DIRECT DETECT SENSOR FOR FLAT PANEL DISPLAYS
Each sensor of a linear array of sensors includes, in part, a sensing electrode and an associated feedback circuit. The sensing electrodes are adapted to be brought in proximity to a flat panel having formed thereon a multitude of pixel electrodes in order to capacitively measure the voltage of the pixel electrodes. Each feedback circuit is adapted to actively drive its associated electrode via a feedback signal so as to maintain the voltage of its associated electrode at a substantially fixed bias. Each feedback circuit may include an amplifier having a first input terminal coupled to the sensing electrode and a second input terminal coupled to receive a biasing voltage. The output signal of the amplification circuit is used to generate the feedback signal that actively drives the sensing electrode. The biasing voltage may be the ground potential.
Latest Photon Dynamics, Inc. Patents:
- A METHOD FOR DETECTING DEFECTS IN ULTRA-HIGH RESOLUTION PANELS
- Apparatus for viewing through optical thin film color filters and their overlaps
- Electrical inspection of electronic devices using electron-beam induced plasma probes
- Automatic probe configuration station and method therefor
- Systems and methods for defect detection using a whole raw image
The present application claims benefit under 35 USC 119(e) of the following U.S. provisional applications, the contents of all of which are incorporated herein by reference in their entirety: Application No. 60/673,967, Attorney Docket No. 014116-009600US, filed Apr. 22, 2005, entitled “Detector For Measuring Functionality Of LCD Flat-Panel Pixels;” Application No. 60/687,621, Attorney Docket No. 014116-010400US, filed Jun. 2, 2005, entitled “Testing Of LCD Electrode;” Application No. 60/689,601, Attorney Docket No. 014116-010500US, filed Jun. 9, 2005, entitled “Testing Of LCD Electrode;” Application No. 60/697,844, Attorney Docket No. 014116-010600US, filed Jul. 8, 2005, entitled “Direct Detect Sensor For OLED Display.”
BACKGROUND OF THE INVENTIONIn a finished Liquid Crystal Flat Panel, a thin layer of liquid crystal (LC) material is disposed between two sheets of glass. On one sheet of glass, a two-dimensional array of electrodes has been patterned. Each electrode may be on the order of 100 microns in size and can have a unique voltage applied to it via multiplexing transistors positioned along the edge of the panel. In a finished product, the electric field created by each individual electrode couples into the LC material and modulates the amount of transmitted light in that pixelated region. This effect when taken in aggregate across the entire 2-D array results in a visible image on the flat-panel.
A significant part of the manufacturing cost associated with LCD panels occurs when the LC material is injected between the upper and lower glass plates. It is therefore important to identify and correct any image quality problems prior to this manufacturing step. The problem with inspecting LCD panels prior to deposition of the liquid crystal (LC) material is that without LC material, there is no visible image available to inspect. Prior to deposition of LC material, the only signal present at a given pixel is the electric field generated by the voltage on that pixel (assuming no physical contact is made with the pixels).
To overcome this limitation, Photon Dynamics developed a floating modulator which, in part, includes a relatively large piece of optically flat glass with a thin layer of LC material formed on its surface, as shown in
To inspect the patterned glass plate 10, modulator 15 is physically moved over a region 20 to be inspected and then lowered to within a few microns of the flat-panel's surface, as shown in
There is a growing need to increase the inspection speed. Inspecting an LCD panel at high speeds using the modulator described above poses technical challenges. For example, the need to physically lift the modulator (which may weigh several pounds) from its present site, move it to the next site and then lower it in preparation for the next inspection operation affects the system throughput.
Moreover, with the modulator described above, the visible image created on the thin LCD layer is obtained by reflecting light from the surface of the LC material. The LC material acts a scattering medium in its off-state and a transmissive medium in the on-state. This typically results in the generation of a DC-component of light modulated with a relatively small mount of information. To camera 35, this means that the imager must be able to handle a relatively large signal (for the DC component) even though the signal containing the information is relatively weak. Furthermore, the relatively large DC-component of light component may carry a correspondingly large amount of shot noise which needs to be overcome to enable one to reproduce the flat-panel defect data. Furthermore, presently known modulators do not readily lend themselves directly to a continuous, linear scanning.
Non-contact capacitive coupling techniques have been developed to test LCD flat panel arrays. In accordance with one such known method, an electrically floating (open-circuited) conductive plate or a diffusion region is brought into close proximity of the LCD panel. This causes the voltage on the LCD pixel to capacitively couple to the floating plate, thereby causing its voltage to vary in proportion to the ratio of the air-gap capacitance to the parasitic capacitances (plate to substrate as well as plate to surrounding circuitry). This voltage change can then be buffered and supplied off-chip to be measured.
First, such two-dimensional arrays require step-and-repeat movements, thus lowering the testing throughput. Second, the parasitic capacitances of such arrays are relatively large which may result in poor sensitivity. Furthermore, since many of the parasitic capacitances are non-linear (especially when diffusions regions are used) the sensor itself behaves nonlinearly. Moreover, in such two-dimensional arrays, the read-out addressing lines which select which pixel values are sent off-chip, have relatively larger parasitic capacitances.
As is shown in
While simple to implement, there are numerous disadvantages to the prior art sensing technique shown in
Active matrix organic light emitting diode (AMOLED) displays require backplanes made with either amorphous or polycrystalline-silicon thin film transistors (TFT). Polycrystalline silicon displays require fabrication using low temperature processes (LTPS) in order to avoid damage to glass and especially flexible (e.g. plastic) substrates. The fabrication of AMOLED backplanes using LTPS can be quite complex requiring as many as, for example, 10 mask steps with precision control requirements. This has been identified as a potential challenge for low cost, high yield manufacturing of large scale AMOLED displays. The fabrication of AMOLED displays using amorphous Si backplanes may require fewer mask steps, but is nearly as challenging. As AMOLED displays become larger, the need for inspection and yield management becomes more critical. Efforts are underway to improve these processes. However, there has been less focus on the development of AMOLED inspection tools, even though they offer the dual promise of more efficient convergence on process development as well as improved yield and lowered cost in AMOLED manufacturing—by capturing killer defects early in the fabrication cycle. As AMOLED displays grow in size and value for the monitor and TV markets, the need for inspections tools will become critical.
One conventional method of inspecting OLED display is to optically inspect the backplanes.
In accordance with one embodiment of the present invention, each sensor of a linear array of sensors includes, in part, a sensing plate (electrode) and an associated feedback circuit. The sensing electrodes are adapted to be brought in proximity to a flat panel having formed thereon a multitude of pixel electrodes so as to measure the voltage of the pixel electrodes capacitively, i.e., in a non-contact manner. Each feedback circuit is adapted to actively drive its associated sensing electrode so as to maintain the voltage of its associated sensing electrode at a substantially fixed bias. The feedback circuits enable sensing of the pixel voltages without requiring temporal variations in the pixel voltages. The linear array of sensors is adapted to be scanned over the panel at a constant scanning rate. The flat panel may include LCD pixels, OLED pixels, or the like.
In one embodiment, each feedback circuit includes, in part, an amplification circuit having a first input terminal coupled to the sensing electrode and a second input terminal coupled to receive a biasing voltage. The output signal of the amplification circuit is used to generate the feedback signal that actively drives the sensing electrode. The feedback circuit and its associated sensing electrode may be formed on the same semiconductor substrate or on different semiconductor substrates.
In one embodiment, the biasing voltage supply is the ground potential, however, it is understood that any other DC biasing voltage may be used. In one embodiment the amplification circuit is an operational amplifier (op-amp), however, it is understood that any other amplification circuit, notwithstanding its complexity, which uses feedback to maintain a fixed voltage at the amplifier input may be used. In such embodiments, a capacitive elements may be coupled between the first input terminal and the output terminal of the amplifier. The output signal of the op-amp changes in linear proportion to the pixel electrode voltage. Since the op-amp actively drives its associated sensing electrode to a known DC potential, parasitic capacitances at the input terminal of op-amp have a relatively small effect on the detection sensitivity.
To perform the testing, a fixed pattern of DC voltages is applied to the pixels on the panel at the beginning of the scan. As the linear array is moved across the board and each new pixel is scanned, the feedback circuit associated with each sensing electrode receives the signal sensed thereby as a result of capacitive coupling. The amount of current required to maintain each sensing electrode at the substantially fixed biasing voltage is integrated on the feedback capacitor and provides a measure of the sensed electric field generated by the pixel electrode and capacitively coupled to that sensing electrode. The op-amp may be reset periodically to avoid drifts caused by leakage currents.
In one embodiment, the LCD panel is periodically refreshed to inhibit drooping of the pixel voltages. Because in the present invention, the linear scanning is continuous, during the refresh period some of the scanned pixel data may not be valid. To ensure that every row of pixels is scanned during a period when the LCD panel data is valid, a second linear array of sensors positioned at a known distance away from the first linear array of sensors is used. Thus the pixel rows that are scanned by the first linear array during the periods when data is invalid are scanned by the second linear array after the refresh is complete and the data is again valid.
Defects such as weak shorts or leaking transistors are detected by measuring the amount of the voltage droop on a pixel after the elapse of a known time period following a refresh cycle. To accomplish this, a third linear array of sensors spaced away from the first and second array of sensors is used. The voltage droops are measured by a pair of linear sensors at two different instances of time.
In accordance with one embodiment of the present invention, a linear array of sensors is brought in proximity (e.g., 10 microns to 100 microns) to a flat panel under test, and the electric field generated by the panel electrodes is capacitively measured. In one exemplary embodiment, the flat panel is an LCD panel and each sensor includes a sensing electrode and an amplifying circuit. A scanning rate of about 100 millimeters per second or about 100 microns per millisecond may be used. The following description is provided with reference to an LCD panel. It is understood, however, that the present invention is equally applicable to any other types of panels.
In the exemplary embodiment shown in
The output signal of op-amp 310 changes in linear proportion to the LCD pixel electrode voltage, where the constant of proportionality is C. Consequently, the sensor array can distinguish pixel outputs of varying gray scale values with fixed DC level voltage applied to the pixels. Since op-amp 310 actively drives sensing electrode 305 to a known DC potential, parasitic capacitances at the input terminals of op-amp 310 have a relatively small effect on the detection sensitivity. Other advantages of the feedback configuration, in accordance with the present invention, include, among other things, (i) power supply noise rejection, (ii) linearity since the gain mechanism is controlled by the linear feedback capacitor rather than a non-linear open-loop transistor characteristic, (iii) immunity to gain, processing differences and aging variation due to the feedback approach, and (iv) wide bandwidth due to the fact that the Miller gain multiplier is substantially eliminated.
It is understood that the sensing circuit, which in the exemplary embodiments of
To perform the testing, a fixed pattern of DC voltages is applied to the pixels on the panel (board) at the beginning of the scan. The current required by op-amp 310 to keep sensing electrode 305 at the constant potential provides a measure of the pixel voltage. As the linear array is moved across the board and each new pixel is scanned, op-amp 310 senses the resultant electric field of the static pattern. The op-amp may be reset periodically, e.g. at 30 Hz or less, to avoid drifts caused by any leakage current.
Because the sensors of the present invention are arranged linearly, a number of advantages, such as advantages in physical placement of the sensors as well as the detection circuitry, are achieved over the prior art two dimensional arrays are. For example, if each sensor has an x dimension of 40 microns, and a y dimension of 40 microns, each sensing electrode 305 is formed to be of the same size, e.g., 40 microns×40 microns thus enabling the associated electronic circuitry, e.g., amplifier, capacitor, and the like, to be formed adjacent the sensing electrode. The additional silicon real-estate available below each sensing electrode enables the formation of more complex circuitry, such as op-amps 310 which use feedback to hold the pixel plate to a known value, as described above, and shown in
The use of feedback, as shown in
When using a shorting bar prober, the limited bandwidth of an LCD panel allows for changing a given LCD pixel voltage about 60 times per second. It is therefore crucial that the sensor be adapted so as not to require a temporal change in the LCD pixel voltage in order to sense each new pixel value. Conventional prior art sensing techniques require a temporal change in the LCD pixel voltage of at least 2 KHz in order to enable the sensing be performed, this is a difficult rate to achieve. A sensor, in accordance with the present invention, senses the LCD pixel voltage without requiring temporal variations in the LCD pixel voltages. To achieve this, at the beginning of a scan, a fixed pattern of voltages is applied across the array of the LCD panel. As the linear array of sensors is moved across the array and each new LCD pixel is scanned, op-amp 310 senses the resultant electric field of the static pattern. In some embodiments, op-amp 310 may need to be reset periodically, e.g. 30 Hz, to avoid drift from leakage currents.
In one embodiment, the LCD panel is refreshed once every, e.g., 30-50 ms, to inhibit the voltages applied to the pixels from drooping over time. This refreshing process may require, e.g., about 4-7 ms to complete. Because in the present invention the linear scanning is continuous, during the refresh period some of the scanned LCD panel data may not be valid. To overcome this, in some embodiments, in part, at least two linear sensors separated by a known physical distance are disposed on the same chip. The use of a pair of sensors ensures that the data missed by the leading sensor array during the LCD panel refresh interval is picked up by the second sensor which follows the first sensor during the scan process. In other words, to ensure that every row of pixels is scanned during a period when the LCD panel data is valid, a second array is spaced from the first so that the second array passes over a given row of pixels about, e.g., 7-10 ms (somewhat more than the time of invalid data) after the first array. Thus those rows that are scanned by the first array during the periods when data is invalid are scanned by the second array after the refresh is complete and the data is again valid.
Assume that linear array sensors 600 are traveling along YY′ direction. The linear arrays are so disposed such that pixels with invalid data sensed by the leading sensors in array 620 during a refresh cycle of a linear scan are sensed and their voltages captured by sensor 610 after elapse of a known time period. Similarly, pixels with invalid data sensed by the sensors in leading array 615 during such a refresh cycle of the linear scan, are sensed and their voltages captured by sensor 605 during that scan.
The present invention is also adapted to detect the presence of such defects, as weak shorts or leaking transistors. These types of defects are measured by observing the voltage on a pixel some known time after the refresh cycle to see how much droop has occurred in the voltage level. To accomplish this, associated with each array is a second array spaced D1 microns from that array. Referring to
In some embodiment, the linear array sensor uses a CCD architecture in the form of fill-and-spill samplers coupled to the floating gates, as shown in
Some embodiments of the present invention include N linear sensor arrays configured to concurrently measure the voltages on different LCD pixels. To accommodate transfer of the data retrieved from any one of the arrays at any given time, one or more multiplexers are used.
A linear array sensor, in accordance with some embodiment of the present invention, is operative to test OLED panels. To achieve this, a test line is disposed in each row of OLED pads to enable the transistors disposed in such rows to be tested using the direct detect sensing described above.
Also disposed in each row is a test line positioned in parallel to the gate line. For example test line 9301 is disposed in parallel to and adjacent gate line 9251; test line 9302 is disposed in parallel to and adjacent gate line 9252, etc. In some embodiments, each test line is formed by a metal layer coupled to either the source or the drain terminal of the transistors disposed in that row. For example, test line 9301 is coupled to either the source or the drain terminals A, B and C of transistors 90411, 90412 and 90413. The other drain/source terminals of these transistors is coupled to data lines 9401, 9402 and 9403. In the embodiment shown in
When a voltage is applied to any of the gate lines, all the transistors coupled to that row are turned on. For example, when gate line 9252 receives a high voltage, transistors 90421, 90422 and 90423 are turned on. This causes a current to flow from the source (drain) terminals to the drain (source) terminals when a voltage potential is caused to appear across these terminals. The current flow causes a potential to develop at nodes E, F and G, respectively, of pads 90221, 90222 and 90223. The voltages developed at the pads 902ij may be subsequently measured in accordance with the direct detect sensing technique of the present invention to identify defects. Therefore, by allowing current to flow, the current carrying capacity of the pixel transistors could be characterized using the direct detect sensing (DDS) or other voltage sensing technology.
The direct detect sensing of the present invention identifies defects and provides process control data during the fabrication of OLED backplanes when the backplane is modified. The DDS together with a pixel load transistor enables current characterization on OLED backplane. Furthermore, combination of DDS with differential measurement of adjacent OLED pixels with (or without) pixel load transistor enables detection of small pixel current (or voltage) defects. Therefore, in accordance with the present invention, defects are detected and process control in OLED roll-to-roll fabrication is achieved.
In some embodiments of the present invention, instead of a test line connecting the output of the pixel transistor to a remote load resistor, the backplane could be modified to include a test transistor that would route a test current directly to ground when active. In yet other embodiments, the DDS is adapted to detect only the differentials between adjacent test pixels. This may be implemented either as a software program or in hardware by sampling the data stream at two points separated in time or space by an amount that corresponds to the separation between OLED pixels. The resulting signals would then be subtracted and defect detection algorithms would then be applied to this differential signal. This differential system may be vulnerable to voltage noise but the high SNR values of the DDS system is well suited for such applications.
Testing of the OLEDs, in accordance with present invention provides a number of advantages. Among such advantages are as follows. The testing in accordance with the present invention is faster and has a greater S/N than e-beam inspection tools; TACTs consistent with in-line operation (i.e.,˜60 seconds/plate). The invention may be operated in any environment (from vacuum to atmospheric pressures with any degree of humidity control). The invention has spatial resolution on the scale of 10's of μm. The invention is scalable to large formats. The invention is adaptable to flexible substrate. The invention may also be used to measure current.
The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. The invention is not limited by the type of amplifier or amplification circuitry, feedback circuitry, biasing voltage, etc., used in the sensing circuits. The invention is not limited by the number of linear arrays nor is it limited by the number of sensors disposed in each liner array. The invention is not limited by the scanning rate. The invention is not limited by the type of integrated circuit in which the present disclosure may be disposed. Nor is the disclosure limited to any specific type of process technology, e.g., CMOS, Bipolar, or BICMOS that may be used to manufacture the present disclosure. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.
Claims
1. An apparatus operative to test an array of pixels formed on a panel, the apparatus comprising:
- a first linear array of N sensors each sensor comprising:
- a sensing electrode adapted to be capacitively coupled to a pixel electrode disposed on the panel; and
- an associated feedback network configured to maintain the voltage of the sensing electrode at a substantially constant voltage when the sensing electrode is positioned in proximity of the pixel electrode to be capacitively coupled thereto, said first linear array of sensors adapted to be scanned over the panel at a continuous rate.
2. The apparatus of claim 1 wherein said feedback network comprises:
- an operational amplifier comprising a first input terminal coupled to the sensing electrode and a second input terminal coupled to receive a first voltage supply, wherein an output signal of the operational amplifier is used to generate a feedback signal adapted to drive the first input terminal of the operational amplifier.
3. The apparatus of claim 2 wherein said first voltage supply is the ground potential.
4. The apparatus of claim 2 wherein said feedback network further comprises a capacitive elements disposed between the first input terminal of the amplifier and an output terminal of the amplifier.
5-18. (canceled)
Type: Application
Filed: Aug 29, 2008
Publication Date: Dec 25, 2008
Applicant: Photon Dynamics, Inc. (San Jose, CA)
Inventors: David W. Gardner (Colorado Springs, CO), Andrew M. Hawryluk (Los Altos, CA)
Application Number: 12/201,715
International Classification: G01R 31/00 (20060101);