Flexible silo apparatus having a top removable valve or flow control device

A flexible silo apparatus having a top removable valve or flow control device assembly has a top removable valve or flow control device that has components to interface with the outlet of a flexible container and that can be supported upon a bridge. Various cone configurations can be added to support the cone section or bottom of a flexible container including a rigid cone, multi member cone, or “y Axis dynamic cone system. The apparatus is further enhanced with a floating bridge and the addition of a powered lifting and lowering device for the advantage of manipulating the flexible container in a vertical motion for improving the filling of product into or the discharging of product out of a flexible container.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

This invention relates generally to the field of bulk material handling and more specifically to a flexible silo or bulk bag apparatus.

Silos, Hopper, Day Bind and Portable Bins

Silos, bins, hoppers, day bins and portable bins are presently known for use as rigid storage containers for powder and granular product comprising a cone section with an outlet and using a wide variety of valves or flow control devices that can be used to control product flow. A vertical straight side section above the cone section increases the storage capacity. These storage systems are usually constructed with a storage container body made of steel, aluminum or plastic and have a support structure usually constructed of steel or aluminum and sometimes rigid plastic.

It is also known that product flow from such containers can be unreliable. Brute force equipment such as a mechanical agitator, pulsing cone valve or air injector devices can be installed inside the silo or bin cone near the outlet to facilitate product flow. A vibrator mounted on the silo wall can be used to assist product flow from a silo by imparting high frequency, low amplitude pulsation. And it is known that vibration can also contribute to unreliable or no-flow conditions when used with certain products by de-aerating and compacting the product.

Filling powder or granular product into rigid storage containers often results in blended products becoming unblended and fragile products can be damaged. This results from the free-fall and velocity of product descending from upstream equipment through the empty volume of the container and onto the bottom of the container. Air inside of the empty container mixes with the incoming product yet must be displaced and removed from the container as more product enters. Therefore, displaced air containing airborne product exits the container and is lost to the atmosphere or must be contained and separated using a dust collection system.

Mobile portable bins that can be transported from one point for filling and to another point for discharging are also known. These bins are usually sized to be handled by a fork lift or pallet jack and are designed with unfixed foot mountings and may also have means for positioning tines through the underside of the structure for lifting and transporting. A valve or flow control device connects to the outlet of the bin. Connecting or removing the valve or flow control device must be done from the underneath since no practical provision is made to load the valve from above and rest it upon a support bridge at the bin outlet. One exception however is the cone valve which utilizes a pyramid shaped cone with a base diameter that is larger than the bin outlet diameter. The cone rests in place over the bin outlet to close the opening. A pneumatically actuated post pushes the cone upward to open the bin outlet perimeter to allow product to flow. The cone can be removed from the bin by lifting it out through the top opening of the bin.

Food, pharmaceutical and a number of chemical processes offer fixed and mobile product storage applications that require hygienic conditions and applications that must avoid cross contamination of product from one batch to another. In these types of situations silos, bins, hoppers, day bins and portable bins may need to be washed, and in some cases, sterilized between each use. Purified water and a cleaning solution may be used to wash the storage container. The mix of water, solution and residual product will be discharged, often to a city or county sewer system. Further, cleanliness and sterilization prior to reuse may require validation.

Stainless steel product contact materials are most widely used in sanitary applications, while plastic surfaces may be preferred in some instances. Flexible silo materials sometimes used but are not generally conducive to washing and sterilization and are not widely used in wash down applications but instead can be replaced and discarded.

In order to remove a valve from a rigid portable bin made of steel or plastic, one must lift the bin and remove the valve from underneath. This may also require an apparatus to receive and support the valve since it is awkward to handle a valve in such a position.

Flexible Silos

Flexible silos fabricated of flexible fabric material for the silo body are a lower cost option to rigid steel or plastic silos and are used similarly in function as rigid storage bins and usually have a flow control valve connecting to a bottom outlet. Parallel sleeves fabricated about the upper perimeter of the flexible silo vertical section and also about the lower perimeter are supported with rigid horizontal members that run through the sleeve openings thereby suspending the flexible silo upon its support structure.

To mount a valve or flow control device, the flexible silo outlet needs to be connected by crimping or flange connecting to the valve inlet. Flexible silo design relies on gravity to pull the bottom section downward and the valve or flow control device is suspended from the flexible silo outlet. No provision is made to support the valve or to support the area above the valve and the flexible silo outlet area. This requires a very robust connection between the flexible silo outlet and the valve flange. This also increases the need for more robust heavy duty flexible silo fabric and seam construction which leads to higher flexible silo cost.

A rigid cone framework can be utilized to support the cone bottom section of the silo or bin. Nonetheless, the silo or bin outlet with valve attached is suspended below the lower perimeter of the rigid cone framework. No provision is made to support both the cone section of the silo or bin and to provide a means to support the valve or components of the valve.

To facilitate product flow from a flexible silo or bin, mechanical agitation means such those seen used on bulk bag discharging equipment can be employed. However, air injection type flow aids are most commonly used. Air injected into a container to facilitate product flow must be evacuated, thereby, resulting in additional pollution control equipment and loss of product. An alternative to the air injection method utilizes two-ply fabric silo construction. The bottom or cone section of a flexible silo has two plies of fabric, an inner ply and an outer ply with an air gap in between. Air is injected into the space between the two plies to deform the inner ply and apply pressure to the product stored within the flexible silo and to change the shape of the interior ply wall. This approach requires airtight materials and seam construction and very heavy duty fabric. There is an associated increase in container cost. In addition, air line connections and power source connections preclude this design from practical use for mobile portable bins.

Finally, flexible silos are designed as a lower cost alternative to rigid steel bins, yet are not as easily disassembled and reassembled as one might expect. The method of connecting a valve or flow control device mimics the method used for connecting a valve or flow control device to the outlet of a rigid bin. Flexible, mobile portable bins utilize similar valve or flow control device connecting means and no provision is made for providing a top loading valve that can rest upon a support means for easy placement and removal from above.

The shape and function of the flexible silo and mobile portable flexible bin are designed to mimic the design and function of their rigid counterparts, yet little to no provision is made take full advantage of the light weight and flexibility of the fabric container. A flexible silo or bin can be easily collapsed and expanded both in width and in height. No provision is made to take advantage of the ability to reduce and expand the height of the container as a function to minimize free fall and velocity of product entering the container during filling.

Utilizing the vertical flexibility of the flexible container to enhance product flow is not considered in flexible silo and bin design. Improvement in utilizing the vertical flexibility of a flexible silo or bin for enhancing product flow from the container is needed.

Further, improvement in placing and removing a flexible container with a valve or flow control device onto a support structure is needed.

Further still, although flexible mobile portable bin designs are presently utilized, improvement in providing product flow enhancing means and maintaining practical mobility and ease of use is needed.

Bulk Bag Discharging

Bulk bags with lifting loops or sleeves attached to the upper perimeter of the bag can be used as replaceable, disposable storage containers. They require associated bulk bag filling and discharging equipment. Common practice involves filling a bulk bag at one location with a bag suspended on a filling apparatus with a bag inlet spout on top of the bag attaching to a chute through which product flows. Upon filling, the inlet spout is released from the chute and tied off. The filled bulk bag is usually moved by pallet or by lifting and suspending the bag by its upper support loops or sleeves and transporting the container.

To discharge the contents, the filled bulk bag is hoisted onto bulk bag discharging apparatus. Bulk bag discharging equipment is very tall and occupies much overhead room. The apparatus houses loop or sleeve supports for suspending the bulk bag. A bag lifting device for compensating for bag elongation as product discharges is usually mounted on the top of the structure. Below the bag are located outlet spout integration equipment and at least a valve or flow control device.

Once hoisted upon the apparatus, an operator reaches under the bulk bag to attach an outlet spout located on the bag bottom to a tube or chute through which the product will flow. This method is cumbersome and time consuming and can be uncomfortable and awkward for an operator.

Bag squeezing devices mounted along the sides of the discharger frame are sometimes used to assist with product flow from the container. The most common flow assist apparatus utilized is a “V” panel agitator located at the bag base with pneumatic actuators.

At least two panels provide a base for the bag to rest upon and have a gap between the inner edges for the bag outlet spout to pass through. Each panel has a stationary pivot located at the inner base end with a piston and cylinder type actuator having a rod pivot mount at a point along the panel and a cylinder base pivot mount on the structure. When the actuators extend, the base pivots and remains level as the outer ends of the panels arc inward thereby applying pressure against the bag. As product leaves the bag, the actuators are free to move further inward to increase the angle of the base of the bulk bag. The actuators can also be pulsed to provide agitation to the product.

It is also known that a flexible silo or bulk bag, when supported from the top, needs to be lifted as product discharges because the flexible container narrows in width and elongates in length.

A hoist lift or other bag lifting mechanism can be used to support the loops or sleeves of the bulk bag which can be raised up incrementally as product leaves the container to compensate for elongation and to keep the lower portion of the bag and bag bottom walls as vertical as possible to allow product to exit the container.

A bulk bag discharger with a full bulk bag secured can be moved from one point to another to mimic the mobility of a portable bin, however, it s a tall and cumbersome apparatus and it requires that all of its accessories are moved with it. Air and electrical connections have to be undone and reconnected.

Dust containment requires manually connecting an outlet spout to containment components while working underneath of the bag. If multiple products are used in a process, cross contamination issues can cause concerns with using bulk bag discharging systems and conveying systems since product contacts the internals of the dust containment enclosure, valve and conveyor internals.

A valve, if used, is mounted as a permanent component of the bulk bag discharge support frame. A sanitary bulk bag discharge apparatus is usually complex and costly to manufacture and has fixed components that have to be removed or cleaned in place.

If a facility has more than one discharge point, a bulk bag discharge apparatus is required to occupy each discharge point or a conveying system is needed to deliver product from the bulk bag apparatus to each discharge point. If multiple products are used in a process, cross contamination and sanitation issues can cause concerns with using bulk bag discharging systems and conveying systems.

Bulk Bag Filling

The industry standard for filling flexible silos is similar to that of filling rigid silos and entails suspending a bulk bag on a support structure by its upper loops or sleeves to form the air volume of the container. Just as with rigid silos and hoppers, air inside the bag along with airborne product must be displaced from the container as product enters. No provision is made to take advantage a flexibility of the container to reduce the air volume prior to filling and to increase the volume as product enters.

No provision is made to push the flexible silo bottom upward toward the inlet to expel most or all of the air. And, no provision is made to lower the bottom away from the inlet while dense, non-aerated product fills the container.

Therefore, during present method flexible silo filling, displaced air needs to be vented through a dust collection system often resulting in lost product. Also, blended product, due to the velocity and free fall distance through the space from inlet to bottom, will tend to segregate by particle size and density variation of the blended product. Fragile product may suffer damage. Product that aerates while transferring into the flexible silo will be less dense resulting in inefficient use of the container volume.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention.

FIG. 1 is a perspective view of the invention.

FIG. 2 is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 3 is an elevated view an embodiment of the invention.

FIG. 4 is a perspective view of the invention.

FIG. 5 is a perspective exploded view an embodiment of the invention.

FIG. 65A is a plan view of an embodiment of the invention.

FIG. 6 is a perspective view of the invention.

FIG. 6A is a side view of the invention.

FIG. 7 is a perspective view of a component of the invention.

FIG. 7A is a perspective view of a component of the invention.

FIG. 7B is a perspective view of a component of the invention.

FIG. 8 is a side view of a first stage of a sequence of operation of the invention.

FIG. 8A is a side view of a second stage of a sequence of operation of the invention.

FIG. 8B is a side view of a third stage of a sequence of operation of the invention.

FIG. 9 is a side view of a first stage of a sequence of operation of the invention.

FIG. 9A is a side view of a second stage of a sequence of operation of the invention.

FIG. 9B is a side view of a third stage of a sequence of operation of the invention.

FIG. 10 is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 10A is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 10B is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 11 is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 11A is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 11B is a side view of a sequence of assembly of an embodiment of the invention.

FIG. 12 is a side view of an embodiment of the invention.

FIG. 13 is a side view of an embodiment of the invention.

FIG. 14 is a side view of a first stage of a sequence of operation of the invention.

FIG. 14A is a side view of a second stage of a sequence of operation of the invention.

FIG. 14B is a side view of a third stage of a sequence of operation of the invention.

FIG. 14C is a side view of a fourth stage of a sequence of operation of the invention.

FIG. 15 is a perspective view of the invention.

FIG. 16 is a perspective view of the invention.

FIG. 17 is a perspective view of the invention.

FIG. 18 is a perspective view of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A detailed description of the invention is provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner.

Turning first to FIG. 1, a preferred embodiment of the invention is shown having a support structure 100 constructed of a plurality of members to support a flexible silo. The length, height and width of the support structure 100 is in proportion to the dimensions of the flexible silo 102 that is supported upon the structure by connectors 104 located on flexible silo 102. Connectors 102 are typically recognized as, yet not limited to, loops or sleeves by one skilled in the art. For illustrative purposes, this detailed description will show the connectors as loops 104. Connectors 104 are commonly located in the vicinity of the upper perimeter 106 and can also be located in the vicinity of the lower perimeter 108 of the body flexible silo 102.

A valve or flow control device, herein referred to as “valve” 120 connects to an outlet (not shown) located on the bottom of flexible silo 102 using an outlet adapter 132. Valve 120, or any component thereof, including outlet adapter 132, or any components thereof, rests upon a supporting bridge 140. With the present invention, provision is made to connect the outlet of flexible silo 102 with valve adapter 132 and then place valve 120 onto bridge 140 from above. Bridge 140 provides support to flexible silo 102 and eases stress on connectors 104 by supporting some of the load of the product stored within flexible silo 102.

Continuing to FIGS. 2 though 2B, a progression of assembly illustrations of a flexible container outlet and valve assembly 130 means is shown. In FIG. 2 a top removable valve or flow control device interface means, herein referred to as “valve assembly” 130 may be comprised of an outlet adapter 132 which provides a connection for flexible silo outlet 110 and a valve 120 having a connecting component 122. Outlet adapter 132 can fit over outlet 110. Valve 120 can be fitted together with outlet adapter 132 and thereby secure outlet 110 together as a complete valve assembly 130.

In FIG. 3, an alternative embodiment of a valve assembly 130 may utilize an orifice type valve 220 that is usually referred to as an iris valve. An orifice type valve 220 has a closure system that resembles the iris in a camera. Outlet 110 can be fitted though the iris 224 of orifice type valve 220 and secured by the closure of the iris 224. An inlet adapter 232 can be attached to the inlet of orifice type valve 220 thereby providing means to rest valve assembly 130 upon a bridge.

Further, as shown in the exploded view of FIG. 3, valve assembly 130 is positioned over bridge 140 and aligned to be set in place.

Finally, in FIG. 4, valve assembly 130 is set in place from above onto bridge 140. Valve assembly 130 with bridge 140, in accordance with the present invention, provides for positioning a valve 120 over bridge 140, wherein valve 120, or any component thereof, is placed upon and supported by a bridge 140. Inlet adapter 132 or 232 connecting to the inlet of valve 120 or valve 220 provides means to rest upon bridge 140 with valve 120 or 220 suspended below.

Flexible silo 102 is secured using connectors 104. The apparatus is now ready to be filled with product and put into use.

A preferred embodiment of bridge 140 is constructed of a plurality of vertical or inclined members having two opposed ends. A first end 142 provides a base end that mounts upon the flexible silo structure 100 or any component thereof, or mounts upon an independent structure located within the footprint of support structure 100 which may include the floor or ground. A second end 144 or any component attaching to second end 144 provides support for valve assembly 130 or any component thereof. A gap 146 allows components, for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 130 can be cleanly put in place upon a bridge 140 and also removed from above which eliminates the need to go underneath of structure 100 to attach or remove a valve.

FIG. 5 shows floating bridge 240 having means to “float” shown as horizontal members 248 that allows a bridge to be supported yet remain unfixed upon members of structure 200, or components thereof, shown as receptacles 249. Floating bridge 240 is shown in an explode view above structure 200 with an arrow indicating the vertical movement that is provided within structure 200.

FIG. 5A provides a plan view of a floating bridge 240 with horizontal members 248 resting upon structure 200. Floating bridge 248 has vertical space to travel upward and downward when driven by a lifting and lowering device (not shown).

FIGS. 6 and 6A provide two separate views with FIG. 6 illustrating floating bridge 240 with horizontal members 248 in place upon components of support structure 200. Valve assembly 230 is shown resting in place upon floating bridge 240, however, flexible silo 202 is not shown to provide a clear perspective view of structural members only.

FIG. 6A shows complete valve assembly 630 with flexible silo 202 resting in place upon floating bridge 240.

In FIGS. 7 through 7A, several exemplary lifting and lowering devices are shown. It is an important aspect of the invention that a lifting and lowering device will lift and lower a floating bridge. A lifting and lowering device can mount independently or mount integrally with the structure or any component thereof, of the flexible silo apparatus. A wide range of lifting and lowering devices may be used and a partial exemplary list of desirable mechanisms may include pneumatic or hydraulic actuating cylinder device, screw jack, air bellows actuator and scissor lift. For illustrative purposes FIGS. 7 through 7A provide images of several of the examples listed above.

In FIG. 7, a first exemplary illustration shows lifting and lowering device 160 having a stationary base 162 and a top structure 166 that can be moved vertically by air bellows 164 and top structure 166. Such a design provides an exemplary means of pulsing floating bridge up and down thereby providing a vertically acting flow aid to help product stored within the flexible silo to discharge from the container. A through port and flexing bellows connection 168 may also be provided to provide a dust tight connection through which product may flow. Multiple vertical pulses of the lifting and lowering device 160 provide low frequency, high amplitude agitation to the product stored within the flexible silo.

In FIG. 7A, a second exemplary illustration shows a high lifting and lowering device. A high lifting and lowering device 260, represented as a scissor type lift, may be utilized to provide a wider range of motion of the invention thereby providing an improved means for filling a flexible silo. The present invention allows us to take full advantage of the light weight and flexibility of the fabric container. A flexible silo can be easily collapsed and expanded both in width and in height.

The present invention provides provision to take advantage of the ability to reduce and expand the height of the container as a function to minimize free fall and velocity of product entering the container during filling.

As illustrated in FIG. 7B, a through port and flexing bellows connection 268 may also be provided to provide a dust tight connection through which product may flow.

Moving to FIGS. 8 through 8A, several stages of lifting floating bridge 340 are shown. In FIG. 8, flexible silo structure 300 is shown with floating bridge 340 and lifting and lowering device 360 positioned within the footprint of structure 300. The lifting and lowering mechanism is designated as number 360 to represent any of the wide variety of lifting mechanisms that may be utilized to accomplish the task. Shown in a lowered position “x1”, it is positioned within the footprint of structure 300 and can be mounted independently or supported on components of flexible silo structure 300.

Next, in FIG. 8A, lifting and lowering device 360 engages floating bridge 340 and begins lifting floating bridge 340. The level “x2” represents a mid level position.

Progressing to FIG. 8B, floating bridge 360 is shown at a high level x3. Raising floating bridge 340 moves the bottom of the flexible silo to a level that will reduce the vertical space of the flexible container (not shown) and provides for the reduction of freefall and velocity of product as it enters the flexible container during filling. Segregation of blended product and damage to fragile product can be reduced or eliminated. Air born dust can also be minimized or eliminated.

As FIGS. 9 through 9B show, flexible silo structure can be a mobile structure referred to as a portable flexible silo or bin 200. A portable flexible silo or bin 200 can be constructed to be moved from one location to another. Typical portable bins have means for lifting or hoisting the structure such as fork slots for lifting and moving with a forklift or pallet jack.

Starting with FIG. 9, mobile flexible silo structure 200 is shown in position to be placed over a lifting and lowering device 360. Receptacles 250 represent a foot guide for aligning portable bin 200. Floating bridge has horizontal members 248 resting upon members of support structure 200. This allows portable bin 200 to be moved from one location to another with floating bridge 248. No power means is needed to be housed on support structure 200, therefore, any number of similar portable bins 200 can utilize the same lifting and lowering device 360 just by simply placing it over lifting and lowering device 360.

Moving next to FIG. 9A, once portable bin 200 is in place, lifting and lowering device 360 engages floating bridge 240 and is shown at low level “x1”.

Finally, in FIG. 9B, lifting and lowering means 360 further raises floating bridge to any level within the system's capability and is shown as level “x2”.

The steps illustrated in FIG. 8 through 8B and FIGS. 9 through 9B can be used for filling a flexible silo with product. When filling, floating bridge 240 can be raised to a high level and product can be released into the container. As product enters, floating bridge 240 can be lowered to increase the volume of the flexible silo until the container is full and floating bridge 240 is resting once again upon its support.

The steps illustrated in FIG. 8 through 8B and FIGS. 9 through 9B can be used for discharging product from a flexible silo. A filled flexible silo has its valve opened and floating bridge may be raised and lowered or pulsed in a vertical manner as a means to dislodge non-free flowing product and facilitate product flow from the flexible container.

A preferred embodiment of flexible silo support structure 400, as shown in FIGS. 10 through 10A, provides for a rigid cone 410 to support the bottom or cone section of a flexible silo.

In keeping with an important aspect of the invention, as shown in FIG. 10, cone 410 has a lower opening perimeter such that the valve of valve assembly 430 may pass through from above and the lower opening perimeter of cone 410 provides the function of bridge 440. Valve assembly 430 is set in place from above onto bridge 440. Valve assembly 430 with bridge 440, in accordance with the present invention, provides for positioning a valve of valve assembly 430 over bridge 440, wherein valve of valve assembly 430, or any component thereof, is placed upon and supported by a bridge 440. Valve assembly 430 provides means to rest upon bridge 440 with the valve of valve assembly 430 suspended below.

In FIG. 10A, cone 410 has a slot 412. Slot 412 allows components, for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 430 can be cleanly put in place upon bridge 440 and also removed from above which eliminates the need to go underneath of structure 400 to attach or remove a valve. In FIG. 11A, valve assembly 430 including flexible silo 402 is set in place from above onto bridge 440.

FIG. 10B provides a side view of valve assembly 430 in place upon bridge 440 of cone 410 with the valve of valve assembly 430 suspended below. Flexible silo 402 can be secured to structure 400.

A second preferred embodiment of flexible silo support structure 500, as shown in FIGS. 11 through 11A, provides for a rigid cone 510 to support the bottom or cone section of a flexible silo.

In keeping with an important aspect of the invention, as shown in FIG. 11, cone 510 has a lower opening perimeter such that the valve of valve assembly 530 may pass through from above. The lower opening perimeter of cone 510 has bridge 540 suspended below the lower perimeter of cone 510. Suspended bridge 540 provides a base and allows alignment of the edges and a continuing transition 514 of the cone slope angle to the inlet of the valve of valve assembly 530.

Valve assembly 530 with suspended bridge 540, in accordance with the present invention, provides for positioning a valve of valve assembly 530 over suspended bridge 540, wherein valve of valve assembly 530, or any component thereof, is placed upon and supported by suspended bridge 540. Valve assembly 530 provides means to rest upon suspended bridge 540 with the valve of valve assembly 530 suspended below.

In FIG. 11A, valve assembly 530 is set in place from above onto suspended bridge 540. Cone 510 has a slot 512. Slot 512 allows components, for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 530 can be cleanly put in place upon suspended bridge 540 and also removed from above which eliminates the need to go underneath of structure 500 to attach or remove a valve.

FIG. 11B provides a side view of valve assembly 530 in place upon suspended bridge 540 of cone 510 with the valve of valve assembly 530 suspended below.

A third preferred embodiment of flexible silo support structure 600, as shown in FIG. 12 provides for a cone structure to support the cone section or bottom of a flexible container, comprising a plurality of inclined members 616, forming a “V” or cone structure 610 and having an open base area forming a lower opening perimeter, wherein the lower opening perimeter is such that the valve of valve assembly 630 may pass through from above. The lower opening perimeter provides the function a bridge 640, and having at least one gap 612, thereby allowing components of valve assembly 630, for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 630 can be cleanly put in place upon a bridge 640 and also removed from above which eliminates the need to go underneath of structure 600 to attach or remove a valve. Valve assembly 630 provides means to rest upon bridge 640 with the valve of valve assembly 630 suspended below.

A fifth preferred embodiment of flexible silo support structure 700, as shown in FIG. 13 provides for a cone structure to support the cone section or bottom of a flexible container 702, comprising a plurality of inclined members 716 forming a “V” or cone structure 710 and having an open base area forming a lower opening, wherein the lower opening perimeter is such that the valve of valve assembly 730 may pass through from above. The lower opening perimeter of “v” cone 710 has bridge 740 suspended below the lower perimeter of cone 710. Suspended bridge 740 provides a base and allows alignment of the edges and a continuing transition 714 of the cone slope angle to the inlet of the valve of valve assembly 730. Cone structure 710 provides at least one gap 712, thereby allowing components of valve assembly 730, for example, a valve handle or shaft, to be set in place from above with little or no obstruction.

Suspended bridge 740 provides at least one gap 746 that allows components, for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 730 with flexible silo 702 can be cleanly put in place upon suspended bridge 740 and also removed from above which eliminates the need to go underneath of structure 700 to attach or remove a valve.

A sixth preferred embodiment of flexible silo support structure 800, as shown in FIG. 14 provides for a “Y” axis dynamic cone system 810 as disclosed in U.S. patent application Ser. No. 12,217,360 to support the cone section or bottom of a flexible container 802 (not shown). The apparatus, enhanced with a floating bridge 840 and the addition of a powered lifting and lowering device 860 provides the advantage of manipulating the flexible container in a vertical motion for improving the filling of product into or the discharging of product out of a flexible silo 802 (not shown).

The cone structure is constructed of a plurality of inclined members 816 forming a “V” or cone structure 810 and has an open base area forming a lower opening, wherein the lower opening perimeter is such that the valve of valve assembly 130 may pass through from above. Cone structure 810 provides at least one gap 812, thereby allowing components of valve assembly 830 for example, a valve handle or shaft, to be set in place from above with little or no obstruction. The lower opening perimeter of “v” cone 810 has suspended floating bridge 840 below the lower perimeter of cone 810. Suspended floating bridge 840 provides a base and allows alignment of the edges and a continuing transition 814 of the cone slope angle to the inlet of the valve of valve assembly 830. Suspended bridge 840 provides at least one gap (not shown) that allows components of valve assembly 830 for example, a valve handle or shaft, to be set in place from above with little or no obstruction. A valve assembly 830 can be cleanly put in place upon a bridge 840 and also removed from above which eliminates the need to go underneath of structure 800 to attach or remove a valve.

Each of the plurality of radially extending members 816, has two ends with a first or base end with a pivot mount 820, and a second end 824 extending radially from center. First pivot mount 820 secures to bridge 840. A spacer 842 can be used to suspend bridge 820 below cone structure 810. A second pivot point 822 is located along radially extending member 816 and mounts upon structure 800 or any component thereof.

First pivot 820 will move vertically along a fixed “y” axis causing second end 824 to move in an arc motion providing for a range of angular changes of radially extending members 816 to form a concave “V” cone, flat surface or convex cone or pyramid shape.

In order to change of the angle of radially extending members 816, second pivot point 822 requires a means to compensate for the change in distance “d” between pivot point 820 and second pivot point 822. As first pivot 820 moves upward vertically until radially extending members 816 are horizontal, the distance “d” between first pivot point 820 and second pivot point 822 gradually decreases. As first pivot 820 is raised further beyond horizontal, the distance “d” between pivot point 820 and 822 increases. This is based on first pivot point 820 moving on a fixed vertical axis “y” while second pivot point 822 remains fixed. Therefore, a compensation means is required to allow radially extending member 816 to successfully move through the required range of motion. As disclosed in U.S. patent application Ser. No. 12,217,360, a number of compensation methods can be used. For illustrative purposes there is shown a variable pivot point along radially extending member 816.

The invention has radially extending member 816 as a fixed length channel member and a second fixed pivot 822 shown as a rolling type bearing, and having a variable relationship with fixed length member 816. The rolling bearing is shown within the channel guide of member 816 with member 816 riding over the rolling bearing.

Progressing through FIGS. 14, 14A, 14B and 14C the compensating movement of member 816 along variable pivot 822 can be more clearly seen. The distance “d” between pivot points 820 and 822 decreases as first pivot point 820 is raised from lowered position x1, which provides a concave cone shape; to partially raised position x2 in FIG. 14A, which provides a lesser angle concave cone shape; further to position x3 in FIG. 14B, which shows a level support structure.

The distance between pivot points 820 and 822 increases as first pivot point 820 is raised past the level position x3 to high position x4 in FIG. 14C, which shows radially extending members 816 forming a convex, pyramid shape.

FIG. 15 shows the invention discussed above with flexible silo 02 in place with valve assembly 930 resting on suspended floating bridge 940. Eight radially extending members 916 each have a first pivot means 920 mounting upon suspended floating bridge 940. A second pivot point 922 mounts upon a support member of the support structure 900. The plurality of radially extending members 916 provides a cone support which provides a resting base for the flexible container which, in turn, reduces the strain caused by the weight of product stored within the flexible silo.

FIG. 16 shows the apparatus enhanced with a suspended floating bridge 940 and the addition of a powered lifting and lowering device 960 provides the advantage of manipulating the flexible container in a vertical motion for improving the filling of product into or the discharging of product out of a flexible container.

A wide range of lifting and lowering devices 960 may be used and a partial exemplary list of desirable mechanisms may include pneumatic or hydraulic actuating cylinder device, screw jack, air bellows actuator and scissor lift. The illustration shows lifting and lowering device 960 having a stationary base 962 and a top structure 966 that can be moved vertically by air bellows 964 and top structure 966. Such a design provides an exemplary means of pulsing first pivot point 920 up and down to change the slope angle of the cone shape of radially extending members 916 thereby providing a vertically acting flow aid to help product stored within the flexible silo to discharge from the container. A flexing bellows connection 968 may also be provided to provide a dust tight connection through which product may flow.

Further as shown in FIG. 17, a high lifting and lowering device 980 may be utilized to provide a wider range of motion of the invention thereby providing an improved means for filling a flexible silo or flexible bulk container. The present invention allows us to take full advantage of the light weight and flexibility of the fabric container. A flexible silo or bin can be easily collapsed and expanded both in width and in height. The present invention provides provision to take advantage of the ability to reduce and expand the height of the container as a function to minimize free fall and velocity of product entering the container during filling. High lifting and lowering device 980 engages floating bridge 940 for the purpose of raising first pivot point 920 along a “y” axis. Lifting and lowering device 980 is shown as a scissor type lift. A flexing bellows connection 984 may also be provided to provide a dust tight connection through which product may flow.

First pivot point 920 is raised to a high level which forms radially extending members 916 into a convex pyramid shape and elevates valve assembly 130 thereby reducing the vertical space of the flexible container and providing for the reduction of freefall and velocity of product as it enters the flexible container during filling. Segregation of blended product and damage to fragile product can be reduced or eliminated. Air born dust can also be minimized or eliminated.

FIG. 18 shows a fourth preferred embodiment of flexible silo support structure 1000, similar to the description as shown of FIG. 14, the invention provides for a “Y” axis dynamic cone system 1010 as disclosed in U.S. patent application Ser. No. 12,217,360 to support the cone section or bottom of a flexible container 102. The embodiment of FIG. 18 contains the same description of the sixth preferred embodiment of FIG. 14 except that first pivot 920 mounts to bridge 940 but does not include spacer 842 or any suspension means to suspend bridge 1020 below cone structure 1010 which would allow alignment of the edges and a continuing transition of the cone slope angle to the inlet of the valve of valve assembly 930.

Claims

1. A flexible silo apparatus having a top removable valve or flow control device assembly comprises

a flexible silo support structure having a plurality of members assembled in a length width and height form, and having a plurality of horizontal members positioned between adjacent vertical members or a ring connecting vertical members;
means to secure connectors located on said flexible silo or bulk bag, typically recognized as, yet not limited to, loops or sleeves by one skilled in the art;
a flexible silo or bulk bag, herein referred to as “flexible container”, comprising a bottom outlet and connectors located on said flexible silo or bulk bag, typically recognized as, yet not limited to, loops or sleeves by one skilled in the art, and may further comprise an outlet spout;
a valve or flow control device, herein referred to as “valve”;
a flexible container outlet and valve interface means;
means to rest said valve, or any component thereof, upon a support means; and
means to support said valve, or any component thereof, herein referred to as “bridge”, wherein said valve, or any component thereof, is placed upon and supported by said bridge

2. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a preferred embodiment of said flexible container outlet and valve interface means comprises

a flexible container having an outlet opening and may further comprise an outlet spout;
an orifice type “valve”;
means for connecting said flexible container outlet, or outlet spout, with said orifice type valve, wherein said means for connecting comprises threading said outlet, or outlet spout through said orifice type valve; and
an inlet adapter, connecting to the inlet of said orifice type “valve”, wherein said inlet adapter, or any component thereof, provides means to rest upon said bridge with said orifice type “valve” suspended below

3. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a second preferred embodiment of said flexible container outlet and valve interface means comprises

a flexible container having an outlet opening and may further comprise an outlet spout;
an outlet adapter, comprising means for securing said outlet opening, or outlet spout, and wherein said outlet adapter, or any component thereof, provides means to rest supported upon a bridge with said “valve” suspended below; and
a “valve”, comprising means to secure to said outlet adapter

4. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, wherein a preferred embodiment of said bridge comprises

a plurality of vertical or inclined support members having two opposed ends, with a first base end mounting upon said support structure, or any component thereof, or mounting upon an independent structure located within the footprint of said support structure, herein referred to as “supported bridge”; and
means to support said valve, or any component thereof, upon said second end comprising

5. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, wherein said “supported bridge” comprises

at least one a gap, thereby allowing components of said valve or flow control device, or components thereof, for example, a valve handle or shaft, to be set in place from above with little or no obstruction

6. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 4, wherein said supported bridge further comprises

means to “float”, herein referred to as “floating bridge”, thereby allowing said supported bridge to rest unfixed upon members of said support structure, or components thereof, or rest upon an independent structure located within the footprint of said support structure

7. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 6, wherein said floating bridge further comprises

means to lift and lower said floating bridge, located in the vicinity of the footprint of said support structure and mounting either upon said support structure, or any component thereof, or mounting upon an independent structure

8. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 7, wherein said means to lift and lower further comprises

a through port; and
an expandable through connector, for example, a bellows

9. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim Al, a preferred embodiment of said flexible silo support structure further comprises

a cone structure to support the cone section or bottom of a flexible container, comprising an open base area forming a lower opening perimeter, wherein said lower opening perimeter is such that said valve may pass through from above, wherein said lower opening perimeter provides the function of said bridge; and
a slot, wherein said slot provides a gap at the lower perimeter of said cone that runs vertically as needed to allow components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction;

10. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a second preferred embodiment of said flexible silo support structure further comprises

a cone structure to support the cone section or bottom of a flexible container, comprising an open base area forming a lower opening perimeter, wherein said lower opening perimeter is such that said valve may pass through from above,
a slot, wherein said slot provides a gap at the lower perimeter and runs vertically as needed to allow components of said valve or flow control device or any component thereof, for example, a valve handle or shaft, to drop through vertically from above with little or no obstruction; and
a bridge, suspended below said open base of said cone, for resting said valve, said outlet adapter, said inlet adapter, or any component thereof, thereby providing a base, and allowing alignment of the edges and a continuing transition of the cone slope angle to the inlet of said valve, said outlet adapter, said inlet adapter or any component thereof, herein referred to as “suspended bridge”, and having at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction

11. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a third preferred embodiment of said flexible silo support structure further comprises

a cone structure to support the cone section or bottom of a flexible container, comprising a plurality of inclined members, forming a “V” or cone structure and having an open base area forming a lower opening perimeter, wherein said lower opening perimeter is such that said valve may pass through from above, wherein said lower opening perimeter provides the function of said bridge, and having at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction

12. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a fourth preferred embodiment of said support structure further comprises

a “Y” axis dynamic cone system for use with a flexible silo, bulk bag or flexible container filling and discharging apparatus, to support the cone section or bottom of a flexible container, of US Patent Application “A “Y” axis dynamic cone system for use with a flexible silo, bulk bag or flexible container filling or discharge apparatus”, Mark Kosich, Jul. 3, 2008, comprising
a plurality of radially extending members, having two ends with a first or base end, and a second end;
said first or base end having an open area forming a lower opening wherein said lower opening perimeter is such that said valve may pass through from above;
a bridge located in the vicinity of said lower opening perimeter;
said bridge having at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction;
means for mounting said plurality of radially extending members that will allow the changing of the angle of said radially extending members, wherein said first end, or component thereof, has a first pivot mount or any component thereof, mounting upon said bridge, and said second end extending radially from center;
means to provide a second pivot point along said plurality of radially extending members, said means located upon said support structure and comprising
means to mount said second pivot point means;
compensation means to provide one of the following: a) a variable pivot point along said radially extending member; b) a variable pivot mount position; or c) a variable length of said member between said first and second pivot points;
thereby allowing said first pivot end to move vertically along a fixed “y” axis and said second end to move in an arc motion providing for a range of angular changes of said radially extending members to form a concave “V” cone, flat surface or convex cone or pyramid shape;
a floating bridge; and
means to lift and lower said floating bridge, located in the vicinity of the footprint of said support structure and mounting either upon said support structure, or any component thereof, or mounting upon an independent structure

13. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 12, wherein said means to lift and lower further comprises

a through port; and
an expandable through connector, for example, a bellows

14. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a fourth preferred embodiment of said flexible silo support structure further comprises

a cone structure to support the cone section or bottom of a flexible container, comprising a plurality of inclined members, forming a “V” or cone structure comprising an open base area forming a lower opening, wherein said lower opening perimeter is such that said valve may pass through from above;
a bridge, suspended below said open base of said cone, for resting said valve, said outlet adapter, said inlet adapter, or any component thereof, thereby providing a base, and allowing alignment of the edges and a continuing transition of the cone slope angle to the inlet of said valve, said outlet adapter, said inlet adapter or any component thereof, herein referred to as “suspended bridge”; and
at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction

15. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 1, a fourth preferred embodiment of said flexible silo support structure further comprises

a “Y” axis dynamic cone system for use with a flexible silo, bulk bag or flexible container filling and discharging apparatus, to support the cone section or bottom of a flexible container, of US Patent Application “A “Y” axis dynamic cone system for use with a flexible silo, bulk bag or flexible container filling or discharge apparatus”, Mark Kosich, Jul. 3, 2008, comprising
a plurality of radially extending members, having two ends with a first or base end, and a second end;
said first or base end having an open area forming a lower opening, wherein said lower opening perimeter provides the function of said bridge; and
at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction;
means for mounting said plurality of radially extending members that will allow the changing of the angle of said radially extending members, wherein said first end, or component thereof, has a first pivot mount in the vicinity of said open area, with said second end extending radially from center;
means to mount said first or base pivot end, or any component thereof;
a bridge, suspended below said open base of said cone, for resting said valve, said outlet adapter, said inlet adapter, or any component thereof, thereby providing a base, and allowing alignment of the edges and a continuing transition of the cone slope angle to the inlet of said valve, said outlet adapter, said inlet adapter or any component thereof, herein referred to as “suspended bridge”; and
at least one gap, thereby allowing components of said outlet adapter, valve or flow control device, for example, a valve handle or shaft, to be set in place from above with little or no obstruction
means to provide a second pivot point along said radially extending member;
means to mount said second pivot point means;
compensation means to provide one of the following: a) a variable pivot point along said radially extending member; b) a variable pivot mount position; or c) a variable length of said member between said first and second pivot points;
thereby allowing said first pivot end to move vertically along a fixed “y” axis and said second end to move in an arc motion providing for a range of angular changes of said radially extending members to form a concave “V” cone, flat surface or convex cone or pyramid shape;
a floating bridge; and
means to lift and lower said floating bridge, located in the vicinity of the footprint of said support structure and mounting either upon said support structure, or any component thereof, or mounting upon an independent structure

16. A flexible silo apparatus having a top removable valve or flow control device assembly as claimed in claim 15, wherein said means to lift and lower further comprises

a through port; and
an expandable through connector means, for example, a bellows
Patent History
Publication number: 20090008410
Type: Application
Filed: Jul 30, 2008
Publication Date: Jan 8, 2009
Inventor: Mark Michael Kosich (Bailey, NC)
Application Number: 12/217,428
Classifications
Current U.S. Class: With Casing Or Support (222/105); For Bottom Discharge (222/181.1)
International Classification: B65D 35/56 (20060101); B65D 88/54 (20060101);