the miRMAX probe (FIG. 2B). This signal was always, however, completely abolished in the 2 nt mutant probe. However, this reduced sensitivity is not due to the probe sequences per se but rather to the assay platform employed.

For each of the 1 nt mutant probes, a ratio of median intensities of the mismatch/perfect match probes (MM/PM) was determined and analyzed to discover what effect, if any, specific mutation types (C→A or G→C; FIG. 2D) or positions within the miRNA sequence (FIG. 2C) had on observed signal intensity. No obvious correlations were identified between sequence transversions or mutation position and signal intensity between the miRMAX probe and the 1 nt mismatches, although a wide range of MM/PM ratios was observed. These observations indicate that our miRNA detection system was quite capable of distinguishing between miRNAs with as few as 2 different nucleotides.

Interpreting the temperature data for all control probes, we selected 47° C. as the best trade-off between sequence specificity and signal intensity. Increasing the temperature to 49° C. slightly reduced the mismatch hybridization signal, but immediately above 49° C. the full-length probe intensity decreased substantially (by 35% from 49-51° C.). We selected 47° C. to reduce the chance of losing signal due to minor changes in temperature. All subsequent data were collected at 47° C.

Our design of control miRNA probes also provides methods for normalizing hybridization results between microarrays. If one sample is assayed per microarray, the second fluorescent channel can be used to label the mixture of 20 synthetic miRNAs as an internal standard. This standard can be used to adjust the fluorescence signal among different microarrays within an experiment. Alternatively, the use of many cross-reacting miRNA probes from other species increases the number of observed hybridization events so that Lowess normalization (37) can be applied to two-color experiments with a more valid number of spots. Experiments can therefore be designed to take advantage of internal standards (one sample per array) or more hybridization results for traditional two-color designs (38).

Validation of miRNA Expression

Northern blots were used to validate relative hybridization signals for three miRNAs, miR-191, miR-16, and miR-93. These miRNAs were chosen among the miRNAs for which control sequences had been made so as to facilitate analysis of sensitivity and selectivity (FIG. 3A). For Northern blots, probes were composed of complementary, monomer sequence modified to use the StarFire labelling system (IDT, Inc.). While none of these three miRNAs was expressed at high levels in either adult rat liver or brain, a similar order of hybridization signals was obtained from both Northerns and miRMAX microarrays. The background-subtracted median intensities from the microarray hybridizations matched the pattern observed for the Northern blots between liver and brain samples across all three miRNAs (FIG. 3B and C), indicating that our miRNA detection method was able to mimic results obtained via traditional Northern blot methods. In addition, observable signals of weakly-expressing miRNAs (miR-191 and miR-16 in liver as examples) were relatively greater (as compared to background levels) in the miRMAX system than in the Northern assay. Furthermore, Northern blots generally required 30-fold more input RNA than the microarrays.

To assess the selectivity of our microarray probes, we performed a dot blot comparing hybridization of wt, 1 nt mutated, and 2 nt mutated miR-191 to both the miRMAX probe as well as a probe with a complementary mutation to the 1 nt mutated miR-191 sequence (FIG. 3D). As anticipated, the miRMAX probe for miR-191 strongly hybridized to the wt miR-191, was slightly weaker in hybridizing to the mut1 RNA, and showed only minimal hybridization to the 2 nt mutated RNA. This indicates that the standard Northern assay is no more selective than our microarray assay in distinguishing between miRNA species with only 1 nt difference. The probe design has also been validated and demonstrated to be effective on other assay systems. The Luminex bead assay system has been used previously to detect miRNAs with a LNA labelling technology (20). We synthesized several terminally-aminated probes, using sequences identical to those found on our microarrays. Using the Luminex assay system with the same labelling system as our microarrays, we were able to reproduce the rank order of detection of mir-1, mir-122 and mir-124a in rat heart, liver and brain LMW RNAs, respectively (not shown). These three probes were chosen from microarray results because of their clear tissue-specific expression patterns. Similarly, using these probes in an ELISA-like well-based hybridization system also replicated the microarray results (not shown). These alternative assays further demonstrate the utility of our probe design and sensitive detection system in methods that may be more applicable for high-throughput assay of limited numbers of miRNAs with optimized sequence selectivity.

Comparison of miRNA Levels in Rat Brain and Liver

To test and validate the new platform, we chose to examine miRNAs in rat brain and liver, where there exists data for comparison. Three adult rat brain LMW RNA samples (Cy3) and three liver LMW RNA samples (Cy5) were labelled and hybridized to our custom chips. A wide range of log2 ratios was observed (FIG. 4) indicating a distinct expression profile in each of the two tissues. Using a 2-fold expression level cutoff, it is interesting to note that there are more miRNAs preferentially expressed in brain than in liver. Expression of brain and liver specific miRNAs was well correlated with previously published data regarding. miR-124a, miR-125a & b, miR-128, miR-181, and miR-9, all previously shown to be enriched in brain tissue (18, 22, 39, 40), were also very highly expressed in the brain tissues in our assay. miR-122, miR-192, miR-194, and miR-337 were expressed at levels much higher in liver than brain in our study which again correlates with other studies (19, 26, 39-41).

miRNA Expression in Neural Stem Cells

Several studies have indicated that miRNAs may play an important role in stem cell maintenance and differentiation (10, 11, 42, 43). As a broad comparative study, several available rat stem cell populations were assayed using the miRMAX microarray system (FIG. 5). While some miRNAs had similar profiles across all stem cell lines and adult tissues, the vast majority showed dramatic differences in expression between the stem cell lines and the adult tissues. Among the samples tested and clustered, the relationships appear to make sense. Liver is the least related sample. The most similar samples are E15.5 neurospheres and RG3.6 cells, which were derived from E15.5 neurospheres (44). RG3.6 is transfected with v-myc to stabilize a radial glial phenotype. The next most similar samples were neurospheres of N01 clones, derived from rat fetal blood, and olfactory bulb. Among the miRNAs that are enriched compared to brain or liver was a member of the “ES”-specific cluster (42), mir-293. Others (mir-223 and 142s) have been identified for expression in hematopoietic cell lines (10). Interestingly, none of these miRNAs correlates with a list found in human embryonic stem cells or embryonic carcinoma cells (43). In many cases, homologous probes from the two selected species hybridized similarly across all samples. We conclude that rat neural stem cell preparations express distinct populations of miRNAs, as has been observed in other species.

DISCUSSION

We have developed an optimized miRNA microarray platform, including rationally-designed probes for multiple species printed on a single microarray as well as a high specific-activity labelling method. Our design reduced the predicted variability of miRNA melting temperatures, but retained hybridization intensities similar to unmodified sequence. Using a subset of probes with specific mutations, we find that all probes are specific within 2 nt, and many are detected selectively within 1 nt. Using a detailed hybridization temperature series, we selected the appropriate hybridization temperature (47° C.), a step that is crucial for optimizing sequence specificity. The labelling method employed herein is straightforward, producing directly-labelled miRNA, which allows use of minimal quantities of input RNA and takes advantage of more stable RNA-DNA hybridization properties. Results are similar to Northern blots performed with 30-fold more RNA. Using this platform, we have performed hundreds of arrays with validated and reproducible results, including the detection of tissue-specific expression in rat brain vs. liver, characterization of miRNA expression in several stem cell clones available in our laboratory, and a comparison of brain-specific miRNAs across all five species present on our chip. The latter study highlights the value of including probes for multiple species on a single microarray. Furthermore, the validation of a rational probe design algorithm is expected to be important for extending miRNA assays to high-throughput experiments as the numbers of miRNAs per genome is predicted to increase from 200 up to 1,000 (34). Efficient miRNA microarray platforms will be valuable in identifying miRNAs regulating biological systems and in predicting interactions with specific target mRNAs.

TABLE 2 Probe ID mRNA Probe Name Probe Sequence 1514 1514-mut1-mo-mir- TGTAAACCATGATGTTCTGCTATGTAAACCATGATGTTCTGCTA 15b 1516 1515-mut2-mo-mir- TGTAAAGCATGATGTTCTGCTATGTAAAGCATGATGTTCTGCTA 15b 1516 1516-rev-mo-mir-15b TAGCAGCACATCATGGTTTACATAGCAGCACATCATGGTTTACA 1517 1517-shuf-mo-mir- TCATATATTCGGCGATAGAGCTTCATATATTCGGCGATAGAGCT 15b 1518 1518-mut1-mo-mir-16 CGCCAATATTTACGTGCTGGTACGCCAATATTTACGTGCTGGTA 1519 1519-mut2-mo-mir-16 CGCCAATATTTAGGTGCTGGTACGCCAATATTTAGGTGCTGGTA 1520 1520-rev-mo-mir-16 TAGCAGCACGTAAATATTGGCGTAGCAGCACGTAAATATTGGCG 1521 1521-shuf-mo-mir-16 CCCAGCATTTATCCGTGGTATACCCAGCATTTATCCGTGGTATA 1522 1522-mut1-cel-mir- AGCTCCTACCCGAAAGATGTAAAGCTCCTACCCGAAAGATGTAA 246 1523 1523-mut2-cel-mir- AGCTCCTACCCGAAAGATTTAAAGCTCCTACCCGAAAGATTTAA 246 1524 1524-rev-cel-mir-246 TTACATGTTTCGGGTAGGAGCTTTACATGTTTCGGGTAGGAGCT 1525 1525-shuf-cel-mir-246 CTAAGCAAAATAGCCGTTACCCCTAAGCAAAATAGCCGTTACCC 1526 1526-mut1-has-mir- CTACCTTCACGAACAGCACTTCTACCTTCACGAACAGCACTT 93 1527 1527-mut2-has-mir- CTACCTTCACGAACAGCAGTTCTACCTTCACGAACAGCAGTT 93 1528 1528-rev-has-mir-93 AAGTGCTGTTCGTGCAGGTAGAAGTGCTGTTCGTGCAGGTAG 1529 1529-shuf-has-mir-93 AATCCCTCCCGAAGTCGCTAAAATCCCTCCCGAAGTCGCTAA 1530 1530-mut1-mir-150 ACTGGTACAAGGGTTGTGAGAACTGGTACAAGGGTTGTGAGA 1531 1531-mut2-mir-150 ACTGGTAGAAGGGTTGTGAGAACTGGTAGAAGGGTTGTGAGA 1532 1532-rev-mir-150 TCTCCCAACCCTTGTACCAGTTCTCCCAACCCTTGTACCAGT 1533 1533-shuf-mir-150 AGCATGGTGTGAACGGAAGGTAGCATGGTGTGAACGGAAGGT 1534 1534-mut1-has-mir- GCGGAACTTAGGCACTGTGAAGCGGAACTTAGGCACTGTGAA 27a 1535 1535-mut2-has-mir- GCGGAAGTTAGGCACTGTGAAGCGGAAGTTAGGCACTGTGAA 27a 1536 1536-rev-has-mir-27a TTCACAGTGGCTAAGTTCCGCTTCACAGTGGCTAAGTTCCGC 1537 1537-shuf-has-mir- TAGCGAACGAGCCACTGTAGTTAGCGAACGAGCCACTGTAGT 27a 1538 1538-muti-mir-200c TCCATCATTACCCGGCATTATTTCCATCATTACCCGGCATTATT 1539 1539-mut2-mir-200c TCCATCATTACCCTGCATTATTTCCATCATTACCCTGCATTATT 1540 1540-rev-mir-200c AATACTGCCGGGTAATGATGGAAATACTGCCGGGTAATGATGGA 1541 1541-shuf-mir-200c TTGCCAACCTTCCTCAGGATATTTGCCAACCTTCCTCAGGATAT 1542 1542-mut1-mmu-mir- AGCTGCTTTTGGGATTGCGTTAGCTGCTTTTGGGATTGCGTT 191 1543 1543-mut2-mmu-mir- AGCTTCTTTTGGGATTGCGTTAGCTTCTTTTGGGATTGCGTT 191 1544 1544-rev-mmu-mir- AACGGAATCCCAAAAGCAGCTAACGGAATCCCAAAAGCAGCT 191 1545 1545-shuf-mmu-mir- CTGTCTGCGGATTTGGTTTCACTGTCTGCGGATTTGGTTTCA 191 1546 1546-mut1-cel-mir- CATACGACTTTGTACAACCAAACATACGACTTTGTACAACCAAA 244 1547 1547-mut2-cel-mir- CATACGACTTTGTAGAACCAAACATACGACTTTGTAGAACCAAA 244 1548 1548-rev-cel-mir-244 TTTGGTTGTACAAAGTGGTATGTTTGGTTGTACAAAGTGGTATG 1549 1549-shuf-cel-mir-244 TAAACCCAGACATTACTATCACTAAACCCAGACATTACTATCAC 1550 1550-mut1-mmu-mir- ACACTCAAAACCTGGCGGGACTACACTCAAAACCTGGCGGGACT 292 1551 1551-mut2-mmu-mir- ACACTCAAAAGCTGGCGGGACTACACTCAAAAGCTGGCGGGACT 292 1552 1552-rev-mmu-mir- AGTGCCGCCAGGTTTTGAGTGTAGTGCCGCCAGGTTTTGAGTGT 292 1553 1553-shuf-mmu-mir- TAAGACCGACGACGACCTCTACTAAGACCGACGACGACCTCTAC 292 1554 1554-mut1-mir-324 ACACGAATGCCCTAGGGGATACACGAATGCCCTAGGGGAT 1555 1555-mut2-mir-324 ACACGAATGCGCTAGGGGATACACGAATGCGCTAGGGGAT 1556 1556-rev-mir-324 ATCCCGTAGGGCATTGGTGTATCCCCTAGGGCATTGGTGT 1557 1557-shuf-mir-324 ACAACTAGGGTACCGCCAGTACAACTAGGGTACCGCCAGT 1558 1558-mut1-mo-mir- CTTCAGCTATCACAGTACTTTACTTCAGCTATCACAGTACTTTA 101b 1559 1559-mut2-mo-mir- CTTGAGCTATCACAGTACTTTACTTGAGCTATCACAGTACTTTA 101b 1560 1560-rev-mo-mir- TACAGTACTGTGATAGCTGAAGTACAGTACTGTGATAGCTGAAG 101b 1561 1561-shuf-mo-mir- TAGCCAGACTATTAGATCTCCTTAGCCAGACTATTAGATCTCCT 101b 1562 1562-mut1-mir-34c CAATCAGCTAAGTACACTGCCTCAATCAGCTAAGTACACTGCCT 1563 1563-mut2-mir-34c CAATCAGCTAAGTAGACTGCCTCAATCAGCTAAGTAGACTGCCT 1564 1564-rev-mir-34c AGGCAGTGTAGTTAGCTGATTGAGGCAGTGTAGTTAGCTGATTG 1565 1565-shuf-mir-34c GGATCTAACCTCACAATACTCCGGATCTAACCTCACAATACTCC 1566 1566-mut1-mmu-mir- ACACTTACTGAGGACCTACTAGACACTTACTGAGGACCTACTAG 325 1567 1567-mut2-mmu-mir- ACAGTTACTGAGGACCTACTAGACAGTTACTGAGGACCTACTAG 325 1568 1568-rev-mmu-mir- CTAGTAGGTGCTCAGTAAGTGTCTAGTAGGTGCTCAGTAAGTGT 325 1569 1569-shuf-mmu-mir- CAAACCATTGGTCAAACCGCTTCAAACCATTGGTCAAACCGCTT 325 1570 1570-mutt-has-mir- CCAAGTTCTGTCATGCACTCACCAAGTTCTGTCATGCACTCA 152 1571 1571-mut2-has-mir- CCAATTTCTGTCATGCACTCACCAATTTCTGTCATGCACTCA 152 1572 1572-rev-has-mir-152 TCAGTGCATGACAGAACTTGGTCAGTGCATGACAGAACTTGG 1573 1573-shuf-has-mir- GGAGATATTCCTTCCGTAACCGGAGATATTCCTTCCGTAACC 152 1574 1574-mut1-dme-mir- ACTGGATAGCACCAGCTGTGTACTGGATAGCACCAGCTGTGT 317 1575 1575-mut2-dme-mir- ACTGGATAGCACCAGCTTTGTACTGGATAGCACCAGCTTTGT 317 1576 1576-rev-dme-mir- ACACAGCTGGTGGTATCCAGTACACAGCTGGTGGTATCCAGT 317 1577 1577-shuf-dme-mir- CATACTGTGTTCAGGCGCACACATACTGTGTTCAGGCGCACA 317 1578 1578-mut1-dme-mir- GCAAGAACTCAGACTTTGATGGCAAGAACTCAGACTTTGATG 11 1579 1579-mut2-dme-mir- GCAAGAAGTCAGACTTTGATGGCAAGAAGTCAGACTTTGATG 11 1580 1580-rev-dme-mir-11 CATCACAGTCTGAGTTCTTGCCATCACAGTCTGAGTTCTTGC 1581 1581-shuf-dme-mir- AGAGGGAGCTGTAAACCTTCAAGAGGGAGCTGTAAACCTTCA 11 1582 1582-mut1-dme-mir-7 ACAACAAAATCACTATTCTTCCACAACAAAATCACTATTCTTCC 1583 1583-mut2-dme-mir-7 ACAACAAAATGACTATTCTTCCACAACAAAATGACTATTCTTCC 1584 1584-rev-dme-mir-7 GGAAGACTAGTGATTTTGTTGTGGAAGACTAGTGATTTTGTTGT 1585 1585-shuf-dme-mir-7 TGCCAAACAATACCCATATCTATGCCAAACAATACCCATATCTA 1586 1586-mut1-cel-mir-40 TTAGCTGATGTACACGCGGTGTTAGCTGATGTACACGCGGTG 1587 1587-mut2-cel-mir-40 TTAGCTGATTTACACGCGGTGTTAGCTGATTTACACGCGGTG 1588 1588-rev-cel-mir-40 CACCGGGTGTACATCAGCTAACACCGGGTGTACATCAGCTAA 1589 1589-shuf-cel-mir-40 TTACCTGTGGGTACCCGATAGTTACCTGTGGGTACCCGATAG 1666 1666-1mer-cel-mir-40 TTAGCTGATGTACACCGGGTG 1667 1667-1mer-hsa-mir- GCGGAACTTAGCCACTGTGAA 27a 1668 1668-1mer-hsa-mir- CTACCTGCACGAACAGCACTT 93 1669 1669-1mer-dme-mir-7 ACAACAAAATCACTAGTCTTCC 1670 1670-1mer-dme-mir- GCAAGAACTCAGACTGTGATG 11 1671 1671-1mer-mmu-mir- AGCTGCTTTTGGGATTCCGTT 191 1672 1672-1mer-cel-mir- CATACCACTTTGTACAACCAAA 244 1673 1673-1mer-cel-mir- AGCTCCTACCCGAAACATGTAA 246 1674 1674-1mer-mmu-mir- ACACTCAAAACCTGGCGGCACT 292 1675 1675-1mer-dme-mir- ACTGGATACCACCAGCTGTGT 317 1676 1676-1mer-hsa-mir- CCAAGTTCTGTCATGCACTGA 152 1677 1677-1mer-hsa-mir- ACTGGTACAAGGGTTGGGAGA 150 1678 1678-1mer-mmu-mir- ACACCAATGCCCTAGGGGAT 324 1679 1679-1mer-mmu-mir- ACACTTACTGAGCACCTACTAG 325 1680 1680-1mer-mo-mir- CTTCAGCTATCACAGTACTGTA 101b 1681 1681-1mer-mmu-mir- TCCATCATTACCCGGCAGTATT 200c 1682 1682-1mer-hsa-mir- CAATCAGCTAACTACACTGCCT 34c 1683 1683-1mer-mo-mir- TGTAAACCATGATGTGCTGCTA 15b 1684 1684-1mer-mo-mir-16 CGCCAATATTTACGTGCTGCTA 1685 1685-1mer-mo-mir- CAATCAGCTAACTACACTGCCT 34c 2001 hsa-let-7a AACTATACAACCTACTACCTCAAACTATACAACCTACTACCTCA 2002 hsa-let-7b AACCACACAACCTACTACCTCAAACCACACAACCTACTACCTCA 2003 hsa-let-7c AACCATACAACCTACTACCTCAAACCATACAACCTACTACCTCA 2004 hsa-let-7d ACTATGCAACCTACTACCTCTACTATGCAACCTACTACCTCT 2005 hsa-let-7e ACTATACAACCTCCTACCTCAACTATACAACCTCCTACCTCA 2006 hsa-let-7f AACTATACAATCTACTACCTCAAACTATACAATCTACTACCTCA 2007 hsa-let-7g ACTGTACAAACTACTACCTCAACTGTACAAACTACTACCTCA 2008 hsa-let-7i ACAGCACAAACTACTACCTCAACAGCACAAACTACTACCTCA 2009 hsa-miR-1 TACATACTTCTTTACATTCCATACATACTTCTTTACATTCCA 2010 hsa-miR-100 CACAAGTTCGGATCTACGGGTCACAAGTTCGGATCTACGGGT 2011 hsa-miR-101 CTTCAGTTATCACAGTACTGTACTTCAGTTATCACAGTACTGTA 2012 hsa-miR-103 TCATAGCCCTGTACAATGCTGTCATAGCCCTGTACAATGCTG 2013 hsa-miR-105 ACAGGAGTCTGAGCATTTGAACAGGAGTCTGAGCATTTGA 2014 hsa-miR-106a CTACCTGCACTGTAAGCACTTTCTACCTGCACTGTAAGCACTTT 2015 hsa-miR-106b ATCTGCACTGTCAGCACTTTAATCTGCACTGTCAGCACTTTA 2016 hsa-miR-107 TGATAGCCCTGTACAATGCTGTGATAGCCCTGTACAATGCTG 2017 hsa-miR-10a CACAAATTCGGATCTACAGGGTCACAAATTCGGATCTACAGGGT 2018 hsa-miR-10b ACAAATTCGGTTCTACAGGGTAACAAATTCGGTTCTACAGGGTA 2019 hsa-miR-122a ACAAACACCATTGTCACACTCCACAAACACCATTGTCACACTCC 2020 hsa-miR-124a TGGCATTCACCGCGTGCCTTAATGGCATTCACCGCGTGCCTTAA 2021 hsa-miR-125a CACAGGTTAAAGGGTCTCAGGCACAGGTTAAAGGGTCTCAGG 2022 hsa-miR-125b TCACAAGTTAGGGTCTCAGGGTCACAAGTTAGGGTCTCAGGG 2023 hsa-miR-126 GCATTATTACTCACGGTACGAGCATTATTACTCACGGTACGA 2024 hsa-miR-126* CGCGTACCAAAAGTAATAATGCGCGTACCAAAAGTAATAATG 2025 hsa-miR-127 AGCCAAGCTCAGACGGATCCGAAGCCAAGCTCAGACGGATCCGA 2026 hsa-miR-128a AAAAGAGACCGGTTCACTGTGAAAAAGAGACCGGTTCACTGTGA 2027 hsa-miR-128b GAAAGAGACCGGTTCACTGTGGAAAGAGACCGGTTCACTGTG 2028 hsa-miR-129 GCAAGCCCAGACCGCAAAAAGCAAGCCCAGACCGCAAAAA 2029 hsa-miR-130a ATGCCCTTTTAACATTGCACTGATGCCCTTTTAACATTGCACTG 2030 hsa-miR-130b ATGCCCTTTCATCATTGCACTGATGCCCTTTCATCATTGCACTG 2031 hsa-miR-132 CGACCATGGCTGTAGACTGTTCGACCATGGCTGTAGACTGTT 2032 hsa-miR-133a ACAGCTGGTTGAAGGGGACCAAACAGCTGGTTGAAGGGGACCAA 2033 hsa-miR-133b TAGCTGGTTGAAGGGGACCAATAGCTGGTTGAAGGGGACCAA 2034 hsa-miR-134 CCTCTGGTCAACCAGTCACACCTCTGGTCAACCAGTCACA 2035 hsa-miR-135a TCACATAGGAATAAAAAGCCATTCACATAGGAATAAAAAGCCAT 2036 hsa-miR-135b CACATAGGAATGAAAAGCCATACACATAGGAATGAAAAGCCATA 2037 hsa-miR-136 TCCATCATCAAAACAAATGGAGTCCATCATCAAAACAAATGGAG 2038 hsa-miR-137 CTACGCGTATTCTTAAGCAATACTACGCGTATTCTTAAGCAATA 2039 hsa-miR-138 GATTCACAACACCAGCTGATTCACAACACCAGCT 2040 hsa-miR-139 AGACACGTGCACTGTAGAAGACACGTGCACTGTAGA 2041 hsa-miR-140 CTACCATAGGGTAAAACCACTCTACCATAGGGTAAAACCACT 2042 hsa-miR-141 CCATCTTTACCAGACAGTGTTACCATCTTTACCAGACAGTGTTA 2043 hsa-miR-142-3p TCCATAAAGTAGGAAACACTACTCGATAAAGTAGGAAACACTAC 2044 hsa-miR-142-5p GTAGTGCTTTCTACTTTATGGTAGTGCTTTCTACTTTATG 2045 hsa-miR-143 TGAGCTACAGTGCTTCATCTCATGAGCTACAGTGCTTCATCTCA 2046 hsa-miR-144 CTAGTACATCATCTATACTGTACTAGTACATCATCTATACTGTA 2047 hsa-miR-145 AAGGGATTCCTGGGAAAACTGAAGGGATTCCTGGGAAAACTG 2048 hsa-miR-146a AACCCATGGAATTCAGTTCTCAAACCCATGGAATTCAGTTCTCA 2049 hsa-miR-146b AGCCTATGGAATTCAGTTCTCAAGCCTATGGAATTCAGTTCTCA 2050 hsa-miR-147 GCAGAAGCATTTCCACACACGCAGAAGCATTTCCACACAC 2051 hsa-miR-148a ACAAAGTTCTGTAGTGCACTGAACAAAGTTCTGTAGTGCACTGA 2052 hsa-miR-148b ACAAAGTTCTGTGATGCACTGAACAAAGTTCTGTGATGCACTGA 2053 hsa-miR-149 AGTGAAGACACGGAGCCAGAAGTGAAGACACGGAGCCAGA 2054 hsa-miR-150 ACTGGTACAAGGGTTGGGAGAACTGGTACAAGGGTTGGGAGA 2055 hsa-miR-151 CCTCAAGGAGCTTCAGTCTAGCCTCAAGGAGCTTCAGTCTAG 2056 hsa-miR-152 CCCAAGTTCTGTCATGCACTGCCCAAGTTCTGTCATGCACTG 2057 hsa-miR-153 TCACTTTTGTGACTATGCAATCACTTTTGTGACTATGCAA 2058 hsa-miR-154 CGAAGGCAACACGGATAACCTCGAAGGCAACACGGATAACCT 2059 hsa-miR-154* AATAGGTCAACCGTGTATGATVAATAGGTCAACCGTGTATGATT 2060 hsa-miR-155 CCCCTATCACGATTAGCATTAACCCCTATCACGATTAGCATTAA 2061 hsa-miR-15a CACAAACCATTATGTGCTGCTACACAAACCATTATGTGCTGCTA 2062 hsa-miR-15b TGTAAACCATGATGTGCTGCTATGTAAACCATGATGTGCTGCTA 2063 hsa-miR-16 CGCCAATATTTACGTGCTGCTACGCCAATATTTACGTGCTGCTA 2064 hsa-miR-17-3p ACAAGTGCCTTCACTGCAGTACAAGTGCCTTCACTGCAGT 2065 hsa-miR-17-5p ACTACCTGCACTGTAAGCACTTACTACCTGCACTGTAAGCACTT 2066 hsa-miR-181a ACTCACCGACAGCGTTGAATGACTCACCGACAGCGTTGAATG 2067 hsa-miR-181b CCCACCGACAGCAATGAATGTCCCACCGACAGCAATGAATGT 2068 hsa-miR-181c ACTCACCGACAGGTTGAATGTTACTCACCGACAGGTTGAATGTT 2069 hsa-miR-181d AACCCACCGACAACAATGAATGAACCCACCGACAACAATGAATG 2070 hsa-miR-182 TGTGAGTTCTACCATTGCCAAATGTGAGTTCTACCATTGCCAAA 2071 hsa-miR-182* TAGTTGGCAAGTCTAGAACCATAGTTGGCAAGTCTAGAACCA 2072 hsa-miR-183 CAGTGAATTCTACCAGTGCCATCAGTGAATTCTACCAGTGCCAT 2073 hsa-miR-184 ACCCTTATCAGTTCTCCGTCCACCCTTATCAGTTCTCCGTCC 2074 hsa-miR-185 GAACTGCCTTTCTCTCCAGAACTGCCTTTCTCTCCA 2075 hsa-miR-186 AGCCCAAAAGGAGAATTCTTTGAGCCCAAAAGGAGAATTCTTTG 2076 hsa-miR-187 GGCTGCAACACAAGACACGAGGCTGCAACACAAGACACGA 2077 hsa-miR-188 ACCCTCCACCATGCAAGGGATACCCTCCACCATGCAAGGGAT 2078 hsa-miR-189 ACTGATATCAGCTCAGTAGGCAACTGATATCAGCTCAGTAGGCA 2079 hsa-miR-18a TATCTGCACTAGATGCACCTTATATCTGCACTAGATGCACCTTA 2080 hsa-miR-18b TAACTGCACTAGATGCACCTTATAACTGCACTAGATGCACCTTA 2081 hsa-miR-190 ACCTAATATATCAAACATATCAACCTAATATATCAAACATATCA 2082 hsa-miR-191 AGCTGCTTTTGGGATTCCGTTAGCTGCTTTTGGGATTCCGTT 2083 hsa-miR-191* GGGACGAAATCCAAGCGCAGGGACGAAATCCAAGCGCA 2084 hsa-miR-192 GGCTGTCAATTCATAGGTCAGGGCTGTCAATTCATAGGTCAG 2085 hsa-miR-193a CTGGGACTTTGTAGGCCAGTTCTGGGACTTTGTAGGCCAGTT 2086 hsa-miR-193b AAAGCGGGACTTTGAGGGCCAAAAGCGGGACTTTGAGGGCCA 2087 hsa-miR-194 TCCACATGGAGTTGCTGTTACATCCACATGGAGTTGCTGTTACA 2088 hsa-miR-195 GCCAATATTTCTGTGCTGCTAGCCAATATTTCTGTGCTGCTA 2089 hsa-miR-196a CCAACAACATGAAACTACCTACCAACAACATGAAACTACCTA 2090 hsa-miR-196b CCAACAACAGGAAACTACCTACCAACAACAGGAAACTACCTA 2091 hsa-miR-197 TGGGTGGAGAAGGTGGTGAATGGGTGGAGAAGGTGGTGAA 2092 hsa-miR-198 CCTATCTCCCCTCTGGACCCTATCTCCCCTCTGGAC 2093 hsa-miR-199a GAACAGGTAGTCTGAACACTGGAACAGGTAGTCTGAACACTG 2094 hsa-miR-199a* AACCAATGTGCAGACTACTGTAAACCAATGTGCAGACTACTGTA 2095 hsa-miR-199b GAACAGATAGTCTAAACACTGGGAACAGATAGTCTAAACACTGG 2096 hsa-miR-19a TCAGTTTTGCATAGATTTGCACTCAGTTTTGCATAGATTTGCAC 2097 hsa-miR-19b TCAGTTTTGCATGGATTTGCACTCAGTTTTGCATGGATTTGCAC 2098 hsa-miR-200a ACATCGTTACCAGACAGTGTTAACATCGTTACCAGACAGTGTTA 2099 hsa-miR-200a* TCCAGCACTGTCCGGTAAGATTCCAGCACTGTCCGGTAAGAT 2100 hsa-miR-200b GTCATCATTACCAGGCAGTATTGTCATCATTACCAGGCAGTATT 2101 hsa-miR-200c CCATCATTACCCGGCAGTATTACCATCATTACCCGGCAGTATTA 2102 hsa-miR-202 TTTTCCCATGCCCTATACCTCTTTTTCCCATGCCCTATACCTCT 2103 hsa-miR-202* AAAGAAGTATATGCATAGGAAAAAAGAAGTATATGCATAGGAAA 2104 hsa-miR-203 CTAGTGGTCCTAAACATTTCACCTAGTGGTCCTAAACATTTCAC 2105 hsa-miR-204 AGGCATAGGATGACAAAGGGAAAGGCATAGGATGACAAAGGGAA 2106 hsa-miR-205 AGACTCCGGTGGAATGAAGGAAGACTCCGGTGGAATGAAAGGA 2107 hsa-miR-206 CCACACACTTCCTTACATTCCACCACACACTTCCTTACATTCCA 2108 hsa-miR-208 ACAAGCTTTTTGCTCGTCTTATACAAGCTTTTTGCTCGTCTTAT 2109 hsa-miR-20a CTACCTGCACTATAAGCACTTTCTACCTGCACTATAAGCACTTT 2110 hsa-miR-20b CTACCTGCACTATGAGCACTTTCTACCTGCACTATGAGCACTTT 2111 hsa-miR-21 TCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATAAGCTA 2112 hsa-miR-210 TCAGCCGCTGTCACACGCACATCAGCCGCTGTCACACGCACA 2113 hsa-miR-211 AGGCGAAGGATGACAAAGGGAAGGCGAAGGATGACAAAGGGA 2114 hsa-miR-212 GCCGTGACTGGAGACTGTTAGCCGTGACTGGAGACTGTTA 2115 hsa-miR-213 GGTACAATCAACGGTCGATGGGGTACAATCAACGGTCGATGG 2116 hsa-miR-214 TGCCTGTCTGTGCCTGCTGTTGCCTGTCTGTGCCTGCTGT 2117 hsa-miR-215 GTCTGTCAATTCATAGGTCATGTCTGTCAATTCATAGGTCAT 2118 hsa-miR-216 CACAGTTGCCAGCTGAGATTACACAGTTGCCAGCTGAGATTA 2119 hsa-miR-217 ATCCAATCAGTTCCTGATGCAGATCCAATCAGTTCCTGATGCAG 2120 hsa-miR-218 ACATGGTTAGATCAAGCACAAACATGGTTAGATCAAGCACAA 2121 hsa-miR-219 AGAATTGCGTTTGGACAATCAAGAATTGCGTTTGGACAATCA 2122 hsa-miR-22 ACAGTTCTTCAACTGGCAGCTTACAGTTCTTCAACTGGCAGCTT 2123 hsa-miR-220 AAAGTGTCAGATACGGTGTGGAAAGTGTCAGATACGGTGTGG 2124 hsa-miR-221 AAACCCAGCAGACAATGTAGCTAAACCCAGCAGACAATGTAGCT 2125 hsa-miR-222 AGACCCAGTAGCCAGATGTAGAGACCCAGTAGCCAGATGTAG 2126 hsa-miR-223 GGGGTATTTGACAAACTGACAGGGGTATTTGACAAACTGACA 2127 hsa-miR-224 TAAACGGAACCACTAGTGACTTTAAACGGAACCACTAGTGACTT 2128 hsa-miR-23a GGAAATCCCTGGCAATGTGATGGAAATCCCTGGCAATGTGAT 2129 hsa-miR-23b GGTAATCCCTGGCAATGTGATGGTAATCCCTGGCAATGTGAT 2130 hsa-miR-24 TGTTCCTGCTGAACTGAGCCATGTTCCTGCTGAACTGAGCCA 2131 hsa-miR-25 TCAGACCGAGACAAGTGCAATTCAGACCGAGACAAGTGCAAT 2132 hsa-miR-26a GCCTATCCTGGATTACTTGAAGCCTATCCTGGATTACTTGAA 2133 hsa-miR-26b AACCTATCCTGAATTACTTGAAAACCTATCCTGAATTACTTGAA 2134 hsa-miR-27a GCGGAACTTAGCCACTGTGAAGCGGAACTTAGCCACTGTGAA 2135 hsa-miR-27b GCAGAACTTAGCCACTGTGAAGCAGAACTTAGCCACTGTGAA 2136 hsa-miR-28 CTCAATAGACTGTGAGCTCCTTCTCAATAGACTGTGAGCTCCTT 2137 hsa-miR-296 ACAGGATTGAGGGGGGGCCCTACAGGATTGAGGGGGGGCCCT 2138 hsa-miR-299-3p AAGCGGTTTACCATCCCACATAAAGCGGTTTACCATCCCACATA 2139 hsa-miR-29a AACCGATTTCAGATGGTGCTAAACCGATTTCAGATGGTGCTA 2140 hsa-miR-29b AACACTGATTTCAAATGGTGCTAACACTGATTTCAAATGGTGCT 2141 hsa-miR-29c ACCGATTTCAAATGGTGCTAACCGATTTCAAATGGTGCTA 2142 hsa-miR-301 GCTTTGACAATACTATTGCACTGCTTTGACAATACTATTGCACT 2143 hsa-miR-302a TCACCAAAACATGGAAGCACTTTCACCAAAACATGGAAGCACTT 2144 hsa-miR-302a* AAAGCAAGTACATCCACGTTTAAAAGCAAGTACATCCACGTTTA 2145 hsa-miR-302b CTACTAAAACATGGAAGCACTTCTACTAAAACATGGAAGCACTT 2146 hsa-miR-302b* AGAAAGCACTTCCATGTTAAAGAGAAAGCACTTCCATGTTAAAG 2147 hsa-miR-302c CCACTGAAACATGGAAGCACTTCCACTGAAACATGGAAGCACTT 2148 hsa-miR-302c* CAGCAGGTACCCCCATGTTAACAGCAGGTACCCCCATGTTAA 2149 hsa-miR-302d ACACTCAAACATGGAAGCACTTACACTCAAACATGGAAGCACTT 2150 hsa-miR-30a-3p GCTGCAAACATCCGACTGAAAGCTGCAAACATCCGACTGAAA 2151 hsa-miR-30a-5p CTTCCAGTCGAGGATGTTTACACTTCCAGTCGAGGATGTTTACA 2152 hsa-miR-30b AGCTGAGTGTAGGATGTTTACAAGCTGAGTGTAGGATGTTTACA 2153 hsa-miR-30c GCTGAGAGTGTAGGATGTTTACGCTGAGAGTGTAGGATGTTTAC 2154 hsa-miR-30d CTTCCAGTCGGGGATGTTTACCTTCCAGTCGGGGATGTTTAC 2155 hsa-miR-30e-3p GCTGTAAACATCCGACTGAAAGGCTGTAAACATCCGACTGAAAG 2156 hsa-miR-30e-5p TCCAGTCAAGGATGTTTACATCCAGTCAAGGATGTTTACA 2157 hsa-miR-31 CAGCTATGCCAGCATCTTGCCAGCTATGCCAGCATCTTGC 2158 hsa-miR-32 GCAACTTAGTAATGTGCAATGCAACTTAGTAATGTGCAAT 2159 hsa-miR-320 TTCGCCCTCTCAACCCAGCTTTTTCGCCCTCTCAACCCAGCTTT 2160 hsa-miR-323 AGAGGTCGACCGTGTAATGTGAGAGGTCGACCGTGTAATGTG 2161 hsa-miR-324-3p AGCAGCACCTGGGGCAGTAGCAGCACCTGGGGCAGT 2162 hsa-miR-324-5p ACACCAATGCCCTAGGGGATACACCAATGCCCTAGGGGAT 2163 hsa-miR-325 ACACTTACTGGACACCTACTAGACACTTACTGGACACCTACTAG 2164 hsa-miR-326 TGGAGGAAGGGCCCAGATGGAGGAAGGGCCCAGA 2165 hsa-miR-328 ACGGAAGGGCAGAGAGGGCCAACGGAAGGGCAGAGAGGGCCA 2166 hsa-miR-329 AAAGAGGTTAACCAGGTGTGTTAAAGAGGTTAACCAGGTGTGTT 2167 hsa-miR-33 CAATGCAACTACAATGCACCAATGCAACTACAATGCAC 2168 hsa-miR-330 TCTCTGCAGGCCGTGTGCTTTTCTCTGCAGGCCGTGTGCTTT 2169 hsa-miR-331 TTCTAGGATAGGCCCAGGGTTCTAGGATAGGCCCAGGG 2170 hsa-miR-335 ACATTTTTCGTTATTGCTCTTGACATTTTTCGTTATTGCTCTTG 2171 hsa-miR-337 AAAGGCATCATATAGGAGCTGGAAAGGCATCATATAGGAGCTGG 2172 hsa-miR-338 TCAACAAAATCACTGATGCTGGTCAACAAAATCACTGATGCTGG 2173 hsa-miR-339 TGAGCTCCTGGAGGACAGGGATGAGCTCCTGGAGGACAGGGA 2174 hsa-miR-340 GGCTATAAAGTAACTGAGACGGGGCTATAAAGTAACTGAGACGG 2175 hsa-miR-342 ACGGGTGCGATTTCTGTGTGAACGGGTGCGATTTCTGTGTGA 2176 hsa-miR-345 CCTGGACTAGGAGTCAGCACCTGGACTAGGAGTCAGCA 2177 hsa-miR-346 AGAGGCAGGCATGCGGGCAGAAGAGGCAGGCATGCGGGCAGA 2178 hsa-miR-34a AACAACCAGCTAAGACACTGCAACAACCAGCTAAGACACTGC 2179 hsa-miR-34b CAATCAGCTAATGACACTGCCTCAATCAGCTAATGACACTGCCT 2180 hsa-miR-34c CAATCAGCTAACTACACTGCCTCAATCAGCTAACTACACTGCCT 2181 hsa-miR-361 GTACCCCTGGAGATTCTGATAAGTACCCCTGGAGATTCTGATAA 2182 hsa-miR-362 TCACACCTAGGTTCCAAGGATTTCACACCTAGGTTCCAAGGATT 2183 hsa-miR-363 TTACAGATGGATACCGTGCAATTTACAGATGGATACCGTGCAAT 2184 hsa-miR-365 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 2185 hsa-miR-367 TCACCATTGCTAAAGTGCAATTTCACCATTGCTAAAGTGCAATT 2186 hsa-miR-368 AAACGTGGAATTTCCTCTATGTAAACGTGGAATTTCCTCTATGT 2187 hsa-miR-369-3p AAAGATCAACCATGTATTATTAAAGATCAACCATGTATTATT 2188 hsa-miR-369-5p GCGAATATAACACGGTCGATCTGCGAATATAACACGGTCGATCT 2189 hsa-miR-370 CAGGTTCCACCCCAGCACAGGTTCCACCCCAGCA 2190 hsa-miR-371 ACACTCAAAAGATGGCGGCACACACTCAAAAGATGGCGGCAC 2191 hsa-miR-372 ACGCTCAAATGTCGCAGCACTACGCTCAAATGTCGCAGCACT 2192 hsa-miR-373 ACACCCCAAAATCGAAGCACTTACACCCCAAAATCGAAGCACTT 2193 hsa-miR-373* GAAAGCGCCCCCATTTTGAGTGAAAGCGCCCCCATTTTGAGT 2194 hsa-miR-374 CACTTATCAGGTTGTATTATAACACTTATCAGGTTGTATTATAA 2195 hsa-miR-375 TCACGCGAGCCGAACGAACAAATCACGCGAGCCGAACGAACAAA 2196 hsa-miR-376a ACGTGGATTTTCCTCTATGATACGTGGATTTTCCTCTATGAT 2197 hsa-miR-376b AACATGGATTTTCCTCTATGATAACATGGATTTTCCTCTATGAT 2198 hsa-miR-377 ACAAAAGTTGCCTTTGTGTGATACAAAAGTTGCCTTTGTGTGAT 2199 hsa-miR-378 ACACAGGACCTGGAGTCAGGAACACAGGACCTGGAGTCAGGA 2200 hsa-miR-379 TACGTTCCATAGTCTACCATACGTTCCATAGTCTACCA 2201 hsa-miR-380-3p AAGATGTGGACCATATTACATAAAGATGTGGACCATATTACATA 2202 hsa-miR-380-5p GCGCATGTTCTATGGTCAACCGCGCATGTTCTATGGTCAACC 2203 hsa-miR-381 ACAGAGAGCTTGCCCTTGTATAACAGAGAGCTTGCCCTTGTATA 2204 hsa-miR-382 CGAATCCACCACGAACAACTTCGAATCCACCACGAACAACTT 2205 hsa-miR-383 AGCCACAATCACCTTCTGATCTAGCCACAATCACCTTCTGATCT 2206 hsa-miR-384 TATGAACAATTTCTAGGAATTATGAACAATTTCTAGGAAT 2207 hsa-miR-409-3p AGGGGTTCACCGAGCAACATTAGGGGTTCACCGAGCAACATT 2208 hsa-miR-409-5p TGCAAAGTTGCTCGGGTAACCTGCAAAGTTGCTCGGGTAACC 2209 hsa-miR-410 AACAGGCCATCTGTGTTATATTAACAGGCCATCTGTGTTATATT 2210 hsa-miR-412 ACGGCTAGTGGACCAGGTGAAACGGCTAGTGGACCAGGTGAA 2211 hsa-miR-422a GCCTTCTGACCCTAAGTCCAGCCTTCTGACCCTAAGTCCA 2212 hsa-miR-422b GCCTTCTGACTCCAAGTCCAGCC1TCTGACTCCAAGTCCA 2213 hsa-miR-423 TGAGGGGCCTCAGACCGAGCTTGAGGGGCCTCAGACCGAGCT 2214 hsa-miR-424 TTCAAAACATGAATTGCTGCTGTTCAAAACATGAATTGCTGCTG 2215 hsa-miR-425 CGGACACGACATTCCCGATCGGACACGACATVCCCGAT 2216 hsa-miR-429 ACGGTTTTACCAGACAGTATTAACGGTTTTACCAGACAGTATTA 2217 hsa-miR-431 TGCATGACGGCCTGCAAGACATGCATGACGGCCTGCAAGACA 2218 hsa-miR-432 CCACCCAATGACCTACTCCAACCACCCAATGACCTACTCCAA 2219 hsa-miR-432* AGACATGGAGGAGCCATCCAAGACATGGAGGAGCCATCCA 2220 hsa-miR-433 ACACCGAGGAGCCCATCATGATACACCGAGGAGCCCATCATGAT 2221 hsa-miR-448 ATGGGACATCCTACATATGCAAATGGGACATCCTACATATGCAA 2222 hsa-miR-449 ACCAGCTAACAATACACTGCCAACCAGCTAACAATACACTGCCA 2223 hsa-miR-450 TATTAGGAACACATCGCAAAAATATTAGGAACACATCGCAAAAA 2224 hsa-miR-451 AAACTCAGTAATGGTAACGGTTAAACTCAGTAATGGTAACGGTT 2225 hsa-miR-452 GTCTCAGTTTCCTCTGCAAACAGTCTCAGTTTCCTCTGCAAACA 2226 hsa-miR-452* CTTCTTTGCAGATGAGACTGACTTCTTTGCAGATGAGACTGA 2227 hsa-miR-453 GAACTCACCACGGACAACCTGAACTCACCACGGACAACCT 2228 hsa-miR-485-3p AGAGGAGAGCCGTGTATGACAGAGGAGAGCCGTGTATGAC 2229 hsa-miR-485-5p AATTCATCACGGCCAGCCTCTAATTCATCACGGCCAGCCTCT 2230 hsa-miR-488 TTGAGAGTGCCATTATCTGGGTTGAGAGTGCCATTATCTGGG 2231 hsa-miR-489 CTGCCGTATATGTGATGTCACTCTGCCGTATATGTGATGTCACT 2232 hsa-miR-490 AGCATGGAGTCCTCCAGGTTAGCATGGAGTCCTCCAGGTT 2233 hsa-miR-491 TCCTCATGGAAGGGTTCCCCATCCTCATGGAAGGGTTCCCCA 2234 hsa-miR-492 AAGAATCTTGTCCCGCAGGTCAAGAATCTTGTCCCGCAGGTC 2235 hsa-miR-493 AATGAAAGCCTACCATGTACAAAATGAAAGCCTACCATGTACAA 2236 hsa-miR-494 AAGAGGTTTCCCGTGTATGTTTAAGAGGTTTCCCGTGTATGTTT 2237 hsa-miR-495 AAAGAAGTGCACCATGTTTGTTAAAGAAGTGCACCATGTTTGTT 2238 hsa-miR-496 GAGATTGGCCATGTAATGAGATTGGCCATGTAAT 2239 hsa-miR-497 ACAAACCACAGTGTGCTGCTGACAAACCACAGTGTGCTGCTG 2240 hsa-miR-498 AAAAACGCCCCCTGGCTTGAAAAAAACGCCCCCTGGCTTGAA 2241 hsa-miR-499 TTAAACATCACTGCAAGTCTTATTAAACATCACTGCAAGTCTTA 2242 hsa-miR-500 AGAATCCTTGCCCAGGTGCATAGAATCCTTGCCCAGGTGCAT 2243 hsa-miR-501 TCTCACCCAGGGACAAAGGATTCTCACCCAGGGAGAAAGGAT 2244 hsa-miR-502 TAGCACCCAGATAGCAAGGATTAGCACCCAGATAGCAAGGAT 2245 hsa-miR-503 TGCAGAACTGTTCCCGCTGCTATGCAGAACTGTTCCCGCTGCTA 2246 hsa-miR-504 ATAGAGTGCAGACCAGGGTCTATAGAGTGCAGACCAGGGTCT 2247 hsa-miR-505 GAGGAAACCAGCAAGTGTTGAGAGGAAACCAGCAAGTGTTGA 2248 hsa-miR-506 TCTACTCAGAAGGGTGCCTTATCTACTCAGAAGGGTGCCTTA 2249 hsa-miR-507 TTCACTCCAAAAGGTGCAAAATTCACTCCAAAAGGTGCAAAA 2250 hsa-miR-508 TCTACTCCAAAAGGCTACAATCTCTACTCCAAAAGGCTACAATC 2251 hsa-miR-509 TCTACCCACAGACGTACCAATTCTACCCACAGACGTACCAAT 2252 hsa-miR-510 TGTGATTGCCACTCTCCTGAGTGTGATTGCCACTCTCCTGAG 2253 hsa-miR-511 TGACTGCAGAGCAAAAGACACTGACTGCAGAGCAAAAGACAC 2254 hsa-miR-512-3p GACCTCAGCTATGACAGCACTGACCTCAGCTATGACAGCACT 2255 hsa-miR-512-5p AAAGTGCCCTCAAGGCTGAGTAAAGTGCCCTCAAGGCTGAGT 2256 hsa-miR-513 ATAAATGACACCTCCCTGTGAAATAAATGACACCTCCCTGTGAA 2257 hsa-miR-514 CTACTCACAGAAGTGTCAATCTACTCACAGAAGTGTCAAT 2258 hsa-miR-515-3p ACGCTCCAAAAGAAGGCACTCACGCTCCAAAAGAAGGCACTC 2259 hsa-miR-515-5p CAGAAAGTGCTTTCTTTTGGAGCAGAAAGTGCTTTCTTTTGGAG 2260 hsa-miR-516-3p ACCCTCTGAAAGGAAGCAACCCTCTGAAAGGAAGCA 2261 hsa-miR-516-5p AAAGTGCTTCTTACCTCCAGATAAAGTGCTTCTTACCTCCAGAT 2262 hsa-miR-517* AGACAGTGCTTCCATCTAGAGAGACAGTGCTTCCATCTAGAG 2263 hsa-miR-517a AACACTCTAAAGGGATGCACGAAACACTCTAAAGGGATGCACGA 2264 hsa-miR-517b AACACTCTAAAGGGATGCACGAAACACTCTAAAGGGATGCACGA 2265 hsa-miR-517c ACACTCTAAAAGGATGCACGATACACTCTAAAAGGATGCACGAT 2266 hsa-miR-518a TCCAGCAAAGGGAAGCGCTTTTCCAGCAAAGGGAAGCGCTTT 2267 hsa-miR-518a-2* AAAGGGCTTCCCTTTGCAGAAAAGGGCTTCCCTTTGCAGA 2268 hsa-miR-518b ACCTCTAAAGGGGAGCGCTTTACCTCTAAAGGGGAGCGCTTT 2269 hsa-miR-518c CACTCTAAAGAGAAGCGCTTTGCACTCTAAAGAGAAGCGCTTTG 2270 hsa-miR-518c* CAGAAAGTGCTTCCCTCCAGACAGAAAGTGCTTCCCTCCAGA 2271 hsa-miR-518d GCTCCAAAGGGAAGCGCTTTGCTCCAAAGGGAAGCGCTTT 2272 hsa-miR-518e ACACTCTGAAGGGAAGCGCTTACACTCTGAAGGGAAGCGCTT 2273 hsa-miR-518f TCCTCTAAAGAGAAGCGCTTTTCCTCTAAAGAGAAGCGCTTT 2274 hsa-miR-518f* AGAGAAAGTGCTTCCCTCTAGAAGAGAAAGTGCTTCCCTCTAGA 2275 hsa-miR-519a GTAACACTCTAAAAGGATGCACGTAACACTCTAAAAGGATGCAC 2276 hsa-miR-519b AAACCTCTAAAAGGATGCACTTAAACCTCTAAAAGGATGCACTT 2277 hsa-miR-519c ATCCTCTAAAAAGATGCACTTTATCCTCTAAAAAGATGCACTTT 2278 hsa-miR-519d ACACTCTAAAGGGAGGCACTTTACACTCTAAAGGGAGGCACTTT 2279 hsa-miR-519e ACACTCTAAAAGGAGGCACTTTACACTCTAAAAGGAGGCACTTT 2280 hsa-miR-519e* GAAAGTGCTCCCTTTTGGAGAAGAAAGTGCTCCCTTTTGGAGAA 2281 hsa-miR-520a ACAGTCCAAAGGGAAGCACTTTACAGTCCAAAGGGAAGCACTTT 2282 hsa-miR-520a* AGAAAGTACTTCCCTCTGGAGAGAAAGTACTTCCCTCTGGAG 2283 hsa-miR-520b CCCTCTAAAAGGAAGCACTTTCCCTCTAAAAGGAAGCACTTT 2284 hsa-miR-520c AACCCTCTAAAAGGAAGCACTTAACCCTCTAAAAGGAAGCACTT 2285 hsa-miR-520d AACCCACCAAAGAGAAGCACTTAACCCACCAAAGAGAAGCACTT 2286 hsa-miR-520d* AGAAAGGGCTTCCCTTTGTAGAAGAAAGGGCTTCCCTTTGTAGA 2287 hsa-miR-520e CCCTCAAAAAGGAAGCACTTTCCCTCAAAAAGGAAGCACTTT 2288 hsa-miR-520f AACCCTCTAAAAGGAAGCACTTAACCCTCTAAAAGGAAGCACTT 2289 hsa-miR-520g ACACTCTAAAGGGAAGCACTTTACACTCTAAAGGGAAGCACTTT 2290 hsa-miR-520h ACTCTAAAGGGAAGCACTTTGTACTCTAAAGGGAAGCACTTTGT 2291 hsa-miR-521 ACACTCTAAAGGGAAGTGCGTTACACTCTAAAGGGAAGTGCGTT 2292 hsa-miR-522 AACACTCTAAAGGGAACCATTTAACACTCTAAAGGGAACCATTT 2293 hsa-miR-523 CCTCTATAGGGAAGCGCGTTCCTCTATAGGGAAGCGCGTT 2294 hsa-miR-524 ACTCCAAAGGGAAGCGCCTTACTCCAAAGGGAAGCGCCTT 2295 hsa-miR-524* GAGAAAGTGCTTCCCTTTGTAGGAGAAAGTGCTTCCCTTTGTAG 2296 hsa-miR-525 AGAAAGTGCATCCCTCTGGAGAGAAAGTGCATCCCTCTGGAG 2297 hsa-miR-525* GCTCTAAAGGGAAGCGCCTTGCTCTAAAGGGAAGCGCCTT 2298 hsa-miR-526a AGAAAGTGCTTCCCTCTAGAGAGAAAGTGCTTCCCTCTAGAG 2299 hsa-miR-526b AACAGAAAGTGCTTCCCTCAAGAACAGAAAGTGCTTCCCTCAAG 2300 hsa-miR-526b* GCCTCTAAAAGGAAGCACTTTGCCTCTAAAAGGAAGCACTTT 2301 hsa-miR-526c AACAGAAAGCGCTTCCCTCTAAACAGAAAGCGCTTCCCTCTA 2302 hsa-miR-527 AGAAAGGGCTTCCCTTTGCAGAGAAAGGGCTTCCCTTTGCAG 2303 hsa-miR-7 CAACAAAATCACTAGTCTTCCACAACAAAATCACTAGTCTTCCA 2304 hsa-miR-9 TCATACAGCTAGATAACCAAAGTCATACAGCTAGATAACCAAAG 2305 hsa-miR-9* ACTTTCGGTTATCTAGCTTTACTTTCGGTTATCTAGCTTT 2306 hsa-miR-92 AGGCCGGGACAAGTGCAATAAGGCCGGGACAAGTGCAATA 2307 hsa-miR-93 CTACCTGCACGAACAGCACTTCTACCTGCACGAACAGCACTT 2308 hsa-miR-95 TGCTCAATAAATACCCGTTGAATGCTCAATAAATACCCGTTGAA 2309 hsa-miR-96 GCAAAAATGTGCTAGTGCCAAAGCAAAAATGTGCTAGTGCCAAA 2310 hsa-miR-98 AACAATACAACTTACTACCTCAAACAATACAACTTACTACCTCA 2311 hsa-miR-99a CACAAGATCGGATCTACGGGTCACAAGATCGGATCTACGGGT 2312 hsa-miR-99b CAAGGTCGGTTCTACGGGTCAAGGTCGGTTCTACGGGT 2313 mo-miR-322 TGTTGCAGCGCTTCATGTTTTGTTGCAGCGCTTCATGTTT 2314 mo-miR-323 AGAGGTCGACCGTGTAATGTGAGAGGTCGACCGTGTAATGTG 2315 mo-miR-301 GCTTTGACAATACTATTGCACTGCTTTGACAATACTATTGCACT 2316 mo-miR-324-5p ACACCAATGCCCTAGGGGATACACCAATGCCCTAGGGGAT 2317 mo-miR-324-3p AGCAGCACCTGGGGCAGTAGCAGCACCTGGGGCAGT 2318 mo-miR-325 ACACTTACTGAGCACCTACTAGACACTTACTGAGCACCTACTAG 2319 mo-miR-326 ACTGGAGGAAGGGCCCAGAACTGGAGGAAGGGCCCAGA 2320 mo-miR-327 ACCCTCATGCCCCTCAAGACCCTCATGCCCCTCAAG 2321 mo-let-7d ACTATGCAACCTACTACCTCTACTATGCAACCTACTACCTCT 2322 mo-let-7d* AGAAAGGCAGCAGGTCGTATAAGAAAGGCAGCAGGTCGTATA 2323 mo-miR-328 ACGGAAGGGCAGAGAGGGCCAACGGAAGGGCAGAGAGGGCCA 2324 mo-miR-329 AAAAAGGTTAGCTGGGTGTGTTAAAAAGGTTAGCTGGGTGTGTT 2325 mo-miR-330 TCTCTGCAGGCCCTGTGCTTTTCTCTGCAGGCCCTGTGCTTT 2326 mo-miR-331 TTCTAGGATAGGCCCAGGGTTCTAGGATAGGCCCAGGG 2327 mo-miR-333 AAAAGTAACTAGCACACCACAAAAGTAACTAGCACACCAC 2328 mo-miR-140 CTACCATAGGGTAAAACCACTCTACCATAGGGTAAAACCACT 2329 mo-miR-140* TGTCCGTGGTTCTACCCTGTTGTCCGTGGTTCTACCCTGT 2330 mo-miR-335 ACATTTTTCGTTATTGCTCTTGACATTTTTCGTTATTGCTCTTG 2331 mo-miR-336 AGACTAGATATGGAAGGGTGAAGACTAGATATGGAAGGGTGA 2332 mo-miR-337 AAAGGCATCATATAGGAGCTGAAAAGGCATCATATAGGAGCTGA 2333 mo-miR-148b ACAAAGTTCTGTGATGCACTGAACAAAGTTCTGTGATGCACTGA 2334 mo-miR-338 TCAACAAAATCACTGATGCTGGTCAACAAAATCACTGATGCTGG 2335 mo-miR-339 TGAGCTCCTGGAGGACAGGGATGAGCTCCTGGAGGACAGGGA 2336 mo-miR-340 GGCTATAAAGTAACTGAGACGGGGCTATAAAGTAACTGAGACGG 2337 mo-miR-341 ACTGACCGACCGACCGATCGAACTGACCGACCGACCGATCGA 2338 mo-miR-342 ACGGGTGCGATTTCTGTGTGAACGGGTGCGATTTCTGTGTGA 2339 mo-miR-343 TCTGGGCACACGGAGGGAGATCTGGGCACACGGAGGGAGA 2340 mo-miR-344 ACGGTCAGGCTTTGGCTAGATACGGTCAGGCTTTGGCTAGAT 2341 mo-miR-345 ACTGGACTAGGGGTCAGCAACTGGACTAGGGGTCAGCA 2342 mo-miR-346 AGAGGCAGGCACTCAGGCAGAAGAGGCAGGCACTCAGGCAGA 2343 mo-miR-347 TGGGCGACCCAGAGGGACATGGGCGACCCAGAGGGACA 2344 mo-miR-349 AGAGGTTAAGACAGCAGGGCTAGAGGTTAAGACAGCAGGGCT 2345 mo-miR-129 AGCAAGCCCAGACCGCAAAAAAGCAAGCCCAGACCGCAAAAA 2346 mo-miR-129* ATGCTTTTTGGGGTAAGGGCTTATGCTTTTTGGGGTAAGGGCTT 2347 mo-miR-20 CTACCTGCACTATAAGCACTTTCTACCTGCACTATAAGCACTTT 2348 mo-miR-20* TGTAAGTGCTCGTAATGCAGTTGTAAGTGCTCGTAATGCAGT 2349 mo-miR-350 GTGAAAGTGTATGGGCTTTGTGGTGAAAGTGTATGGGCTTTGTG 2350 mo-miR-7 AACAAAATCACTAGTCTTCCAACAAAATCACTAGTCTTCC 2351 mo-miR-7* TATGGCAGACTGTGATTTGTTGTATGGCAGACTGTGATTTGTTG 2352 mo-miR-351 AGGCTCAAAGGGCTCCTCAAGGCTCAAAGGGCTCCTCA 2353 mo-miR-352 TACTATGCAACCTACTACTCTTACTATGCAACCTACTACTCT 2354 mo-miR-135b CACATAGGAATGAAAAGCCATACACATAGGAATGAAAAGCCATA 2355 mo-miR-151* TACTAGACTGTGAGCTCCTCGTACTAGACTGTGAGCTCCTCG 2356 mo-miR-151 CTCAAGGAGCCTCAGTCTAGTCTCAAGGAGCCTCAGTCTAGT 2357 mo-miR-101b CTTCAGCTATCACAGTACTGTACTTCAGCTATCACAGTACTGTA 2358 mo-let-7a AACTATACAACCTACTACCTCAAACTATACAACCTACTACCTCA 2359 mo-let-7b AACCACACAACCTACTACCTCAAACCACACAACCTACTACCTCA 2360 mo-let-7c AACCATACAACCTACTACCTCAAACCATACAACCTACTACCTCA 2361 mo-let-7e ACTATACAACCTCCTACCTCAACTATACAACCTCCTACCTCA 2362 mo-let-7f AACTATACAATCTACTACCTCAAACTATACAATCTACTACCTCA 2363 mo-let-7i ACAGCACAAACTACTACCTCAACAGCACAAACTACTACCTCA 2364 mo-miR-7b AACAAAATCACAAGTCTTCCAACAAAATCACAAGTCTTCC 2365 mo-miR-9 TCATACAGCTAGATAACCAAAGTCATACAGCTAGATAACCAAAG 2366 mo-miR-10a CACAAATTCGGATCTACAGGGTCACAAATTCGGATCTACAGGGT 2367 mo-miR-10b ACACAAATTCGGTTCTACAGGGACACAAATTCGGTTCTACAGGG 2368 mo-miR-15b TGTAAACCATGATGTGCTGCTATGTAAACCATGATGTGCTGCTA 2369 mo-miR-16 CGCCAATATTTACGTGCTGCTACGCCAATATTTACGTGCTGCTA 2370 mo-miR-17 ACTACCTGCACTGTAAGCACTTACTACCTGCACTGTAAGCACTT 2371 mo-miR-18 TATCTGCACTAGATGCACCTTATATCTGCACTAGATGCACCTTA 2372 mo-miR-19b TCAGTTTTGCATGGATTTGCACTCAGTTTTGCATGGATTTGCAC 2373 mo-miR-19a TCAGTTTTGCATAGATTTGCACTCAGTTTTGCATAGATTTGCAC 2374 mo-miR-21 TCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATAAGCTA 2375 mo-miR-22 ACAGTTCTTCAACTGGCAGCTTACAGTTCTTCAACTGGCAGCTT 2376 mo-miR-23a GGAAATCCCTGGCAATGTGATGGAAATCCCTGGCAATGTGAT 2377 mo-miR-23b GGTAATCCCTGGCAATGTGATGGTAATCCCTGGCAATGTGAT 2378 mo-miR-24 TGTTCCTGCTGAACTGAGCCATGTTCCTGCTGAACTGAGCCA 2379 mo-miR-25 TCAGACCGAGACAAGTGCAATTCAGACCGAGACAAGTGCAAT 2380 mo-miR-26a GCCTATCCTGGATTACTTGAAGCCTATCCTGGATTACTTGAA 2381 mo-miR-26b AACCTATCCTGAATTACTTGAAAACCTATCCTGAATTACTTGAA 2382 mo-miR-27b GCAGAACTTAGCCACTGTGAAGCAGAACTTAGCCACTGTGAA 2383 mo-miR-27a GCGGAACTTAGCCACTGTGAAGCGGAACTTAGCCACTGTGAA 2384 mo-miR-28 CTCAATAGACTGTGAGCTCCTTCTCAATAGACTGTGAGCTCCTT 2385 mo-miR-29b AACACTGATTTCAAATGGTGCTAACACTGATTTCAAATGGTGCT 2386 mo-miR-29a AACCGATTTCAGATGGTGCTAAACCGATTTCAGATGGTGCTA 2387 mo-miR-29c ACCGATTTCAAATGGTGCTAACCGATTTCAAATGGTGCTA 2388 mo-miR-30c GCTGAGAGTGTAGGATGTTTACGCTGAGAGTGTAGGATGTTTAC 2389 mo-miR-30e TCCAGTCAAGGATGTTTACATCCAGTCAAGGATGTTTACA 2390 mo-miR-30b AGCTGAGTGTAGGATGTTTACAAGCTGAGTGTAGGATGTTTACA 2391 mo-miR-30d CTTCCAGTCGGGGATGTTTACCTTCCAGTCGGGGATGTTTAC 2392 mo-miR-30a-5p CTTCCAGTCGAGGATGTTTACACTTCCAGTCGAGGATGTTTACA 2393 mo-miR-30a-3p GCTGCAAACATCCGACTGAAAGCTGCAAACATCCGACTGAAA 2394 mo-miR-31 AGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCTTGCCT 2395 mo-miR-32 GCAACTTAGTAATGTGCAATGCAACTTAGTAATGTGCAAT 2396 mo-miR-33 CAATGCAACTACAATGCACCAATGCAACTACAATGCAC 2397 mo-miR-34b CAATCAGCTAATTACACTGCCTCAATCAGCTAATTACACTGCCT 2398 mo-miR-34c CAATCAGCTAACTACACTGCCTCAATCAGCTAACTACACTGCCT 2399 mo-miR-34a AACAACCAGCTAAGACACTGCAACAACCAGCTAAGACACTGC 2400 mo-miR-92 AGGCCGGGACAAGTGCAATAAGGCCGGGACAAGTGCAATA 2401 mo-miR-93 CTACCTGCACGAACAGCACTTCTACCTGCACGAACAGCACTT 2402 mo-miR-96 AGCAAAAATGTGCTAGTGCCAAAGCAAAAATGTGCTAGTGCCAA 2403 mo-miR-98 AACAATACAACTTACTACCTCAAACAATACAACTTACTACCTCA 2404 mo-miR-99a CACAAGATCGGATCTACGGGTCACAAGATCGGATCTACGGGT 2405 mo-miR-99b CAAGGTCGGTTCTACGGGTCAAGGTCGGTTCTACGGGT 2406 mo-miR-100 CACAAGTTCGGATCTACGGGTCACAAGTTCGGATCTACGGGT 2407 mo-miR-101 CTTCAGTTATCACAGTACTGTACTTCAGTTATCACAGTACTGTA 2408 mo-miR-103 TCATAGCCCTGTACAATGCTGTCATAGCCCTGTACAATGCTG 2409 mo-miR-106b ATCTGCACTGTCAGCACTTTAATCTGCACTGTCAGCACTTTA 2410 mo-miR-107 TGATAGCCCTGTACAATGCTGTGATAGCCCTGTACAATGCTG 2411 mo-miR-122a ACAAACACCATTGTCACACTCCACAAACACCATTGTCACACTCC 2412 mo-miR-124a TGGCATTCACCGCGTGCCTTAATGGCATTCACCGCGTGCCTTAA 2413 mo-miR-125a CACAGGTTAAAGGGTCTCAGGCACAGGTTAAAGGGTCTCAGG 2414 mo-miR-125b TCACAAGTTAGGGTCTCAGGGTCACAAGTTAGGGTCTCAGGG 2415 mo-miR-126* CGCGTACCAAAAGTAATAATGCGCGTACCAAAAGTAATAATG 2416 mo-miR-126 GCATTATTACTCACGGTACGAGCATTATTACTCACGGTACGA 2417 mo-miR-127 AGCCAAGCTCAGACGGATCCGAAGCCAAGCTCAGACGGATCCGA 2418 mo-miR-128a AAAAGAGACCGGTTCACTGTGAAAAAGAGACCGGTTCACTGTGA 2419 mo-miR-128b GAAAGAGACCGGTTCACTGTGGAAAGAGACCGGTTCACTGTG 2420 mo-miR-130a ATGCCCTTTTAACATTGCACTGATGCCCTTTTAACATTGCACTG 2421 mo-miR-130b ATGCCCTTTCATCATTGCACTGATGCCCTTTCATCATTGCACTG 2422 mo-miR-132 CGACCATGGCTGTAGACTGTTCGACCATGGCTGTAGACTGTT 2423 mo-miR-133a ACAGCTGGTTGAAGGGGACCAAACAGCTGGTTGAAGGGGACCAA 2424 mo-miR-134 CCTCTGGTCAACCAGTCACACCTCTGGTCAACCAGTCACA 2425 mo-miR-135a TCACATAGGAATAAAAAGCCATTCACATAGGAATAAAAAGCCAT 2426 mo-miR-136 TCCATCATCAAAACAAATGGAGTCCATCATCAAAACAAATGGAG 2427 mo-miR-137 CTACGCGTATTCTTAAGCAATACTACGCGTATTCTTAAGCAATA 2428 mo-miR-138 GATTCACAACACCAGCTGATTCACAACACCAGCT 2429 mo-miR-139 AGACACGTGCACTGTAGAAGACACGTGCACTGTAGA 2430 mo-miR-141 CCATCTTTACCAGACAGTGTTACCATCTTTACCAGACAGTGTTA 2431 mo-miR-142-5p GTAGTGCTTTCTACTTTATGGTAGTGCTTTCTACTTTATG 2432 mo-miR-142-3p TCCATAAAGTAGGAAACACTACTCCATAAAGTAGGAAACACTAC 2433 mo-miR-143 TGAGCTACAGTGCTTCATCTCATGAGCTACAGTGCTTCATCTCA 2434 mo-miR-144 CTAGTACATCATCTATACTGTACTAGTACATCATCTATACTGTA 2435 mo-miR-145 AAGGGATTCCTGGGAAAACTGAAGGGATTCCTGGGAAAACTG 2436 mo-miR-146 AACCCATGGAATTCAGTTCTCAAACCCATGGAATTCAGTTGTCA 2437 mo-miR-150 ACTGGTACAAGGGTTGGGAGAACTGGTACAAGGGTTGGGAGA 2438 mo-miR-152 CCCAAGTTCTGTCATGCACTGCCCAAGTTCTGTCATGCACTG 2439 mo-miR-153 TCACTTTTGTGACTATGCAATCACTTTTGTGACTATGCAA 2440 mo-miR-154 CGAAGGCAACACGGATAACCTCGAAGGCAACACGGATAACCT 2441 mo-miR-181c ACTCACCGACAGGTTGAATGTTACTCACCGACAGGTTGAATGTT 2442 mo-miR-181a ACTCACCGACAGCGTTGAATGACTCACCGACAGCGTTGAATG 2443 mo-miR-181b CCCACCGACAGCAATGAATGTCCCACCGACAGCAATGAATGT 2444 mo-miR-183 CAGTGAATTCTACCAGTGCCATCAGTGAATTCTACCAGTGCCAT 2445 mo-miR-184 ACCCTTATCAGTTCTCCGTCCACCCTTATCAGTTCTCCGTCC 2446 mo-miR-185 GAACTGCCTTTCTCTCCAGAACTGCCTTTCTCTCCA 2447 mo-miR-186 AGCCCAAAAGGAGAATTCTTTGAGCCCAAAAGGAGAATTCTTTG 2448 mo-miR-187 GGCTGCAACACAAGACACGAGGCTGCAACACAAGACACGA 2449 mo-miR-190 ACCTAATATATCAAACATATCAACCTAATATATCAAACATATCA 2450 mo-miR-191 AGCTGCTTTTGGGATTCCGTTAGCTGCTTTTGGGATTCCGTT 2451 mo-miR-192 GGCTGTCAATTCATAGGTCAGGGCTGTCAATTCATAGGTCAG 2452 mo-miR-193 CTGGGACTTTGTAGGCCAGTTCTGGGACTTTGTAGGCCAGTT 2453 mo-miR-194 TCCACATGGAGTTGCTGTTACATCCACATGGAGTTGCTGTTACA 2454 mo-miR-195 GCCAATATTTCTGTGCTGCTAGCCAATATTTCTGTGCTGCTA 2455 mo-miR-196a CCAACAACATGAAACTACCTACCAACAACATGAAACTACCTA 2456 mo-miR-199a GAACAGGTAGTCTGAACACTGGAACAGGTAGTCTGAACACTG 2457 mo-miR-200c CCATCATTACCCGGCAGTATTACCATCATTACCCGGCAGTATTA 2458 mo-miR-200a ACATCGTTACCAGACAGTGTTAACATCGTTACCAGACAGTGTTA 2459 mo-miR-200b GTCATCATTACCAGGCAGTATTGTCATCATTACCAGGCAGTATT 2460 mo-miR-203 CTAGTGGTCCTAAACATTTCACCTAGTGGTCCTAAACATTTCAC 2461 mo-miR-204 AGGCATAGGATGACAAAGGGAAAGGCATAGGATGACAAAGGGAA 2462 mo-miR-205 AGACTCCGGTGGAATGAAGGAAGACTCCGGTGGAATGAAGGA 2463 mo-miR-206 CCACACACTTCCTTACATTCCACCACACACTTCCTTACATTCCA 2464 mo-miR-208 ACAAGCTTTTTGCTCGTCTTATACAAGCTTTTTGCTCGTCTTAT 2465 mo-miR-210 TCAGCCGCTGTCACACGCACATCAGCCGCTGTCACACGCACA 2466 mo-miR-211 AGGCAAAGGATGACAAAGGGAAAGGCAAAGGATGACAAAGGGAA 2467 mo-miR-212 GCCGTGACTGGAGACTGTTAGCCGTGACTGGAGACTGTTA 2468 mo-miR-213 GGTACAATCAACGGTCGATGGGGTACAATCAACGGTCGATGG 2469 mo-miR-214 TGCCTGTCTGTGCCTGCTGTTGCCTGTCTGTGCCTGCTGT 2470 mo-miR-216 CACAGTTGCCAGCTGAGATTACACAGTTGCCAGCTGAGATTA 2471 mo-miR-217 ATCCAGTCAGTTCCTGATGCAATCCAGTCAGTTCCTGATGCA 2472 mo-miR-218 ACATGGTTAGATCAAGCACAAACATGGTTAGATCAAGCACAA 2473 mo-miR-219 AGAATTGCGTTTGGACAATCAAGAATTGCGTTTGGACAATCA 2474 mo-miR-221 AAACCCAGCAGACAATGTAGCTAAACCCAGCAGACAATGTAGCT 2475 mo-miR-222 AGACCCAGTAGCCAGATGTAGAGACCCAGTAGCCAGATGTAG 2476 mo-miR-223 GGGGTATTTGACAAACTGACAGGGGTATTTGACAAACTGACA 2477 mo-miR-290 AAAAAGTGCCCCCATAGTTTGAAAAAAGTGCCCCCATAGTTTGA 2478 mo-miR-291-5p AGAGAGGGCCTCCACTTTGATAGAGAGGGCCTCCACTTTGAT 2479 mo-miR-291-3p GCACACAAAGTGGAAGCACTTTGCACACAAAGTGGAAGCACTTT 2480 mo-miR-292-5p CAAAAGAGCCCCCAGTTTGAGCAAAAGAGCCCCCAGTTTGAG 2481 mo-miR-292-3p ACACTCAAAACCTGGCGGCACTACACTCAAAACCTGGCGGCACT 2482 mo-miR-296 ACAGGATTGAGGGGGGGCCCTACAGGATTGAGGGGGGGCCCT 2483 mo-miR-297 CATGCATACATGCACACATACACATGCATACATGCACACATACA 2484 mo-miR-298 GGAAGAACAGCCCTCCTCTGGAAGAACAGCCCTCCTCT 2485 mo-miR-299 ATGTATGTGGGACGGTAAACCAATGTATGTGGGACGGTAAACCA 2486 mo-miR-300 GAAGAGAGCTTGCCCTTGCATGAAGAGAGCTTGCCCTTGCAT 2487 mo-miR-320 TTCGCCCTCTCAACCCAGCTTTTTCGCCCTCTCAACCCAGCTTT 2488 mo-miR-196b CCAACAACAGGAAACTACCTACCAACAACAGGAAACTACCTA 2489 mo-miR-421 CAACAAACATTTAATGAGGCCCAACAAACATTTAATGAGGCC 2490 mo-miR-448 ATGGGACATCCTACATATGCAAATGGGACATCCTACATATGCAA 2491 mo-miR-429 ACGGCATTACCAGACAGTATTAACGGCATTACCAGACAGTATTA 2492 mo-miR-449 ACCAGCTAACAATACACTGCCAACCAGCTAACAATACACTGCCA 2493 mo-miR-450 CATTAGGAACACATCGCAAAAACATTAGGAACACATCGCAAAAA 2494 mo-miR-365 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 2495 mo-miR-424 TCCAAAACATGAATTGCTGCTGTCCAAAACATGAATTGCTGCTG 2496 mo-miR-431 TGCATGACGGCCTGCAAGACATGCATGACGGCCTGCAAGACA 2497 mo-miR-433 ACACCGAGGAGCCCATCATGATACACCGAGGAGCCCATCATGAT 2498 mo-miR-451 AACTCAGTAATGGTAACGGTTTAACTCAGTAATGGTAACGGTTT 2499 mmu-let-7g ACTGTACAAACTACTACCTCAACTGTACAAACTACTACCTCA 2500 mmu-let-7i ACAGCACAAACTACTACCTCAACAGCACAAACTACTACCTCA 2501 mmu-miR-1 TACATACTTCTTTACATTCCATACATACTTCTTTACATTCCA 2502 mmu-miR-15b TGTAAACCATGATGTGCTGCTATGTAAACCATGATGTGCTGCTA 2503 mmu-miR-23b GGTAATCCCTGGCAATGTGATGGTAATCCCTGGCAATGTGAT 2504 mmu-miR-27b GCAGAACTTAGCCACTGTGAAGCAGAACTTAGCCACTGTGAA 2505 mmu-miR-29b AACACTGATTTCAAATGGTGCTAACACTGATTTCAAATGGTGCT 2506 mmu-miR-30a-5p CTTCCAGTCGAGGATGTTTACACTTCCAGTCGAGGATGTTTACA 2507 mmu-miR-30a-3p GCTGCAAACATCCGACTGAAAGCTGCAAACATCCGACTGAAA 2508 mmu-miR-30b AGCTGAGTGTAGGATGTTTACAAGCTGAGTGTAGGATGTTTACA 2509 mmu-miR-99a ACAAGATCGGATCTACGGGTACAAGATCGGATCTACGGGT 2510 mmu-miR-99b CAAGGTCGGTTCTACGGGTCAAGGTCGGTTCTACGGGT 2511 mmu-miR-101a CTTCAGTTATCACAGTACTGTACTTCAGTTATCACAGTACTGTA 2512 mmu-miR-124a GCATTCACCGCGTGCCTTAGCATTCACCGCGTGCCTTA 2513 mmu-miR-125a CACAGGTTAAAGGGTCTCAGGCACAGGTTAAAGGGTCTCAGG 2514 mmu-miR-125b TCACAAGTTAGGGTCTCAGGGTCACAAGTTAGGGTCTCAGGG 2515 mmu-miR-126-5p CGCGTACCAAAAGTAATAATGCGCGTACCAAAAGTAATAATG 2516 mmu-miR-126-3p GCATTATTACTCACGGTACGAGCATTATTACTCACGGTACGA 2517 mmu-miR-127 CAAGCTCAGACGGATCCGACAAGCTCAGACGGATCCGA 2518 mmu-miR-128a AAAAGAGACCGGTTCACTGTGAAAAAGAGACCGGTTCACTGTGA 2519 mmu-miR-130a ATGCCCTTTTAACATTGCAGTGATGCCCTTTTAACATTGCACTG 2520 mmu-miR-9 CATACAGCTAGATAACCAAAGACATACAGCTAGATAACCAAAGA 2521 mmu-miR˜9* ACTTTCGGTTATCTAGCTTTACTTTCGGTTATCTAGCTTT 2522 mmu-miR-132 CGACCATGGCTGTAGACTGTTCGACCATGGCTGTAGACTGTT 2523 mmu-miR-133a ACAGCTGGTTGAAGGGGACCAAACAGCTGGTTGAAGGGGACCAA 2524 mmu-miR-134 CCTCTGGTCAACCAGTCACACCTCTGGTCAACCAGTCACA 2525 mmu-miR-135a TCACATAGGAATAAAAAGCCATTCACATAGGAATAAAAAGCCAT 2526 mmu-miR-136 TCCATCATCAAAACAAATGGAGTCCATCATCAAAACAAATGGAG 2527 mmu-miR-137 CTACGCGTATTCTTAAGCAATACTACGCGTATTCTTAAGCAATA 2528 mmu-miR-138 GATTCACAACACCAGCTGATTCACAACACCAGCT 2529 mmu-miR-140 CTACCATAGGGTAAAACCACTGCTACCATAGGGTAAAACGACTG 2530 mmu-miR-140* TCCGTGGTTCTACCCTGTGGTATCCGTGGTTCTACCCTGTGGTA 2531 mmu-miR-141 CCATCTTTACCAGACAGTGTTACCATCTTTACCAGACAGTGTTA 2532 mmu-miR-142-5p GTAGTGCTTTCTACTTTATGGTAGTGCTTTCTACTTTATG 2533 mmu-miR-142-3p CCATAAAGTAGGAAACACTACACCATAAAGTAGGAAACACTACA 2534 mmu-miR-144 CTAGTACATCATCTATACTGTACTAGTACATCATCTATACTGTA 2535 mmu-miR-145 AAGGGATTCCTGGGAAAACTGAAGGGATTCCTGGGAAAACTG 2536 mmu-miR-146 AACCCATGGAATTCAGTTCTCAAACCCATGGAATTCAGTTCTCA 2537 mmu-miR-149 AGTGAAGACACGGAGCCAGAAGTGAAGACACGGAGCCAGA 2538 mmu-miR-150 ACTGGTACAAGGGTTTGGGAGAACTGGTACAAGGGTTGGGAGA 2539 mmu-miR-151 CCTCAAGGAGCCTCAGTCTACCTCAAGGAGCCTCAGTCTA 2540 mmu-miR-152 CCCAAGTTCTGTCATGCACTGCCCAAGTTCTGTCATGCACTG 2541 mmu-miR-153 GATCACTTTTGTGACTATGCAAGATCACTTTTGTGACTATGCAA 2542 mmu-miR-154 CGAAGGCAACACGGATAACCTCGAAGGCAACACGGATAACCT 2543 mmu-miR-155 CCCCTATCACAATTAGCATTAACCCCTATCACAATTAGCATTAA 2544 mmu-miR-10b ACACAAATTCGGTTCTACAGGGACACAAATTCGGTTCTACAGGG 2545 mmu-miR-129-5p AGCAAGCCCAGACCGCAAAAAAGCAAGCCCAGACCGCAAAAA 2546 mmu-miR-181a ACTCACCGACAGCGTTGAATGACTCACCGACAGCGTTGAATG 2547 mmu-miR-182 TGTGAGTTCTACCATTGCCAAATGTGAGTTCTACCATTGCCAAA 2548 mmu-miR-183 CAGTGAATTCTACCAGTGCCATCAGTGAATTCTACCAGTGCCAT 2549 mmu-miR-184 ACCCTTATCAGTTCTCCGTCCACCCTTATCAGTTCTCCGTCC 2550 mmu-miR-185 GAACTGCCTTTCTCTCCAGAACTGCCTTTCTCTCCA 2551 mmu-miR-186 AGCCCAAAAGGAGAATTCTTTGAGCCCAAAAGGAGAATTCTTTG 2552 mmu-miR-187 GGCTGCAACACAAGACACGAGGCTGCAACACAAGACACGA 2553 mmu-miR-188 ACCCTCCACCATGCAAGGGATACCCTCCACCATGCAAGGGAT 2554 mmu-miR-189 ACTGATATCAGCTCAGTAGGCAACTGATATCAGCTCAGTAGGCA 2555 mmu-miR-24 TGTTCCTGCTGAACTGAGCCATGTTCCTGCTGAACTGAGCCA 2556 mmu-miR-190 ACCTAATATATCAAACATATCAACCTAATATATCAAACATATCA 2557 mmu-miR-191 AGCTGCTTTTGGGATTCCGTTAGCTGCTTTTGGGATTCCGTT 2558 mmu-miR-193 CTGGGACTTTGTAGGCCAGTTCTGGGACTTTGTAGGCCAGTT 2559 mmu-miR-194 TCCACATGGAGTTGCTGTTACATCCACATGGAGTTGCTGTTACA 2560 mmu-miR-195 GCCAATATTTCTGTGCTGCTAGCCAATATTTCTGTGCTGCTA 2561 mmu-miR-199a GAACAGGTAGTCTGAACACTGGAACAGGTAGTCTGAACACTG 2562 mmu-miR-199a* AACCAATGTGCAGACTACTGTAAACCAATGTGCAGACTACTGTA 2563 mmu-miR-200b GTCATCATTACCAGGCAGTATTGTCATCATTACCAGGCAGTATT 2564 mmu-miR-201 AGAACAATGCCTTACTGAGTAAGAACAATGCCTTACTGAGTA 2565 mmu-miR-202 TCTTCCCATGCGCTATACCTCTCTTCCCATGCGCTATACCTC 2566 mmu-miR-203 CTAGTGGTCCTAAACATTTCACTAGTGGTCCTAAACATTTCA 2567 mmu-miR-204 AGGCATAGGATGACAAAGGGAAAGGCATAGGATGACAAAGGGAA 2568 mmu-miR-205 AGACTCCGGTGGAATGAAGGAAGACTCCGGTGGAATGAAGGA 2569 mmu-miR-206 CCACACACTTCCTTACATTCCACCACACACTTCCTTACATTCCA 2570 mmu-miR-207 AGGGAGGAGAGCCAGGAGAAAGGGAGGAGAGCCAGGAGAA 2571 mmu-miR-122a ACAAACACCATTGTCACACTCCACAAACACCATTGTCACACTCC 2572 mmu-miR-143 TGAGCTACAGTGCTTCATCTCATGAGCTACAGTGCTTCATCTCA 2573 mmu-miR-30e TCCAGTCAAGGATGTTTACATCCAGTCAAGGATGTTTACA 2574 mmu-miR-30e* CTGTAAACATCCGACTGAAAGCTGTAAACATCCGACTGAAAG 2575 mmu-miR-290 AAAAAGTGCCCCCATAGTTTGAAAAAAGTGCCCCCATAGTTTGA 2576 mmu-miR-291-5p AGAGAGGGCCTCCACTTTGATAGAGAGGGCCTCCACTTTGAT 2577 mmu-miR-291-3p GCACACAAAGTGGAAGCACTTTGCACACAAAGTGGAAGCACTTT 2578 mmu-miR-292-5p CAAAAGAGCCCCCAGTTTGAGCAAAAGAGCCCCCAGTTTGAG 2579 mmu-miR-292-3p ACACTCAAAACCTGGCGGCACTACACTCAAAACCTGGCGGCACT 2580 mmu-miR-293 ACACTACAAACTCTGCGGCACACACTACAAACTCTGCGGCAC 2581 mmu-miR-294 ACACACAAAAGGGAAGCACTTTACACACAAAAGGGAAGCACTTT 2582 mmu-miR-295 AGACTCAAAAGTAGTAGCACTTAGACTCAAAAGTAGTAGCACTT 2583 mmu-miR-296 ACAGGATTGAGGGGGGGCCCTACAGGATTGAGGGGGGGCCCT 2584 mmu-miR-297 CATGCACATGCACACATACATCATGCACATGCACACATACAT 2585 mmu-miR-298 GGAAGAACAGCCCTCCTCTGGAAGAACAGCCCTCCTCT 2586 mmu-miR-299 ATGTATGTGGGACGGTAAACCAATGTATGTGGGACGGTAAACCA 2587 mmu-miR-300 GAAGAGAGCTTGCCCTTGCATGAAGAGAGCTTGCCCTTGCAT 2588 mmu-miR-301 GCTTTGACAATACTATTGCACTGCTTTGACAATACTATTGCACT 2589 mmu-miR-302 TCACCAAAACATGGAAGCACTTTCACCAAAACATGGAAGCACTT 2590 mmu-miR-34c CAATCAGCTAACTACACTGCCTCAATCAGCTAACTACACTGCCT 2591 mmu-miR-34b CAATCAGCTAATTACACTGCCTCAATCAGCTAATTACACTGCCT 2592 mmu-let-7d ACTATGCAACCTACTACCTCTACTATGCAACCTACTACCTCT 2593 mmu-let-7d* AGAAAGGCAGCAGGTCGTATAAGAAAGGCAGCAGGTCGTATA 2594 mmu-miR-106a TACCTGCACTGTTAGCACTTTGTACCTGCACTGTTAGCACTTTG 2595 mmu-miR-106b ATCTGCAGTGTCAGCACTTTAATCTGCACTGTCAGCACTTTA 2596 mmu-miR-130b ATGCCCTTTCATCATTGCACTGATGCCC1TTCATCATTGCACTG 2597 mmu-miR-19b TCAGTTTTGCATGGATTTGCACTCAGTTTTGCATGGATTTGCAC 2598 mmu-miR-30c GCTGAGAGTGTAGGATGTTTACGCTGAGAGTGTAGGATGTTTAC 2599 mmu-miR-30d CTTCCAGTCGGGGATGTTTACCTTCCAGTCGGGGATGTTTAC 2600 mmu-miR-148a ACAAAGTTCTGTAGTGCACTGAACAAAGTTCTGTAGTGCACTGA 2601 mmu-miR-192 TGTCAATTCATAGGTCAGTGTCAATTCATAGGTCAG 2602 mmu-miR-196a CCAACAACATGAAACTACCTACCAACAACATGAAACTACCTA 2603 mmu-miR-200a ACATCGTTACCAGACAGTGTTAACATCGTTACCAGACAGTGTTA 2604 mmu-miR-208 ACAAGCTTTTTGCTCGTCTTATACAAGCTTTTTGCTCGTCTTAT 2605 mmu-let-7a ACTATACAACCTACTACCTCAACTATACAACCTACTACCTCA 2606 mmu-let-7b AACCACACAACCTACTACCTCAAACCACACAACCTACTACCTCA 2607 mmu-let-7c AACCATACAACCTACTACCTCAAACCATACAACCTACTACCTCA 2608 mmu-let-7e ACTATACAACCTCCTACCTCAACTATACAACCTCCTACCTCA 2609 mmu-let-7f ACTATACAATCTACTACCTCACTATACAATCTACTACCTC 2610 mmu-miR-15a CACAAACCATTATGTGCTGCTACACAAACCATTATGTGCTGCTA 2611 mmu-miR-16 CGCCAATATTTACGTGCTGCTACGCCAATA1TTACGTGCTGCTA 2612 mmu-miR-18 TATCTGCACTAGATGCACCTTATATCTGCACTAGATGCACCTTA 2613 mmu-miR-20 CTACCTGCACTATAAGCACTTTCTACCTGCACTATAAGCACTTT 2614 mmu-miR-21 TCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATAAGCTA 2615 mmu-miR-22 ACAGTTCTTCAACTGGCAGCTTACAGTTCTTCAACTGGCAGCTT 2616 mmu-miR-23a GGAAATCCCTGGCAATGTGATGGAAATCCCTGGCAATGTGAT 2617 mmu-miR-26a GCCTATCCTGGATTACTTGAAGCCTATCCTGGATTACTTGAA 2618 mmu-miR-26b AACCTATCCTGAATTACTTGAAAACCTATCCTGAATTACTTGAA 2619 mmu-miR-29a AACCGATTTCAGATGGTGCTAAACCGATTTCAGATGGTGCTA 2620 mmu-miR-29c ACCGATTTCAAATGGTGCTAACCGATTTCAAATGGTGCTA 2621 mmu-miR-27a GCGGAACTTAGCCACTGTGAAGCGGAACTTAGCCACTGTGAA 2622 mmu-miR-31 AGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCTTGCCT 2623 mmu-miR-92 AGGCCGGGACAAGTGCAATAAGGCCGGGACAAGTGCAATA 2624 mmu-miR-93 CTACCTGCACGAACAGCACTTCTACCTGCACGAACAGCACTT 2625 mmu-miR-96 AGCAAAAATGTGCTAGTGCCAAAGCAAAAATGTGCTAGTGCCAA 2626 mmu-miR-34a AACAACCAGCTAAGACACTGCAACAACCAGCTAAGACACTGC 2627 mmu-miR-129-3p ATGCTTTTTGGGGTAAGGGCTTATGCTTTTTGGGGTAAGGGCTT 2628 mmu-miR-98 AACAATACAACTTACTACCTCAAACAATACAACTTACTACCTCA 2629 mmu-miR-103 TCATAGCCCTGTACAATGCTGTCATAGCCCTGTACAATGCTG 2630 mmu-miR-424 TCCAAAACATGAATTGCTGCTGTCCAAAACATGAATTGCTGCTG 2631 mmu-miR-322 TGTTGCAGCGCTTCATGTTTTGTTGCAGCGCTTCATGTTT 2632 mmu-miR-323 AGAGGTCGACCGTGTAATGTGAGAGGTCGACCGTGTAATGTG 2633 mmu-miR-324-5p CACCAATGCCCTAGGGGATCACCAATGCCCTAGGGGAT 2634 mmu-miR-324-3p AGCAGCACCTGGGGCAGTAGCAGCACCTGGGGCAGT 2635 mmu-miR-325 ACACTTACTGAGCACCTACTAGACACTTACTGAGCACCTACTAG 2636 mmu-miR-326 ACTGGAGGAAGGGCCCAGAACTGGAGGAAGGGCCCAGA 2637 mmu-miR-328 ACGGAAGGGCAGAGAGGGCCAACGGAAGGGCAGAGAGGGCCA 2638 mmu-miR-329 AAAAAGGTTAGCTGGGTGTGTTAAAAAGGTTAGCTGGGTGTGTT 2639 mmu-miR-330 TCTCTGCAGGCCCTGTGCTTTTCTCTGCAGGCCCTGTGCTTT 2640 mmu-miR-331 TTCTAGGATAGGCCCAGGGTTCTAGGATAGGCCCAGGG 2641 mmu-miR-337 AAAGGCATCATATAGGAGCTGAAAAGGCATCATATAGGAGCTGA 2642 mmu-miR-148b ACAAAGTTCTGTGATGCACTGAACAAAGTTCTGTGATGCACTGA 2643 mmu-miR-338 TCAACAAAATCACTGATGCTGGTCAACAAAATCACTGATGCTGG 2644 mmu-miR-339 TGAGCTCCTGGAGGACAGGGATGAGCTCCTGGAGGACAGGGA 2645 mmu-miR-340 GGCTATAAAGTAACTGAGACGGGGCTATAAAGTAACTGAGACGG 2646 mmu-miR-341 ACTGACCGACCGACCGATCGAACTGACCGACCGACCGATCGA 2647 mmu-miR-342 ACGGGTGCGATTTCTGTGTGAACGGGTGCGATTTCTGTGTGA 2648 mmu-miR-344 ACAGTCAGGCTTTGGCTAGATACAGTCAGGCTTTGGCTAGAT 2649 mmu-miR-345 ACTGGACTAGGGGTCAGCAACTGGACTAGGGGTCAGCA 2650 mmu-miR-346 AGAGGCAGGCACTCGGGCAGAAGAGGCAGGCACTCGGGCAGA 2651 mmu-miR-350 TGAAAGTGTATGGGCTTTGTGATGAAAGTGTATGGGCTTTGTGA 2652 mmu-miR-351 AGGCTCAAAGGGCTCCTCAAGGCTCAAAGGGCTCCTCA 2653 mmu-miR-135b CACATAGGAATGAAAAGCCATACACATAGGAATGAAAAGCCATA 2654 mmu-miR-101b CTTCAGCTATCACAGTACTGTACTTCAGCTATCACAGTACTGTA 2655 mmu-miR-107 TGATAGCCCTGTACAATGCTGTGATAGCCCTGTACAATGCTG 2656 mmu-miR-10a CACAAATTCGGATCTACAGGGTCACAAATTCGGATCTACAGGGT 2657 mmu-miR-17-5p ACTACCTGCACTGTAAGCACTTACTACCTGCACTGTAAGCACTT 2658 mmu-miR-17-3p TACAAGTGCCCTCACTGCAGTTACAAGTGCCCTCACTGCAGT 2659 mmu-miR-19a TCAGTTTTGCATAGATTTGCACTCAGTTTTGCATAGATTTGCAC 2660 mmu-miR-25 TCAGACCGAGACAAGTGCAATTCAGACCGAGACAAGTGCAAT 2661 mmu-miR-28 CTCAATAGACTGTGAGCTCCTTCTCAATAGACTGTGAGCTCCTT 2662 mmu-miR-32 GCAACTTAGTAATGTGCAATGCAACTTAGTAATGTGCAAT 2663 mmu-miR-100 CACAAGTTCGGATCTACGGGTCACAAGTTCGGATCTACGGGT 2664 mmu-miR-139 AGACACGTGCACTGTAGAAGACACGTGCACTGTAGA 2665 mmu-miR-200c CCATCATTACCCGGCAGTATTACCATCATTACCCGGCAGTATTA 2666 mmu-miR-210 TCAGCCGCTGTCACACGCACATCAGCCGCTGTCACACGCACA 2667 mmu-miR-212 GCCGTGACTGGAGACTGTTAGCCGTGACTGGAGACTGTTA 2668 mmu-miR-213 GGTACAATCAACGGTCGATGGGGTACAATCAACGGTCGATGG 2669 mmu-miR-214 TGCCTGTCTGTGCCTGCTGTTGCCTGTCTGTGCCTGCTGT 2670 mmu-miR-216 CACAGTTGCCAGCTGAGATTACACAGTTGCCAGCTGAGATTA 2671 mmu-miR-218 ACATGGTTAGATCAAGCACAAACATGGTTAGATCAAGCACAA 2672 mmu-miR-219 AGAATTGCGTTTGGACAATCAAGAATTGCGTTTGGACAATCA 2673 mmu-miR-223 GGGGTATTTGACAAACTGACAGGGGTATTTGACAAACTGACA 2674 mmu-miR-320 TTCGCCCTCTCAACCCAGCTTTTTCGCCCTCTCAACCCAGCTTT 2675 mmu-miR-33 CAATGCAACTACAATGCACCAATGCAACTACAATGCAC 2676 mmu-miR-211 AGGCAAAGGATGACAAAGGGAAAGGCAAAGGATGACAAAGGGAA 2677 mmu-miR-221 AAACCCAGCAGACAATGTAGCTAAACCCAGCAGACAATGTAGCT 2678 mmu-miR-222 AGACCCAGTAGCCAGATGTAGAGACCCAGTAGCCAGATGTAG 2679 mmu-miR-224 TAAACGGAACCACTAGTGACTTTAAACGGAACCACTAGTGACTT 2680 mmu-miR-199b GAACAGGTAGTCTAAACACTGGGAACAGGTAGTCTAAACACTGG 2681 mmu-miR-181b CCCACCGACAGCAATGAATGTCCCACCGACAGCAATGAATGT 2682 mmu-miR-181c ACTCACCGACAGGTTGAATGTTACTCACCGACAGGTTGAATGTT 2683 mmu-miR-128b GAAAGAGACCGGTTCACTGTGGAAAGAGACCGGTTCACTGTG 2684 mmu-miR-7 CAACAAAATCACTAGTCTTCCACAACAAAATCACTAGTCTTCCA 2685 mmu-miR-7b AACAAAATCACAAGTCTTCCAACAAAATCACAAGTCTTCC 2686 mmu-miR-217 ATCCAGTCAGTTCCTGATGCAATCCAGTCAGTTCCTGATGCA 2687 mmu-miR-361 GTACCCCTGGAGATTCTGATAAGTACCCCTGGAGATTCTGATAA 2688 mmu-miR-363 TTACAGATGGATACCGTGCAATTTACAGATGGATACCGTGCAAT 2689 mmu-miR-365 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 2690 mmu-miR-375 TCACGCGAGCCGAACGAACAAATCACGCGAGCCGAACGAACAAA 2691 mmu-miR-376a ACGTGGATTTTCCTCTACGATACGTGGATTTTCCTCTACGAT 2692 mmu-miR-377 ACAAAAGTTGCCTTTGTGTGATACAAAAGTTGCCTTTGTGTGAT 2693 mmu-miR-378 ACACAGGACCTGGAGTCAGGAACACAGGACCTGGAGTCAGGA 2694 mmu-miR-379 CCTACGTTCCATAGTCTACCACCTACGTTCCATAGTCTACCA 2695 mmu-miR-380-5p GCGCATGTTCTATGGTCAACCGCGCATGTTCTATGGTCAACC 2696 mmu-miR-380-3p AAGATGTGGACCATACTACATAAAGATGTGGACCATACTACATA 2697 mmu-miR-381 ACAGAGAGCTTGCCCTTGTATAACAGAGAGCTTGCCCTTGTATA 2698 mmu-miR-382 CGAATCCACCACGAACAACTTCGAATCCACCACGAACAACTT 2699 mmu-miR-383 AGCCACAGTCACCTTCTGATCAGCCACAGTCACCTTCTGATC 2700 mmu-miR-335 ACATTTTTCGTTATTGCTCTTGACATTTTTCGTTATTGCTCTTG 2701 mmu-miR-133b TAGCTGGTTGAAGGGGACCAATAGCTGGTTGAAGGGGACCAA 2702 mmu-miR-215 GTCTGTCAAATCATAGGTCATGTCTGTCAAATCATAGGTCAT 2703 mmu-miR-384 TGTGAACAATTTCTAGGAATTGTGAACAATTTCTAGGAAT 2704 mmu-miR-196b CCAACAACAGGAAACTACCTACCAACAACAGGAAACTACCTA 2705 mmu-miR-409 AAGGGGTTCACCGAGCAACATAAGGGGTTCACCGAGCAACAT 2706 mmu-miR-410 AACAGGCCATCTGTGTTATATTAACAGGCCATCTGTGTTATATT 2707 mmu-miR-376b AAAGTGGATGTTCCTCTATGATAAAGTGGATGTTCCTCTATGAT 2708 mmu-miR-411 ACTGAGGGTTAGTGGACCGTGTACTGAGGGTTAGTGGACCGTGT 2709 mmu-miR-412 ACGGCTAGTGGACCAGGTGAAACGGCTAGTGGACCAGGTGAA 2710 mmu-miR-370 AACCAGGTTCCACCCCAGCAAACCAGGTTCCACCCCAGCA 2711 mmu-miR-425 CGGACACGACATTCCCGATCGGACACGACATTCCCGAT 2712 mmu-miR-431 TGCATGACGGCCTGCAAGACATGCATGACGGCCTGCAAGACA 2713 mmu-miR-433-5p GAATAATGACAGGCTCACCGTAGAATAATGACAGGCTCACCGTA 2714 mmu-miR-433-3p ACACCGAGGAGCCCATCATGATACACCGAGGAGCCCATCATGAT 2715 mmu-miR-434-5p GGTTCAAACCATGAGTCGAGCGGTTCAAACCATGAGTCGAGC 2716 mmu-miR-434-3p GGAGTCGAGTGATGGTTCAAAGGAGTCGAGTGATGGTTCAAA 2717 mmu-miR-448 ATGGGACATCCTACATATGCAAATGGGACATCCTACATATGCAA 2718 mmu-miR-429 ACGGCATTACCAGACAGTATTAACGGCATTACCAGACAGTATTA 2719 mmu-miR-449 ACCAGCTAACAATACACTGCCAACCAGCTAACAATACACTGCCA 2720 mmu-miR-450 TATTAGGAACACATCGCAAAAATATTAGGAACACATCGCAAAAA 2721 mmu-miR-451 AACTCAGTAATGGTAACGGTTTAACTCAGTAATGGTAACGGTTT 2722 mmu-miR-452 GTCTCAGTTTCCTCTGCAAACAGTCTCAGTTTCCTCTGCAAACA 2723 mmu-miR-463 TGATGGACAACAAATTAGGTTGATGGACAACAAATTAGGT 2724 mmu-miR-464 TATCTCACAGAATAAACTTGGTTATCTCACAGAATAAACTTGGT 2725 mmu-miR-465 TCACATCAGTGCCATTCTAAATTCACATCAGTGCCATTCTAAAT 2726 mmu-miR-466 GTCTTATGTGTGCGTGTATGTAGTCTTATGTGTGCGTGTATGTA 2727 mmu-miR-467 GTGTAGGTGTGTGTATGTATATGTGTAGGTGTGTGTATGTATAT 2728 mmu-miR-468 AGACACACGCACATCAGTCATAAGACACACGCACATCAGTCATA 2729 mmu-miR-469 ACACCAAGATCAATGAAAGAGGACACCAAGATCAATGAAAGAGG 2730 mmu-miR-470 TCACCAGTGCCAGTCCAAGAATCACCAGTGCCAGTCCAAGAA 2731 mmu-miR-471 TGTGAAAAGCACTATACTACGTTGTGAAAAGCACTATACTACGT 2732 dme-miR-1 CTCCATACTTCTTTACATTCCACTCCATACTTCTTTACATTCCA 2733 dme-miR-2a CTCATCAAAGCTGGCTGTGATACTCATCAAAGCTGGCTGTGATA 2734 dme-miR-2b CTCCTCAAAGCTGGCTGTGATCTCCTCAAAGCTGGCTGTGAT 2735 dme-miR-3 TGAGACACACTTTGCCCAGTGTGAGACACACTTTGCCCAGTG 2736 dme-miR-4 TCAATGGTTGTCTAGCTTTATCAATGGTTGTCTAGCTTTA 2737 dme-miR-5 CATATCACAACGATCGTTCCTTCATATCACAACGATCGTTCCTT 2738 dme-miR-6 AAAAAGAACAGCCACTGTGATAAAAAAGAACAGCCACTGTGATA 2739 dme-miR-7 ACAACAAAATCACTAGTCTTCCACAACAAAATCACTAGTCTTCC 2740 dme-miR-8 GACATCTTTACCTGACAGTATTGACATCTTTACCTGACAGTATT 2741 dme-miR-9a TCATACAGCTAGATAACCAAAGTCATACAGCTAGATAACCAAAG 2742 dme-miR-10 ACAAATTCGGATCTACAGGGTACAAATTCGGATCTACAGGGT 2743 dme-miR-11 GCAAGAACTCAGACTGTGATGGCAAGAACTCAGACTGTGATG 2744 dme-miR-12 ACCAGTACCTGATGTAATACTCACCAGTACCTGATGTAATACTC 2745 dme-miR-13a ACTCATCAAAATGGCTGTGATAACTCATCAAAATGGCTGTGATA 2746 dme-miR-13b ACTCGTCAAAATGGCTGTGATAACTCGTCAAAATGGCTGTGATA 2747 dme-miR-14 TAGGAGAGAGAAAAAGACTGATAGGAGAGAGAAAAAGACTGA 2748 dme-miR-263a GTGAATTCTTCCAGTGCCATTAGTGAATTCTTCCAGTGCCATTA 2749 dme-miR-184* CGGGGCGAGAGAATGATAAGCGGGGCGAGAGAATGATAAG 2750 dme-miR-184 CCCTTATCAGTTCTCCGTCCACCCTTATCAGTTCTCCGTCCA 2751 dme-miR-274 ATTACCCGTTAGTGTCGGTCAATTACCCGTTAGTGTCGGTCA 2752 dme-miR-275 GCGCTACTTCAGGTACCTGAGCGCTACTTCAGGTACCTGA 2753 dme-miR-92a ATAGGCCGGGACAAGTGCAATATAGGCCGGGACAAGTGCAAT 2754 dme-miR-219 CAAGAATTGCGTTTGGACAATCCAAGAATTGCGTTTGGACAATC 2755 dme-miR-276* CGTAGGAACTCTATACCTCGCCGTAGGAACTCTATACCTCGC 2756 dme-miR-276a AGAGCACGGTATGAAGTTCCTAAGAGCACGGTATGAAGTTCCTA 2757 dme-miR-277 TGTCGTACCAGATAGTGCATTTTGTCGTACCAGATAGTGCATTT 2758 dme-miR-278 AAACGGACGAAAGTCCCACGGAAAACGGACGAAAGTCCCACCGA 2759 dme-miR-133 ACAGCTGGTTGAAGGGGACCAAACAGCTGGTTGAAGGGGACCAA 2760 dme-miR-279 TTAATGAGTGTGGATCTAGTCATTAATGAGTGTGGATCTAGTCA 2761 dme-miR-33 CAATGCGACTACAATGCACCTCAATGCGACTACAATGCACCT 2762 dme-miR-280 CATTTCATATGCAACGTAAATACA1TTCATATGCAACGTAAATA 2763 dme-miR-281-1* ACTGTCGACGGACAGCTCTCTTACTGTCGACGGACAGCTCTCTT 2764 dme-miR-281 ACAAAGAGAGCAATTCCATGACACAAAGAGAGCAATTCCATGAC 2765 dme-miR-282 ACAGACAAAGCCTAGTAGAGGACAGACAAAGCCTAGTAGAGG 2766 dme-miR-283 AGAATTACCAGCTGATATTTAAGAATTACGAGCTGATATTTA 2767 dme-miR-284 AATTGCTGGAATCAAGTTGCTGAATTGCTGGAATCAAGTTGCTG 2768 dme-miR-281-2* ACTGTCGACGGATAGCTCTCTACTGTCGACGGATAGCTCTCT 2769 dme-miR-34 AACCAGCTAACCACACTGCCAAACCAGCTAACCACACTGCCA 2770 dme-miR-124 TTGGCATTCACCGCGTGCCTTATTGGCATTCACCGCGTGCCTTA 2771 dme-miR-79 ATGCTTTGGTAATCTAGCTTTAATGCTTTGGTAATCTAGCTTTA 2772 dme-miR-276b AGAGCACGGTATTAAGTTCCTAAGAGCACGGTATTAAGTTCCTA 2773 dme-miR-210 TAGCCGCTGTCACACGCACAATAGCCGCTGTCACACGCACAA 2774 dme-miR-285 GCACTGATTTCGAATGGTGCTAGCACTGATTTCGAATGGTGCTA 2775 dme-miR-100 CACAAGTTCGGATTTACGGGTTCACAAGTTCGGATTTACGGGTT 2776 dme-miR-92b AGGCCGGGACTAGTGCAATTAGGCCGGGACTAGTGCAATT 2777 dme-miR-286 AGCACGAGTGTTCGGTCTAGTAGCACGAGTGTTCGGTCTAGT 2778 dme-miR-287 GTGCAAACGATTTTCAACACAGTGCAAACGATTTTCAACACA 2779 dme-miR-87 CACACCTGAAATTTTGCTCAACACACCTGAAATTTTGCTCAA 2780 dme-miR-263b GTGAATTCTCCCAGTGCCAAGGTGAATTCTCCCAGTGCCAAG 2781 dme-miR-288 CATGAAATGAAATCGACATGAACATGAAATGAAATCGACATGAA 2782 dme-miR-289 AGTCGCAGGCTCCACTTAAATAAGTCGCAGGCTCCACTTAAATA 2783 dine-bantam AATCAGCTTTCAAAATGATCTCAATCAGCTTTCAAAATGATCTC 2784 dme-miR-303 ACCAGTTTCCTGTGAAACCTAAACCAGTTTCCTGTGAAACCTAA 2785 dme-miR-31b CAGCTATTCCGACATCTTGCCCAGCTATTCCGACATCTTGCC 2786 dme-miR-304 CTCACATTTACAAATTGAGATTCTCACATTTACAAATTGAGATT 2787 dme-miR-305 CAGAGCACCTGATGAAGTACAACAGAGCACCTGATGAAGTACAA 2788 dme-miR-9c TCTACAGCTAGAATACCAAAGATCTACAGCTAGAATACCAAAGA 2789 dme-miR-306 TTGAGAGTCACTAAGTACCTGATTGAGAGTCACTAAGTACCTGA 2790 dme-miR-306* GCACAGGCACAGAGTGACGCACAGGCACAGAGTGAC 2791 dme-miR-9b CATACAGCTAAAATCACCAAAGCATACAGCTAAAATCACCAAAG 2792 dme-let-7 ACTATACAACCTACTACCTCAACTATACAACCTACTACCTCA 2793 dme-miR-125 TCACAAGTTAGGGTCTCAGGGTCACAAGTTAGGGTCTCAGGG 2794 dme-miR-307 CTCACTCAAGGAGGTVGTGACTCACTCAAGGAGGTTGTGA 2795 dme-miR-308 CTCACAGTATAATCCTGTGATTCTCACAGTATAATCCTGTGATT 2796 dme-miR-31a TCAGCTATGCCGACATCTTGCTCAGCTATGCCGACATCTTGC 2797 dme-miR-309 TAGGACAAACTTTACCCAGTGCTAGGACAAACTTTACCCAGTGC 2798 dme-miR-310 AAAGGCCGGGAAGTGTGCAATAAAGGCCGGGAAGTGTGCAAT 2799 dme-miR-311 TCAGGCCGGTGAATGTGCAATTCAGGCCGGTGAATGTGCAAT 2800 dme-miR-312 TCAGGCCGTCTCAAGTGCAATTCAGGCCGTCTCAAGTGCAAT 2801 dme-miR-313 TCGGGCTGTGAAAAGTGCAATATCGGGCTGTGAAAAGTGCAATA 2802 dme-miR-314 CCGAACTTATTGGCTCGAATACCGAACTTATTGGCTCGAATA 2803 dme-miR-315 GCTTTCTGAGCAACAATCAAAAGCTTTCTGAGCAACAATCAAAA 2804 dme-miR-316 CGCCAGTAAGCGGAAAAAGACCGCCAGTAAGCGGAAAAAGAC 2805 dme-miR-317 ACTGGATACCACCAGCTGTGTACTGGATACCACCAGCTGTGT 2806 dme-miR-318 TGAGATAAACAAAGCCCAGTGATGAGATAAACAAAGCCCAGTGA 2807 dme-miR-2c CCCATCAAAGCTGGCTGTGATCCCATCAAAGCTGGCTGTGAT 2808 dme-miR-iab-4-5p TCAGGATACATTCAGTATACGTTCAGGATACATTCAGTATACGT 2809 dme-miR-iab-4-3p GTTACGTATACTGAAGGTATACGTTACGTATACTGAAGGTATAC 2810 cel-let-7 AACTATACAACCTACTACCTCAAACTATACAACCTACTACCTCA 2811 cel-lin-4 TCACACTTGAGGTCTCAGGGATCACACTTGAGGTCTCAGGGA 2812 cel-miR-1 TACATACTTCTTTACATTCCATACATACTTCTTTACATTCCA 2813 cei-miR-2 CACATCAAAGCTGGCTGTGATACACATCAAAGCTGGCTGTGATA 2814 cel-miR-34 AACCAGCTAACCACACTGCCTAACCAGCTAACCACACTGCCT 2815 cel-miR-35 ACTGCTAGTTTCCACCCGGTGAACTGCTAGTTTCCACCCGGTGA 2816 cel-miR-36 CATGCGAATTTTCACCCGGTGCATGCGAATTTTCACCCGGTG 2817 cel-miR-37 ACTGCAAGTGTTCACCCGGTGAACTGCAAGTGTTCACCCGGTGA 2818 cel-miR-38 ACTCCAGTTTTTCTCCCGGTGACTCCAGTTTTTCTCCCGGTG 2819 cel-miR-39 CAAGCTGATTTACACCCGGTGCAAGCTGATTTACACCCGGTG 2820 cel-miR-40 TTAGCTGATGTACACCCGGTGTTAGCTGATGTACACCCGGTG 2821 cel-miR-41 TAGGTGATTTTTCACCCGGTGATAGGTGATTTTTCACCCGGTGA 2822 cel-miR-42 CTGTAGATGTTAACCCGGTGCTGTAGATGTTAACCCGGTG 2823 cel-miR-43 GCGACAGCAAGTAAACTGTGATGCGACAGCAAGTAAACTGTGAT 2824 cei-miR-44 AGCTGAATGTGTCTCTAGTCAAGCTGAATGTGTCTCTAGTCA 2825 cel-miR-45 AGCTGAATGTGTCTCTAGTCAAGCTGAATGTGTCTCTAGTCA 2826 cel-miR-46 TGAAGAGAGCGACTCCATGACTGAAGAGAGCGACTCCATGAC 2827 cel-miR-47 TGAAGAGAGCGCCTCCATGACATGAAGAGAGCGCCTCCATGACA 2828 cel-miR-48 TCGCATCTACTGAGCCTACCTTCGCATCTACTGAGCCTACCT 2829 cel-miR-49 TCTGCAGCTTCTCGTGGTGCTTTCTGCAGCTTCTCGTGGTGCTT 2830 cel-miR-50 ACCCAAGAATACCAGACATATCACCCAAGAATACCAGACATATC 2831 cel-miR-51 AACATGGATAGGAGCTACGGGAACATGGATAGGAGCTACGGG 2832 cel-miR-52 AGCACGGAAACATATGTACGGAGCACGGAAACATATGTACGG 2833 cel-miR-53 AGCACGGAAACAAATGTACGGAGCACGGAAACAAATGTACGG 2834 cel-miR-54 CTCGGATTATGAAGATTACGGGCTCGGATTATGAAGATTACGGG 2835 cel-miR-55 CTCAGCAGAAACTTATACGGGTCTCAGCAGAAACTTATACGGGT 2836 cel-miR-56* TACAACCCAAAATGGATCCGCTACAACCCAAAATGGATCCGC 2837 cel-miR-56 CTCAGCGGAAACATTACGGGTCTCAGCGGAAACATTACGGGT 2838 cel-miR-57 ACACACAGCTCGATCTACAGGACACACAGCTCGATCTACAGG 2839 cel-miR-58 ATTGCCGTACTGAACGATCTCAATTGCCGTACTGAACGATCTCA 2840 cel-miR-59 CATCATCCTGATAAACGATTCGCATCATCCTGATAAACGATTCG 2841 cel-miR-60 TGAACTAGAAAATGTGCATAATTGAACTAGAAAATGTGCATAAT 2842 cel-miR-61 GAGATGAGTAACGGTTCTAGTCGAGATGAGTAACGGTTCTAGTC 2843 cel-miR-62 CTGTAAGCTAGATTACATATCACTGTAAGCTAGATTACATATCA 2844 cel-miR-63 TTTCCAACTCGCTTCAGTGTCATTTCCAACTCGCTTCAGTGTCA 2845 cel-miR-64 TTCGGTAACGCTTCAGTGTCATTTCGGTAACGCTTCAGTGTCAT 2846 cel-miR-65 TTCGGTTACGCTTCAGTGTCATTTCGGTTACGCTTCAGTGTCAT 2847 cel-miR-66 TCACATCCCTAATCAGTGTCATTCACATCCCTAATCAGTGTCAT 2848 cel-miR-67 TCTACTCTTTCTAGGAGGTTGTTCTACTCTTTCTAGGAGGTTGT 2849 cel-miR-70 ATGGAAACACCAACGACGTATTATGGAAACACCAACGACGTATT 2850 cel-miR-71 TCACTACCCATGTCTTTCATCACTACCCATGTCTTTCA 2851 cei-miR-72 GCTATGCCAACATCTTGCCTGCTATGCCAACATCTTGCCT 2852 cel-miR-73 ACTGAACTGCCTACATCTTGCACTGAACTGCCTACATCTTGC 2853 cel-miR-74 TGTAGACTGCCATTTCTTGCCATGTAGACTGCCATTTCTTGCCA 2854 cel-miR-75 TGAAGCCGGTTGGTAGCTTTAATGAAGCCGGTTGGTAGCTTTAA 2855 cel-miR-76 TCAAGGCTTCATCAACAACGAATCAAGGCTTCATCAACAACGAA 2856 cel-miR-77 TGGACAGCTATGGCCTGATGATGGACAGCTATGGCCTGATGA 2857 cel-miR-78 CACAAACAACCAGGCCTCCACACAAACAACCAGGCCTCCA 2858 cel-miR-79 AGCTTTGGTAACCTAGCTTTATAGCTTTGGTAACCTAGCTTTAT 2859 cel-miR-227 GTTCAGAATCATGTCGAAAGCTGTTCAGAATCATGTCGAAAGCT 2860 cel-miR-80 TCGGCTTTCAACTAATGATCTCTCGGCTTTCAACTAATGATCTC 2861 cel-miR-81 ACTAGCTTTCACGATGATCTCAACTAGCTTTCACGATGATCTCA 2862 cel-miR-82 ACTGGCTTTCACGATGATCTCAACTGGCTTTCACGATGATCTCA 2863 cel-miR-83 TTACTGAATTTATATGGTGCTATTACTGAATTTATATGGTGCTA 2864 cel-miR-84 TACAATATTACATACTACCTCATACAATATTACATACTACCTCA 2865 cel-miR-85 GCACGACTTTTCAAATACTTTGGCACGACTTTTCAAATACTTTG 2866 cel-miR-86 GACTGTGGCAAAGCATTCACTTGACTGTGGCAAAGCATTCACTT 2867 cel-miR-87 ACACCTGAAACTTTGCTCACACACCTGAAACTTTGCTCAC 2868 cel-miR-90 GGGGCATTCAAACAACATATCAGGGGCATTCAAACAACATATCA 2869 cel-miR-124 TGGCATTCACCGCGTGCCTTATGGCATTCACCGCGTGCCTTA 2870 cel-miR-228 CGTGAATTCATGCAGTGCCATTCGTGAATTCATGCAGTGCCATT 2871 cel-miR-229 ACGATGGAAAAGATAACCAGTGACGATGGAAAAGATAACCAGTG 2872 cel-miR-230 TCTCCTGGTCGCACAACTAATATCTCCTGGTCGCACAACTAATA 2873 cel-miR-231 TTCTGCCTGTTGATCACGAGCTTCTGCCTGTTGATCACGAGC 2874 cel-miR-232 TCACCGCAGTTAAGATGCATTTTCACCGCAGTTAAGATGCATTT 2875 cel-miR-233 TCCCGCACATGCGCATTGCTCATCCCGCACATGCGCATTGCTCA 2876 cel-miR-234 AAGGGTATTCTCGAGCAATAAAAGGGTATTCTCGAGCAATAA 2877 cel-miR-235 TCAGGCCGGGGAGAGTGCAATATCAGGCCGGGGAGAGTGCAATA 2878 cel-miR-236 AGCGTCATTACCTGACAGTATTAGCGTCATTACCTGACAGTATT 2879 cel-miR-237 AAGCTGTTCGAGAATTCTCAGGAAGCTGTTCGAGAATTCTCAGG 2880 cel-miR-238 TCTGAATGGCATCGGAGTACAATCTGAATGGCATCGGAGTACAA 2881 cel-miR-239a CCAGTACCTATGTGTAGTACAACCAGTACCTATGTGTAGTACAA 2882 cel-miR-239b CAGTACTTTTGTGTAGTACACAGTACTTTTGTGTAGTACA 2883 cel-miR-240 AGCGAAGATTTGGGGGCCAGTAAGCGAAGATTTGGGGGCCAGTA 2884 cel-miR-241 TCATTTCTCGCACCTACCTCATCATTTCTCGCACCTACCTCA 2885 cel-miR-242 TCGAAGCAAAGGCCTACGCAATCGAAGCAAAGGCCTACGCAA 2886 cel-miR-243 ATATCCCGCCGCGATCGTAATATCCCGCCGCGATCGTA 2887 cel-miR-244 CATACCACTTTGTACAACCAAACATACCACTTTGTACAACCAAA 2888 cel-miR-245 AGCTACTTGGAGGGGACCAATAGCTACTTGGAGGGGACCAAT 2889 cel-miR-246 AGCTCCTACCCGAAACATGTAAAGCTCCTACCCGAAACATGTAA 2890 cel-miR-247 AAGAAGAGAATAGGCTCTAGTCAAGAAGAGAATAGGCTCTAGTC 2891 cel-miR-248 TGAGCGTTATCCGTGCACGTGTTGAGCGTTATCCGTGCACGTGT 2892 cel-miR-249 GCAACGCTCAAAAGTCCTGTGGCAACGCTCAAAAGTCCTGTG 2893 cel-miR-250 CCATGCCAACAGTTGACTGTGCCATGCCAACAGTTGACTGTG 2894 cel-miR-251 AATAAGAGCGGCACCACTACTTAATAAGAGCGGCACCACTACTT 2895 cel-miR-252 TTACCTGCGGCACTACTACTTATTACCTGCGGCACTACTACTTA 2896 cel-miR-253 GGTCAGTGTTAGTGAGGTGTGGGTCAGTGTTAGTGAGGTGTG 2897 cel-miR-254 CTACAGTCGCGAAAGATTTGCACTACAGTCGCGAAAGATTTGCA 2898 cel-miR-256 TACAGTCTTCTATGCATTCCATACAGTCTTCTATGCATTCCA 2899 cel-miR-257 TCACTGGGTACTCCTGATACTTCACTGGGTACTCCTGATACT 2900 cel-miR-258 AAAAGGATTCCTCTCAAAACCAAAAGGATTCCTCTCAAAACC 2901 cel-miR-259 TACCAGATTAGGATGAGATTTACCAGATTAGGATGAGATT 2902 cel-miR-260 CTACAAGAGTTCGACATCACCTACAAGAGTTCGACATCAC 2903 cel-miR-261 CGTGAAAACTAAAAAGCTACGTGAAAACTAAAAAGCTA 2904 cel-miR-262 ATCAGAAAACATCGAGAAACATCAGAAAACATCGAGAAAC 2905 cel-miR-264 CATAACAACAACCACCCGCCCATAACAACAACCACCCGCC 2906 cel-miR-265 ATACCACCCTTCCTCCCTCAATACCACCCTTCCTCCCTCA 2907 cel-miR-266 GCTTTGCCAAAGTCTTGCCTGCTTTGCCAAAGTCTTGCCT 2908 cel-miR-267 TGCAGCAGACACTTCACGGTGCAGCAGACACTTCACGG 2909 cel-miR-268 CCAAACTGCTTCTAATTCTTGCCCAAACTGCTTCTAATTCTTGC 2910 cel-miR-269 AGTTTTGCCAGAGTCTTGCCAGTTTTGCCAGAGTCTTGCC 2911 cel-miR-270 CTCCACTGCTACATCATGCCCTCCACTGCTACATCATGCC 2912 cel-miR-271 AATGCTTTCCCACCCGGCGAAATGCTTTCCCACCCGGCGA 2913 cel-miR-272 CAAACACCCATGCCTACACAAACACCCATGCCTACA 2914 cel-miR-273 AGCCGACACAGTACGGGCAAGCCGACACAGTACGGGCA 2915 cel-miR-353 AATACCAACACATGGCAATTGAATACCAACACATGGCAATTG 2916 cel-miR-354 AGGAGCAGCAACAAACAAGGTAGGAGCAGCAACAAACAAGGT 2917 cel-miR-355 CATAGCTCAGGCTAAAACAAACATAGCTCAGGCTAAAACAAA 2918 cel-miR-356 TGATTTGTTCGCGTTGCTCAATGATTTGTTCGCGTTGCTCAA 2919 cel-miR-357 TCCTGCAACGACTGGCATTTATCCTGCAACGACTGGCATTTA 2920 cel-miR-358 CCTTGACAGGGATACCAATTGCCTTGACAGGGATACCAATTG 2921 cel-miR-359 TCGTGAGAGAAAGACCAGTGATCGTCAGAGAAAGACCAGTGA 2922 cel-miR-360 TTGTGAACGGGATTACGGTCATTGTGAACGGGATTACGGTCA 2923 cel-Isy-6 CGAAATGCGTCTCATACAAAACGAAATGCGTCTCATACAAAA 2924 cel-miR-392 TCATCACACGTGATCGATGATATCATCACACGTGATCGATGATA 2925 dre-miR-7b AACAAAATCACAAGTCTTCCAACAAAATCACAAGTCTTCC 2926 dre-miR-7a ACAACAAAATCACTAGTCTTCCACAACAAAATCACTAGTCTTCC 2927 dre-miR-10a ACAAATTCGGATCTACAGGGTAACAAATTCGGATCTACAGGGTA 2928 dre-miR-10b CACAAATTCGGTTCTACAGGGTCACAAATTCGGTTCTACAGGGT 2929 dre-miR-34 ACAACCAGCTAAGACACTGCCACAACCAGCTAAGACACTGCC 2930 dre-miR-181b CCCACCGACAGCAATGAATGTCCCACCGACAGCAATGAATGT 2931 dre-miR-182 TGTGAGTTCTACCATTGCCAAATGTGAGTTCTACCATTGCCAAA 2932 dre-miR-182* TAGTTGGCAAGTCTAGAACCATAGTTGGCAAGTCTAGAACCA 2933 dre-miR-183 CAGTGAATTCTACCAGTGCCATCAGTGAATTCTACCAGTGCCAT 2934 dre-miR-187 GGCTGGAACACAAGACACGAGGCTGCAACACAAGACACGA 2935 dre-miR-192 GGCTGTCAATTCATAGGTCATGGCTGTCAATTCATAGGTCAT 2936 dre-miR-196a CCCAACAACATGAAACTACCTACCCAACAACATGAAACTACCTA 2937 dre-miR-199 GAACAGGTAGTCTGAACACTGGAACAGGTAGTCTGAACACTG 2938 dre-miR-203a CAAGTGGTCCTAAACATTTCACCAAGTGGTCCTAAACATTTCAC 2939 dre-miR-204 AGGCATAGGATGACAAAGGGAAAGGCATAGGATGACAAAGGGAA 2940 dre-miR-205 AGACTCCGGTGGAATGAAGGAAGACTCCGGTGGAATGAAGGA 2941 dre-miR-210 TTAGCCGCTGTCACACGCACATTAGCCGCTGTCACACGCACA 2942 dre-miR-213 GGTACAATCAACGGTCAATGGTGGTACAATCAACGGTCAATGGT 2943 dre-miR-214 TGCCTGTCTGTGCCTGCTGTTGCCTGTCTGTGCCTGCTGT 2944 dre-miR-216a TCACAGTTGCCAGCTGAGATTATCACAGTTGCCAGCTGAGATTA 2945 dre-miR-217 CCAATCAGTTCCTGATGCAGTACCAATCAGTTCCTGATGCAGTA 2946 dre-miR-219 AAGAATTGCGTTTGGACAATCAAAGAATTGCGTTTGGACAATCA 2947 dre-miR-220 AAGTGTCCGATACGGTTGTGGAAGTGTCCGATACGGTTGTGG 2948 dre-miR-221 AAACCCAGCAGACAATGTAGCTAAACCCAGCAGACAATGTAGCT 2949 dre-miR-222 AGACCCAGTAGCCAGATGTAGAGACCCAGTAGCCAGATGTAG 2950 dre-miR-223 GGGGTATTTGACAAACTGACAGGGGTATTTGACAAACTGACA 2951 dre-miR-430a CTACCCCAACAAATAGCACTTACTACCCCAACAAATAGCACTTA 2952 dre-miR-430b CTACCCCAACTTGATAGCACTTCTACCCCAACTTGATAGCACTT 2953 dre-miR-430c CTACCCCAAAGAGAAGCACTTACTACCCCAAAGAGAAGCACTTA 2954 dre-miR-181a ACTCACCGACAGCGTTGAATGACTCACCGACAGCGTTGAATG 2955 dre-miR-429 ACGGCATTACCAGACAGTATTAACGGCATTACCAGACAGTATTA 2956 dre-miR-451 AACTCAGTAATGGTAACGGTTTAACTCAGTAATGGTAACGGTTT 2957 dre-let-7a AACTATACAACCTACTACCTCAAACTATACAACCTACTACCTCA 2958 dre-let-7b AACCACACAACCTACTACCTCAAACCACACAACCTACTACCTCA 2959 dre-let-7c AACCATACAACCTACTACCTCAAACCATACAACCTACTACCTCA 2960 dre-let-7d AACCATACAACCAACTACCTCAAACCATACAACCAACTACCTCA 2961 dre-let-7e AACTATTCAATCTACTACCTCAAACTATTCAATCTAGTACCTCA 2962 dre-let-7f AACTATACAATCTACTACCTCAAACTATACAATCTACTACCTCA 2963 dre-let-7g AACTATACAAACTACTACCTCAAACTATACAAACTACTACCTCA 2964 dre-let-7h AACAACACAACTTACTACCTCAAACAACACAACTTACTACCTCA 2965 dre-let-7i AACAGCACAAACTACTACCTCAAACAGCACAAACTACTACCTCA 2966 dre-miR-1 ATACATACTTCTTTACATTCCAATACATACTTCTTTACATTCCA 2967 dre-miR-9 TCATACAGCTAGATAACCAAAGTCATACAGCTAGATAACCAAAG 2968 dre-miR-10c ACAAATCCGGATCTACAGGGTAACAAATCCGGATCTACAGGGTA 2969 dre-miR-10d ACACATTCGGTTCTACAGGGTAACACATTCGGTTCTACAGGGTA 2970 dre-miR-15a CACAAACCATTCTGTGCTGCTACACAAACCATTCTGTGCTGCTA 2971 dre-miR-15b TACAAACCATGATGTGCTGCTATACAAACCATGATGTGCTGCTA 2972 dre-miR-16a CACCAATATTTACGTGCTGCTACACCAATATTTACGTGCTGCTA 2973 dre-miR-16b CTCCAATATTTACGTGCTGCTACTCCAATATTTACGTGCTGCTA 2974 dre-miR-16c CTCCAATATTTACATGCTGCTACTCCAATATTTACATGCTGCTA 2975 dre-miR-17a TACCTGCACTGTAAGCACTTTGTACCTGCACTGTAAGCACTTTG 2976 dre-miR-20b CTACCTGCACTGTGAGCACTTCTACCTGCACTGTGAGCACTT 2977 dre-miR-18a TATCTGCACTAGATGCACCTTATATCTGCACTAGATGCACCTTA 2978 dre-miR-18b TATCTGCACTAAATGCACCTTATATCTGCACTAAATGCACCTTA 2979 dre-miR-18c TAACTACACAAGATGCACCTTATAACTACACAAGATGCACCTTA 2980 dre-miR-19a TCAGTTTTGCATAGATTTGCACTCAGTTTTGCATAGATTTGCAC 2981 dre-miR-19b TCAGTTTTGCATGGATTTGCACTCAGTTTTGCATGGATTTGCAC 2982 dre-miR-19c CGAGTTTTGCATGGATTTGCACCGAGTTTTGCATGGATTTGCAC 2983 dre-miR-19d TCAGTTTTGCATGGGTTTGCACTCAGTTTTGCATGGGTTTGCAC 2984 dre-miR-20a CTACCTGCACTATAAGCACTTTCTACCTGCACTATAAGCACTTT 2985 dre-miR-21 CCAACACCAGTCTGATAAGCTACCAACACCAGTCTGATAAGCTA 2986 dre-miR-22a ACAGTTCTTCAGCTGGCAGCTACAGTTCTTCAGCTGGCAGCT 2987 dre-miR-22b ACAGCTCTTCAACTGGCAGCTACAGCTCTTCAACTGGCAGCT 2988 dre-miR-23a TGGAAATCCCTGGCAATGTGATTGGAAATCCCTGGCAATGTGAT 2989 dre-miR-23b TGGTAATCCCTGGCAATGTGATTGGTAATCCCTGGCAATGTGAT 2990 dre-miR-24 TGTTCCTGCTGAACTGAGCCATGTTCCTGCTGAACTGAGCCA 2991 dre-miR-25 TCAGACCGAGACAAGTGCAATTCAGACCGAGACAAGTGCAAT 2992 dre-miR-26a AGCCTATCCTGGATTACTTGAAAGCCTATCCTGGATTACTTGAA 2993 dre-miR-26b AACCTATCCTGGATTACTTGAAAACCTATCCTGGATTACTTGAA 2994 dre-miR-27a AGCGGAACTTAGCCACTGTGAAGCGGAACTTAGCCACTGTGA 2995 dre-miR-27b TGCAGAACTTAGCCACTGTGAATGCAGAACTTAGCCACTGTGAA 2996 dre-miR-27c GCAGAACTTAACCACTGTGAAGCAGAACTTAACCACTGTGAA 2997 dre-miR-27d TGAAGAACTTAGCCACTGTGAATGAAGAACTTAGCCACTGTGAA 2998 dre-miR-27e CACTGAACTTAGCCACTGTGAACACTGAACTTAGCCACTGTGAA 2999 dre-miR-29b ACACTGATTTCAAATGGTGCTAACACTGATTTCAAATGGTGCTA 3000 dre-miR-29a TAACCGATTTCAAATGGTGCTATAACCGATTTCAAATGGTGCTA 3001 dre-miR-30a CTTCCAGTCGGGAATGTTTACACTTCCAGTCGGGAATGTTTACA 3002 dre-miR-30b AGCTGAGTGTAGGATGTTTACAAGCTGAGTGTAGGATGTTTACA 3003 dre-miR-30c CTGAGAGTGTAGGATGTTTACACTGAGAGTGTAGGATGTTTACA 3004 dre-miR-30d CTTCCAGTCGGGGATGTTTACCTTCCAGTCGGGGATGTTTAC 3005 dre-miR-30e CTTCCAGTCAAGGATGTTTACACTTCCAGTCAAGGATGTTTACA 3006 dre-miR-92a ACAGGCCGGGACAAGTGCAATAACAGGCCGGGACAAGTGCAATA 3007 dre-miR-92b AGGCCGGGACGAGTGCAATAAGGCCGGGACGAGTGCAATA 3008 dre-miR-93 TACCTGCACAAACAGCACTTTTTACCTGCACAAACAGCACTTTT 3009 dre-miR-96 AGCAAAAATGTGCTAGTGCCAAAGCAAAAATGTGCTAGTGCCAA 3010 dre-miR-99 CACAAGATCGGATCTACGGGTCACAAGATCGGATCTACGGGT 3011 dre-miR-100 CACAAGTTCGGATCTACGGGTCACAAGTTCGGATCTACGGGT 3012 dre-miR-101a CTTCAGTTATCACAGTACTGTACTTCAGTTATCACAGTACTGTA 3013 dre-miR-101b CTTCAGTTATCATAGTACTGTACTTCAGTTATCATAGTACTGTA 3014 dre-miR-103 TCATAGCCCTGTACAATGCTGTCATAGCCCTGTACAATGCTG 3015 dre-miR-107 TGATAGCCCTGTACAATGCTGTGATAGCCCTGTACAATGCTG 3016 dre-miR-122 CAAACACCATTGTCACACTCCACAAACACCATTGTCACACTCCA 3017 dre-miR-124 TTGGCATTCACCGCGTGCCTTATTGGCATTCACCGCGTGCCTTA 3018 dre-miR-125a ACAGGTTAAGGGTCTCAGGGAACAGGTTAAGGGTCTCAGGGA 3019 dre-miR-125b TCACAAGTTAGGGTCTCAGGGTCACAAGTTAGGGTCTCAGGG 3020 dre-miR-125c TCACGAGTTAGGGTCTCAGGGATCACGAGTTAGGGTCTCAGGGA 3021 dre-miR-126 GCATTATTACTCACGGTACGAGCATTATTACTCACGGTACGA 3022 dre-miR-128 AAAAGAGACCGGTTCACTGTGAAAAAGAGACCGGTTCACTGTGA 3023 dre-miR-129 AGCAAGCCCAGACCGCAAAAAAGCAAGCCCAGACCGCAAAAA 3024 dre-miR-130a ATGCCCTTTTAACATTGCACTGATGCCCTTTTAACATTGCACTG 3025 dre-miR-130b ATGCCCTTTCATTATTGCACTGATGCCCTTTCATTATTGCACTG 3026 dre-miR-130c ATGCCCTTTTAATATTGCACTGATGCCCT1TTAATATTGCACTG 3027 dre-miR-132 CGACCATGGCTGTAGACTGTTCGACCATGGCTGTAGACTGTT 3028 dre-miR-133a AGCTGGTTGAAGGGGACCAAAAGCTGGTTGAAGGGGACCAAA 3029 dre-miR-133b TAGCTGGTTGAAGGGGACCAATAGCTGGTTGAAGGGGACCAA 3030 dre-miR-133c TAGCTGGTTGAAAGGGACCAAATAGCTGGTTGAAAGGGACCAAA 3031 dre-miR-135 CACATAGGAATAGAAAGCCATACACATAGGAATAGAAAGCCATA 3032 dre-miR-137 TACGCGTATTCTTAAGCAATAATACGCGTATTCTTAAGCAATAA 3033 dre-miR-138 GCCTGATTCACAACACCAGCTGCCTGATTCACAACACCAGCT 3034 dre-miR-140 CTACCATAGGGTAAAACCACTGCTACCATAGGGTAAAACCACTG 3035 dre-miR-141 GCATCGTTACCAGACAGTGTTAGCATCGTTACCAGACAGTGTTA 3036 dre-miR-142a-5p GTAGTGCTTTCTACTTTATGGTAGTGCTTTCTACTTTATG 3037 dre-miR-142b-5p TAGTAGTGCTGTCTACTTTATGTAGTAGTGCTGTCTACTTTATG 3038 dre-miR-143 GAGCTACAGTGCTTCATCTCAGAGCTACAGTGCTTCATCTCA 3039 dre-miR-144 AGTACATCATCTATACTGTAAGTACATCATCTATACTGTA 3040 dre-miR-145 GGGATTCCTGGGAAAACTGGAGGGATTCCTGGGAAAACTGGA 3041 dre-miR-146a CCATCTATGGAATTCAGTTCTCCCATCTATGGAATTCAGTTCTC 3042 dre-miR-146b CACCCTTGGAATTCAGTTCTCACACCCTTGGAATTCAGTTCTCA 3043 dre-miR-148 ACAAAGTTCTGTAATGCACTGAACAAAGTTCTGTAATGCACTGA 3044 dre-miR-150 CACTGGTACAAGGATTGGGAGCACTGGTACAAGGATTGGGAG 3045 dre-miR-152 CCAAAGTTCTGTCATGCACTGACCAAAGTTCTGTCATGCACTGA 3046 dre-miR-153b GCTCATTTTTGTGACTATGCAAGCTCATTTTTGTGACTATGCAA 3047 dre-miR-153a GATCACTTTTGTGACTATGCAAGATCACTTTTGTGACTATGCAA 3048 dre-miR-153c GATCATTTTTGTGACTATGCAAGATCATTTTTGTGACTATGCAA 3049 dre-miR-155 CCCCTATCACGATTAGCATTAACCCCTATCACGATTAGCATTAA 3050 dre-miR-181c CCCACCGACAGCAATGAATGTCCCACCGACAGCAATGAATGT 3051 dre-miR-184 CCCTTATCAGTTCTCCGTCCACCCTTATCAGTTCTCCGTCCA 3052 dre-miR-190 ACCTAATATATCAAACATATCAACCTAATATATCAAACATATCA 3053 dre-miR-462 AGCTGCATTATGGGTTCCGTTAAGCTGCATTATGGGTTCCGTTA 3054 dre-miR-193a ACTGGGACTTTGTAGGCCAGTACTGGGACTTTGTAGGCCAGT 3055 dre-miR-193b AGCGGGACTTTGCGGGCCAGTTAGCGGGACTTTGCGGGCCAGTT 3056 dre-miR-194a CCACATGGAGTTGCTGTTACACCACATGGAGTTGCTGTTACA 3057 dre-miR-194b TCCACATGGAGCGGCTGTTACATCCACATGGAGCGGCTGTTACA 3058 dre-miR-196b CCCAACAACTTGAAACTACCTACCCAACAACTTGAAACTACCTA 3059 dre-miR-200a ACATCGTTACCAGACAGTGTTAACATCGTTACCAGACAGTGTTA 3060 dre-miR-200b TCATCATTACCAGGCAGTATTATCATCATTACCAGGCAGTATTA 3061 dre-miR-200c GCATCATTACCAGGCAGTATTAGCATCATTACCAGGCAGTATTA 3062 dre-miR-202 TTTTCCCATGCCCTATGCCTCTTTTCCCATGCCCTATGCCTC 3063 dre-miR-203b CAAGTGGTCCTGAACATTTCACCAAGTGGTCCTGAACATTTCAC 3064 dre-miR-206 CCACACACTTCCTTACATTCCACCACACACTTCCTTACATTCCA 3065 dre-miR-216b TCACAGTTGCCTGCAGAGATTATCACAGTTGCCTGCAGAGATTA 3066 dre-miR-218a CACATGGTTAGATCAAGCACAACACATGGTTAGATCAAGCACAA 3067 dre-miR-218b TGCATGGTTAGATCAAGCACAATGCATGGTTAGATCAAGCACAA 3068 dre-miR-301a CTTTGACAATACTATTGCACTGCTTTGACAATACTATTGCACTG 3069 dre-miR-301b CAATGACAATACTATTGCACTGCAATGACAATACTATTGCACTG 3070 dre-miR-301c CTATGACAATACTATTGCACTGCTATGACAATACTATTGCACTG 3071 dre-miR-338 CAACAAAATCACTGATGCTGGACAACAAAATCACTGATGCTGGA 3072 dre-miR-363 TACAGATGGATACCGTGCAATTTACAGATGGATACCGTGCAATT 3073 dre-miR-365 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 3074 dre-miR-375 TAACGCGAGCCGAACGAACAATAACGCGAGCCGAACGAACAA 3075 dre-miR-454a CCCTATTAGCAATATTGCACTACCCTATTAGCAATATTGCACTA 3076 dre-miR-454b CCCTATAAGCAATATTGCACTACCCTATAAGCAATATTGCACTA 3077 dre-miR-455 CGATGTAGTCCAAGGGCACATCGATGTAGTCCAAGGGCACAT 3078 dre-miR-430i CTACGCCAACAAATAGCACTTACTACGCCAACAAATAGCACTTA 3079 dre-miR-430j TACCCCAATTTGATAGCACTTTTACCCCAATTTGATAGCACTTT 3080 dre-miR-456 TGACAACCATCTAACCAGCCTTGACAACCATCTAACCAGCCT 3081 dre-miR-457a TGCCAATATTGATGTGCTGCTTTGCCAATATTGATGTGCTGCTT 3082 dre-miR-457b CTCCAGTATTTATGTGCTGCTTCTCCAGTATTTATGTGCTGCTT 3083 dre-miR-458 GCAGTACCATTCAAAGAGCTATGCAGTACCATTCAAAGAGCTAT 3084 dre-miR-459 CAGGATGAATCCTTGTTACTGACAGGATGAATCCTTGTTACTGA 3085 dre-miR-460-5p CGCACAGTGTGTACAATGCAGCGCACAGTGTGTACAATGCAG 3086 dre-miR-460-3p CATCCACATTGTATGCGCTGTCATCCACATTGTATGCGCTGT 3087 dre-miR-461 TTGGCATTTAGCCCATTCCTGATTGGCATTTAGCCCATTCCTGA 3088 PREDICTED_MIR12 AAACATCACTGCAAGTCTTAACAAACATCACTGCAAGTCTTAAC 3089 PREDICTED_MIR23 AGAGGAGAGCCGTGTATGACTAGAGGAGAGCCGTGTATGACT 3090 PREDICTED_MIR26 ACAGGCCATCTGTGTTATATTCACAGGCCATCTGTGTTATATTC 3091 PREDICTED_MIR30 AGGCCGGGACGAGTGCAATAGGCCGGGACGAGTGCAAT 3092 PREDICTED_MIR43 GTACAAACCACAGTGTGCTGCGTACAAACCACAGTGTGCTGC 3093 PREDICTED_MIR52 AATGAAAGCCTACCATGTACAAAATGAAAGCCTACCATGTACAA 3094 PREDICTED_MIR54 ACCAGCTAACAATACACTGCCAACCAGCTAACAATACACTGCCA 3095 PREDICTED_MIR56 AAAATCTCTGCAGGCAAATGTGAAAATCTCTGCAGGCAAATGTG 3096 PREDICTED_MIR61 AAGAGGTTTCCCGTGTATGTTTAAGAGGTTTCCCGTGTATGTTT 3097 PREDICTED_MIR64 ATGGGACATCCTACATATGCAAATGGGACATCCTACATATGCAA 3098 PREDICTED_MIR65 AGAGAACCATTACCATTACTAAAGAGAACCATTACCATTACTAA 3099 PREDICTED_MIR74 CCCACCGACAACAATGAATGTTCCCACCGACAACAATGAATGTT 3100 PREDICTED_MIR78 GCTCCAGGCAGCCCAAAGCTCCAGGCAGCCCAAA 3101 PREDICTED_MIR88 CCCACGCACCAGGGTAACCCACGCACCAGGGTAA 3102 PREDICTED_MIR89 ATGTTCAAATAAGCTTTTGTAAATGTTCAAATAAGCTTTTGTAA 3103 PREDICTED_MIR90 TTTTTTTTCAACTTGTTACAGCTTTTTTTTCAACTTGTTACAGC 3104 PREDICTED_MIR92 AAACAAAGCACCTCTCCAAAAAAAACAAAGCACCTCTCCAAAAA 3105 PREDICTED_MIR93 GCTAACAAGGAATGCTGCCAAAGCTAACAAGGAATGCTGCCAAA 3106 PREDICTED_MIR100 GAGAAATTTTCAGGGCTACTGAGAGAAATTTTCAGGGCTACTGA 3107 PREDICTED_MIR102 TGAATCCTTGCCCAGGTGCATTGAATCCTTGCCCAGGTGCAT 3108 PREDICTED_MIR103 GAGCTGAGTGGAGCACAAACAGAGCTGAGTGGAGCACAAACA 3109 PREDICTED_MIR104 TTGTTCAACCAGTTACTAATCTTTGTTCAACCAGTTACTAATCT 3110 PREDICTED_MIR105 AGCTGCCGGCATTAAAGGGCTAAGCTGCCGGCATTAAAGGGCTA 3111 PREDICTED_MIR108 CCAAATTAGCTTTTTAAATAGACCAAATTAGCTTTTTAAATAGA 3112 PREDICTED_MIR109 AACCCAATATCAAACATATCACAACCCAATATCAAACATATCAC 3113 PREDICTED_MIR110 CCAAGAAATAGCCTTTCAAACACCAAGAAATAGCCTTTCAAACA 3114 PREDICTED_MIR112 ACCCCGTGCCACTGTGTACCCCGTGCCACTGTGT 3115 PREDICTED_MIR113 CATGTCATAAGCCATTTATTTCCATGTCATAAGCCATTTATTTC 3116 PREDICTED_MIR114 TTGGGAGACCCTGGTCTGCACTTTGGGAGACCCTGGTCTGCACT 3117 PREDICTED_MIR119 CTAATGACCGCAGAAAGCCATTCTAATGACCGCAGAAAGCCATT 3118 PREDICTED_MIR120 CATTCAACAAACATTTAATGAGCATTCAACAAACATTTAATGAG 3119 PREDICTED_MIR121 AGCCTATGGAATTCAGTTCTCAAGCCTATGGAATTCAGTTCTCA 3120 PREDICTED_MIR124 AAGAAGTGCACCATGTTTGTTTAAGAAGTGCACCATGTTTGTTT 3121 PREDICTED_MIR127 TGCCTGGCACCTACACACTAATGCCTGGCACCTACACACTAA 3122 PREDICTED_MIR128 TGCTAAATGATCCCCTGGTGCTGCTAAATGATCCCCTGGTGC 3123 PREDICTED_MIR129 CCAATTAAGTCTTTTAAATAAACCAATTAAGTCTTTTAAATAAA 3124 PREDICTED_MIR131 CACTTCACTGCCTGCAGACAACACTTCACTGCCTGCAGACAA 3125 PREDICTED_MIR132 CGTTCCTGATAAGTGAATAAAACGTTCCTGATAAGTGAATAAAA 3126 PREDICTED_MIR135 GCAGTTCAGAAAATTAAATAGAGCAGTTCAGAAAATTAAATAGA 3127 PREDICTED_MIR137 GTTCTCCAATACCTAGGCACAAGTTCTCCAATACCTAGGCACAA 3128 PREDICTED_MIR138 TATTAGGAACACATCGCAAAAATATTAGGAACACATCGCAAAAA 3129 PREDICTED_MIR139 TAGGGTCACACAGGATGTGAATTAGGGTCACACAGGATGTGAAT 3130 PREDICTED_MIR140 ACAAGGATGAATCTTTGTTACTACAAGGATGAATCTTTGTTACT 3131 PREDICTED_MIR141 CAGAACTGTTCCCGCTGCTACAGAACTGTTCCCGCTGCTA 3132 PREDICTED_MIR142 AGGTTACCCGAGCAACTTTGCAGGTTACCCGAGCAACTTTGC 3133 PREDICTED_MIR143 GAGGGGAGTTTTCTTTCAAAAGGAGGGGAGTTTTCTTTCAAAAG 3134 PREDICTED_MIR144 ATCCTTGAATAGGTGTGTTGCAATCCTTGAATAGGTGTGTTGCA 3135 PREDICTED_MIR145 TTTACAGGGTGGCCCATTTAAATTTACAGGGTGGCCCATTTAAA 3136 PREDICTED_MIR146 CAAAGAGCATGATATTTGACAGCAAAGAGCATGATATTTGACAG 3137 PREDICTED_MIR149 GGTCAATATTTACCTCTCAGGTGGTCAATATTTACCTCTCAGGT 3138 PREDICTED_MIR150 TCAGGCCATCAGCAGCTGCTA1TCAGGCCATCAGCAGCTGCTAT 3139 PREDICTED_MIR151 CCAGGAATTGATGACCAGCTGCCAGGAATTGATGACCAGCTG 3140 PREDICTED_MIR152 AGGACCCAGAGAACAACTCAGAGGACCCAGAGAACAACTCAG 3141 PREDICTED_MIR153 ACCTAGGGATCGTCAAAGGGAACCTAGGGATCGTCAAAGGGA 3142 PREDICTED_MIR154 TTTCCTCTGCAAACAGTTGTAATTTCCTCTGCAAACAGTTGTAA 3143 PREDICTED_MIR155 TTTAGTCAATATCAAGATTTATTTTAGTCAATATCAAGATTTAT 3144 PREDICTED_MIR156 AAGCTTCCCGGGCAGCTAAGCTTCCCGGGCAGCT 3145 PREDICTED_MIR157 TGCCCATGGACTGCATGGTGCTTGCCCATGGACTGCATGGTGCT 3146 PREDICTED_MIR158 GCTGATTGCCTCTGTGCCAATGCTGATTGCCTCTGTGCCAAT 3147 PREDICTED_MIR160 AACGCCGGGGCCACGTTGCTAAAACGCCGGGGCCACGTTGCTAA 3148 PREDICTED_MIR161 CGAAAGGAGATTGGCCATGTAACGAAAGGAGATTGGCCATGTAA 3149 PREDICTED_MIR162 TTCCTACTGAAATCTGACAATCTTCCTACTGAAATCTGACAATC 3150 PREDICTED_MIR163 GAAAGACCCCATTTAACTTGAAGAAAGACCCCATTTAACTTGAA 3151 PREDICTED_MIR164 TGAACAATCCAGATAATTGCTTTGAACAATCCAGATAATTGCTT 3152 PREDICTED_MIR165 TCCCCTGCAAGTGGTGCTTCCCCTGCAAGTGGTGCT 3153 PREDICTED_MIR166 TCCCACACCCAAGGCTTGCATCCCACACCCAAGGCTTGCA 3154 PREDICTED_MIR167 GAAACCAAGTATGGGTCGCCTGAAACCAAGTATGGGTCGCCT 3155 PREDICTED_MIR168 TGTGTGCAATTACCCATTTTATTGTGTGCAATTACCCATTTTAT 3156 PREDICTED_MIR170 ATTTAAAAGGCTTTTAAATGATATTTAAAAGGCTTTTAAATGAT 3157 PREDICTED_MIR171 ATAGTAGACCGTATAGCGTACGATAGTAGACCGTATAGCGTACG 3158 PREDICTED_MIR172 ACTGGGGCTGCATGCTGCTCAACTGGGGCTGCATGCTGCTCA 3159 PREDICTED_MIR173 CTACTGTTAATGACCTATTTCTCTACTGTTAATGACCTATTTCT 3160 PREDICTED_MIR174 CCTAAATACCTGGTATTTGAGACCTAAATACCTGGTATTTGAGA 3161 PREDICTED_MIR176 CTTTGACAGCATTTTAATTATACTTTGACAGCATTTTAATTATA 3162 PREDICTED_MIR177 GAACACACCAAGGATAATTTCTGAACACACCAAGGATAATTTCT 3163 PREDICTED_MIR179 AGTTATGAAATGTCATCAATAAAGTTATGAAATGTCATCAATAA 3164 PREDICTED_MIR180 CACAGGAAGTGGCCTTCAATACACAGGAAGTGGCCTTCAATA 3165 PREDICTED_MIR181 ATTGTTTGCACTCTGCCAGTTTATTGTTTGCACTCTGCCAGTTT 3166 PREDICTED_MIR182 GAGCTGAACTCAAAACCAAATGGAGCTGAACTCAAAACCAAATG 3167 PREDICTED_MIR183 TCTTTATTGCAAAGTCAGTATGTCTTTATTGCAAAGTCAGTATG 3168 PREDICTED_MIR184 AACCCTAGGAGAGGGTGCCATTAACCCTAGGAGAGGGTGCCATT 3169 PREDICTED_MIR186 ATTCTGCCCCTGGATATGCATATTCTGCCCCTGGATATGCAT 3170 PREDICTED_MIR187 AACCAAGCAGCCGGGCAGTAACCAAGCAGCCGGGCAGT 3171 PREDICTED_MIR189 AGCAGGGCTCCCTCACCAGCAAGCAGGGCTCCCTCACCAGCA 3172 PREDICTED_MIR190 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 3173 PREDICTED_MIR191 CGCCGCCCCGCACCTGCTGCCGCCGCCCCGCACCTGCTGC 3174 PREDICTED_MIR192 ACATCTCGGGGATCATCATGTACATCTCGGGGATCATCATGT 3175 PREDICTED_MIR194 GGGCCCTATATTAATGGACCAAGGGCCCTATATTAATGGACCAA 3176 PREDICTED_MIR196 AGTAAAGCCAAGTAGTGCATGAAGTAAAGCCAAGTAGTGCATGA 3177 PREDICTED_MIR197 AAGAAGGACCTTGTAATAAATAAAGAAGGACCTTGTAATAAATA 3178 PREDICTED_MIR198 CCAGATGCTAAGCACTGGAAGCCAGATGCTAAGCACTGGAAG 3179 PREDICTED_MIR199 TAACCACTCTCCAAGTACCAAATAACCACTCTCCAAGTACCAAA 3180 PREDICTED_MIR200 TTAACAGGCAGTTCTGCTGCTATTAACAGGCAGTTCTGCTGCTA 3181 PREDICTED_MIR201 ACGGTTTTACCAGACAGTATTAACGGTTTTACCAGACAGTATTA 3182 PREDICTED_MIR202 AGAAGTGCACCGCGAATGTTTAGAAGTGCACCGCGAATGTTT 3183 PREDICTED_MIR203 TTAAGAGCCCGGCTTTGCCTTTAAGAGCCCGGCTTTGCCT 3184 PREDICTED_MIR205 ATCCACGTTTTAAATACCAAAGATCCACGTTTTAAATACCAAAG 3185 PREDICTED_MIR206 TGCCTCCCACACACAGCTTTATGCCTCCCACACACAGCTTTA 3186 PREDICTED_MIR207 TTCCCCGGCACCAGCACAAAGTTTCCCCGGCACCAGCACAAAGT 3187 PREDICTED_MIR208 CAATCAGAGGCAATCAAGCACACAATCAGAGGCAATCAAGCACA 3188 PREDICTED_MIR209 TAATTCTAAAGACAAAGCACAATAATTCTAAAGACAAAGCACAA 3189 PREDICTED_MIR210 GGTTGTCAGGAACAGAAGTGCGGTTGTCAGGAACAGAAGTGC 3190 PREDICTED_MIR211 TACAGATGGATACCGTGCAATTTACAGATGGATACCGTGCAATT 3191 PREDICTED_MIR212 ACTTGATCAAACAGAGCACAACACTTGATCAAACAGAGCACAAC 3192 PREDICTED_MIR213 TTTTCTCCTGACTGATTGCACTTTTTCTCCTGACTGATTGCACT 3193 PREDICTED_MIR214 TTAAAATGACATGGATAATGCATTAAAATGACATGGATAATGCA 3194 PREDICTED_MIR215 AGAAGCGCCTTTGGCAGCTAAGAAGCGCCTTTGGCAGCTA 3195 PREDICTED_MIR216 TACCTGCACTATGAGCACTTTGTACCTGCACTATGAGCACTTTG 3196 PREDICTED_MIR218 GTCATGATCATCCCACACTAATGTCATGATCATCCCACACTAAT 3197 PREDICTED_MIR219 TGGCACCTATGCCCACCAGCATGGCACCTATGCCCACCAGCA 3198 PREDICTED_MIR220 GCTTTGACAATATCATTGCACTGCTTTGACAATATCATTGCACT 3199 PREDICTED_MIR222 GTCGGCATCTACACTTGCACTGTCGGCATCTACACTTGCACT 3200 PREDICTED_MIR223 ACCTGCTGCCACTGGCACTTAACCTGCTGCCACTGGCACTTA 3201 PREDICTED_MIR224 GGCATGAATTTATTGTGCAATAGGCATGAATTTATTGTGCAATA 3202 PREDICTED_MIR225 GCTGGCAGGGAAGTAGTGGCTGGCAGGGAAGTAGTG 3203 PREDICTED_MIR226 ATAACACCTACGAGCACTGCCATAACACCTACGAGCACTGCC 3204 PREDICTED_MIR227 AGTCACAGCATCCATTAATAAAAGTCACAGCATCCATTAATAAA 3205 PREDICTED_MIR228 ATGAGAAGACTGTCACAATCAAATGAGAAGACTGTCACAATCAA 3206 PREDICTED_MIR229 CTGCCAAACCAATTAATACCTCCTGCCAAACCAATTAATACCTC 3207 PREDICTED_MIR230 TCATATTTTAGTTCTGCACTGATCATATTTTAGTTCTGCACTGA 3208 PREDICTED_MIR231 CACATAACAGGTGCTCAAATAACACATAACAGGTGCTCAAATAA 3209 PREDICTED_MIR232 TAGAGATTGTTTCAACACTGAATAGAGATTGTTTCAACACTGAA 3210 PREDICTED_MIR234 GTCTCCACAGAAACTTTTGTCCGTCTCCACAGAAACTTTTGTCC 3211 PREDICTED_MIR235 ACCCGGTCTGCCAGAAGCTGCTACCCGGTCTGCCAGAAGCTGCT 3212 PREDICTED_MIR236 TTCAATAGGGCATAGGTGCCAATTCAATAGGGCATAGGTGCCAA 3213 PREDICTED_MIR237 CTCCAAAGAACATTACTGTGATCTCCAAAGAACATTACTGTGAT 3214 PREDICTED_MIR238 TATTAGGAACACATCGCAAAAATATTAGGAACACATCGCAAAAA 3215 PREDICTED_MIR239 ATCAATGCTATGTGATCTGCATATCAATGCTATGTGATCTGCAT 3216 PREDICTED_MIR240 TCACCCCAAAGTTGTGGCAATATCACCCCAAAGTTGTGGCAATA 3217 PREDICTED_MIR241 ATGTGACAGAGCCAAGCACAAAATGTGACAGAGCCAAGCACAAA 3218 PREDICTED_MIR242 ACCTACACTGAAACTGCCAAAAACCTACACTGAAACTGCCAAAA 3219 PREDICTED_MIR243 TTACCAAGGGCGACTCGCATTTACCAAGGGCGACTCGCAT 3220 PREDICTED_MIR245 ATAAGGATTTTTAGGGGCATTAATAAGGATTTTTAGGGGCATTA 3221 PREDICTED_MIR246 CCCGTATGTAATAAATGTGCTACCCGTATGTAATAAATGTGCTA 3222 PREDICTED_MIR247 TTAAGTTTTGAAAAGTACATAGTTAAGTTTTGAAAAGTACATAG 3223 PREDICTED_MIR249 AAAGCATACCAGCTGAACCAAAAAAGCATACCAGCTGAACCAAA 3224 PREDICTED_MIR250 CACAAGTTCCTGCAAATGCACACACAAGTTCCTGCAAATGCACA 3225 PREDICTED_MIR252 AAAAGAGACCTTCATATGCAAAAAAAGAGACCTTCATATGCAAA 3226 PREDICTED_MIR253 TAACTGCACTAGATGCACCTTATAACTGCACTAGATGCACCTTA 3227 PREDICTED_MIR254 AAGCATATTTCTCCCACTGTGAAAGCATATTTCTCCCACTGTGA 3228 PREDICTED_MIR255 TCCTGATGGTCGAAGTGCCAATCCTGATGGTCGAAGTGCCAA 3229 PREDICTED_MIR256 CATAATTACAGAAAATTGCACTCATAATTACAGAAAATTGCACT 3230 PREDICTED_MIR257 ACACTTAGCAGGTTGTATTATAACACTTAGCAGGTTGTATTATA 3231 PREDICTED_MIR258 TCACCCGAGGCGCACTTATCACCCGAGGCGCACTTA

REFERENCES

  • 1. Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006):350-5.
  • 2. Ambros V, Lee R C, Lavanway A, Williams P T, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 2003; 13(10):807-18.
  • 3. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2):281-97.
  • 4. Nakahara K, Carthew R W. Expanding roles for miRNAs and siRNAs in cell regulation. Curr Opin Cell Biol 2004; 16(2):127-33.
  • 5. Yang M, Li Y, Padgett R W. MicroRNAs: Small regulators with a big impact. Cytokine Growth Factor Rev 2005.
  • 6. Stark A, Brennecke J, Russell R B, Cohen S M. Identification of Drosophila MicroRNA Targets. PLoS Biol 2003; 1(3):E60.
  • 7. Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets. Cell 2003; 115(7):787-98.
  • 8. John B, Enright A J, Aravin A, Tuschl T, Sander C, Marks D S. Human MicroRNA Targets. PLoS Biol 2004; 2(11):e363.
  • 9. Robins H, Li Y, Padgett R W. Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA 2005; 102(11):4006-9.
  • 10. Chen C Z, Li L, Lodish H F, Bartel D P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303(5654):83-6.
  • 11. Esau C, Kang X, Peralta E, Hanson E, Marcusson E G, Ravichandran L V, Sun Y, Koo S, Perera R J, Jain R, Dean N M, Freier S M, Bennett C F, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004.
  • 12. Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432(7014):226-30.
  • 13. Lee Y S, Kim H K, Chung S, Kim K S, Dutta A. Depletion of human microRNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005.
  • 14. Calin G A, Sevignani C, Dumitru C D, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce C M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101(9):2999-3004.
  • 15. Calin G A, Dumitru C D, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce C M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24):15524-9.
  • 16. Calin G A, Liu C G, Sevignani C, Ferracin M, Felli N, Dumitru C D, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila M L, Alder H, Rassenti L, Kipps T J, Bullrich F, Negrini M, Croce C M. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004.
  • 17. Michael M Z, SM O C, van Holst Pellekaan N G, Young G P, James R J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12):882-91.
  • 18. Krichevsky A M, King K S, Donahue C P, Khrapko K, Kosik K S. A microRNA array reveals extensive regulation of microRNAs during brain development. Rna 2003; 9(10):1274-81.
  • 19. Babak T, Zhang W, Morris Q, Blencowe B J, Hughes T R. Probing microRNAs with microarrays: Tissue specificity and functional inference. Rna 2004; 10(11):1813-9.
  • 20. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer E K, Sharon E, Shiboleth Y M, Shtutman M, Bentwich Z, Einat P. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 14(12):2486-94.
  • 21. Liu C G, Calin G A, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru C D, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce C M. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004; 101(26):9740-4.
  • 22. Miska E A, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz H R. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004; 5(9):R68.
  • 23. Sun Y, Koo S, White N, Peralta E, Esau C, Dean N M, Perera R J. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32(22):e188.
  • 24. Baskerville S, Bartel D P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. Rna 2005; 11(3):241-7.
  • 25. Liang R Q, Li W, Li Y, Tan C Y, Li J X, Jin Y X, Ruan K C. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 2005; 33(2):e17.
  • 26. Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005.
  • 27. Stears R L, Getts R C, Gullans S R. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol Genomics 2000; 3(2):93-9.
  • 28. Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol 1990; 215(3):403-10.
  • 29. Behlke M A, Dames S A, McDonald W H, Gould K L, Devor E J, Walder J A. Use of high specific activity StarFire oligonucleotide probes to visualize low-abundance pre-mRNA splicing intermediates in S. pombe. Biotechniques 2000; 29(4):892-7.
  • 30. Hasegawa K, Chang Y W, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 2005; 193(2):394-410.
  • 31. Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M. Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev Biol 2004; 271(2):225-38.
  • 32. Brennecke J, Stark A, Russell R B, Cohen S M. Principles of MicroRNA-Target Recognition. PLoS Biol 2005; 3(3):e85.
  • 33. Saxena S, Jonsson Z O, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003;

278(45):44312-9.

  • 34. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1):15-20.
  • 35. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004; 32 Database issue:D 109-11.
  • 36. Thomson J M, Parker J, Perou C M, Hammond S M. A custom microarray platform for analysis of microRNA gene expression. 2004; 1(1):47.
  • 37. Yang Y H, Dudoit S, Luu P, Lin D M, Peng V, Ngai J, Speed T P. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002; 30(4):e15.
  • 38. Yang Y H, Speed T. Design issues for cDNA microarray experiments. Nat. Rev. Genet. 2002; 3(8):579.
  • 39. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12(9):735-9.
  • 40. Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5(3):R13.
  • 41. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. Rna 2003; 9(2):175-9.
  • 42. Houbaviy H B, Murray M F, Sharp P A. Embryonic stem cell-specific MicroRNAs. Dev Cell 2003; 5(2):351-8.
  • 43. Suh M R, Lee Y, Kim J Y, Kim S K, Moon S H, Lee J Y, Cha K Y, Chung H M, Yoon H S, Moon S Y, Kim V N, Kim K S. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004; 270(2):488-98.
  • 44. Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M. Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Developmental Biology 2004.
  • 45. Goff, L. A., Yang, M, Bowers, J, Getts, R. C., Padgett, R and Hart, R P. Rational Probe Optimization and Enhanced Detection Strategy for M icroRNAs using MicroArrays. RNA Biology 2:3 e9-e16 2005.

While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

Claims

1. A computer assisted method for optimizing design of probes which selectively hybridize to target miRNAs obtained from a database using a programmed computer, including a processor, an input device and an output device comprising:

a) inputting into the programmed computer miRNA sequence data,
b) inputting upper and lower ranges of sequence length;
c) inputting upper and lower ranges of Tm;
d) determining using the processor those probes which satisfy the inputted Tm parameters and sequence length following truncation of the sequences at either the 3′ or 5′ end of said sequence; and
e) outputting those probes that satisfy the inputted Tm parameters.

2. A computer program for implementing the method of claim 1.

3. The method of claim 1, wherein said sequences are truncated at the 5′ end only.

4. The method of claim 1, wherein said sequence are truncated at the 3′ end only.

5. A computer-readable medium having recorded thereon a program that identifies a miRNA probe which specifically hybridizes to the target miRNA according to the method of claim 1.

6. A computational analysis system comprising a computer-readable medium according to claim 5.

7. A kit for identifying a sequence of a nucleic acid that is suitable for use as a immobilized probe for a target miRNA, said kit comprising: (a) an algorithm that identifies a sequence of a nucleic acid that is suitable for use as a probe according to the method according to claim 1, wherein said algorithm is present on a computer readable medium; and (b) instructions for using said algorithm to identify said sequence of a nucleic acid that is suitable for use as a probe for said miRNA target nucleic acid.

8. A method for rational probe optimization for detection of Mi RNA molecules comprising:

a) providing a database of known miRNA sequences;
b) performing the miRMAX algorithm on said sequences to identify probes having enhanced sequence specificity, substantially similar hybridization temperatures and sequence length; and
c) obtaining the probe sequences identified in step b) and optionally synthesizing the same.

9. The method of claim 8, comprising generating the reverse complement of the sequences of step c) and

d) preparing concatamers of said probe sequences.

10. The method of claim 9, wherein said concatamer is selected from the group consisting of a dimer, a trimer or a multimer.

11. The method of claim 8, wherein said probe sequences are affixed to a solid support.

12. The method of claim 11, wherein said solid support is selected from the group consisting of a glass slide, a magnetic bead, a glass bead, a latex bead, a luminex bead, a filter, a multiwell plate and a microarray.

13. The method of claim 8, wherein said miRNA molecules are mature miRNAs.

14. An oligonucleotide array comprising an array of multiple oligonucleotides with different base sequences fixed onto known and separate positions on a support substrate, said oligonucleotides being synthesized using the outputted sequences of claim 1, wherein said oligonucleotides specifically hybridize to miRNA sequences or the complement thereof, and the said oligonucleotides are classified according to their sequence of origin, wherein the fixation region on the support substrate is divided into the said classification.

15. The array of claim 14, wherein said sequences are further classified according to biological organism of origin.

16. The array of claim 14, wherein said sequences are further classified according to the function of the target gene modulated by said miRNA.

17. The array of claim 14, wherein said sequences are further classified according to their tissue of origin.

18. The array of claim 14, comprising at least one probe from Tables 1 or 2.

19. The method of claim 9, wherein said probe sequences are affixed to a solid support.

Patent History
Publication number: 20080269072
Type: Application
Filed: Oct 21, 2005
Publication Date: Oct 30, 2008
Inventors: Ronald P. Hart (Cranford, NJ), Loyal A. Goff (Belle Mead, NJ)
Application Number: 11/577,581
Classifications