METHOD AND APPARATUS FOR GENERATING THE WOBBLE CLOCK SIGNAL
A method for generating a wobble clock signal. When the wobble signal becomes deformed or a defect on the optical disc is found, the present invention provides a stable wobble clock signal, which is used to maintain a stable rotation speed when the optical disc is processed. In addition, the present invention also determines whether the wobble signal is deformed according to the result of comparing the width of the wobble signal at different status with the average of the half cycle width of the wobble signal.
This application claims the priority benefits of U.S. provisional application titled” “A NEW CHIP DESIGN” filed on Oct. 31, 2003, Ser. No. 60/516,240. All disclosure of this application is incorporated herein by reference. This application also claims the priority benefit of Taiwan application serial No. 93104403, filed on Feb. 23, 2004.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a method and an apparatus for generating a wobble clock signal, and more particularly, to a method and an apparatus capable of maintaining a stable rotation speed when the optical disc is processed.
2. Description of the Related Art
In general, a shallow groove is spirally etched on the optical disc outwards from the center of the optical disc such as the CD-R, CD-RW, DVD-R, DVD+RW, or DVD-RW when the optical disc is manufactured, and this groove is called as a “pregroove”. In fact, this pregroove is not a perfect spiral but with numerous wobbles. The “wobble” of the pregroove looks like a sinusoidal on the general press-made optical disc. Even this pregroove is so small and almost invisible, it can be detected by the optical driving unit in the optical drive apparatus, and the signal detected in the pregroove by the optical drive apparatus is a wobble signal whose frequency has been modulated. A certain time data is obtained after the wobble signal is demodulated by the optical drive apparatus, and this time data is referred as a “pregroove absolute time”, which is used to assure of maintaining the stable speed when the optical drive apparatus is processing the signal on the optical disc. Therefore, whether or not the pregroove is correct, and whether or not the pregroove is accurately read become major topics of the optical driving apparatus and the optical disc.
For example, when burning a recordable optical disc, if there is a defect on the recordable optical disc, the recordable optical disc apparatus cannot accurately determine the pregroove absolute time, thus an unstable and wrong pregroove absolute time is obtained. This causes that the rotation speed of the motor in the recordable optical disc apparatus become unstable, and degrades the CD burning quality.
In addition, the defect on the optical disc also deforms the wobble signal. A pregroove absolute time is extracted from the wobble signal on every predetermined cycle in the conventional technique. Therefore, when the wobble clock signal is deformed due to the defect on some area of the optical disc, the pregroove absolute time of the subsequent normal area is also impacted and becomes incorrect. Thus the CD burning quality is significantly impacted.
SUMMARY OF THE INVENTIONThe present invention provides a method for generating a wobble clock signal. When the wobble signal becomes deformed or a defect on the optical disc is found, the present invention can maintain a stable rotation speed of the recordable optical apparatus when the optical disc is processed.
The present invention also provides an apparatus for generating a wobble clock signal. The apparatus provides a wobble clock signal which is used to maintain a stable rotation speed when the optical disc apparatus is processing the optical disc, so as to improve the CD burning quality.
The method for generating the wobble clock signal provided by the present invention at least comprises following steps. At first, a wobble clock signal with a constant cycle is generated according to the wobble signal generated when the optical disc is processed. Then, the width of the wobble signal at different status is compared with an average of the wobble signals to product a comparison result. Finally, according to the comparison result, it is determined whether to continuously select the wobble signal to generate the wobble clock signal or to feedback the generated wobble clock signal back to be the signal source for generating the wobble clock signal itself.
Herein, the method further comprises following steps. The width of the wobble signal at different status is counted, such that a plurality of counting data is generated. A plurality of comparison data is generated according to the relationship between the counting data and the average mentioned above. It is determined whether or not to select the wobble clock signal and feedback it back to be the signal source for generating the wobble clock signal itself according to whether the comparison data is beyond a predetermined range or not.
Herein, following steps may be further comprised. When the comparison data is beyond the predetermined range, a deformation signal is enabled. Also, the number of continuously enabling the deformation signal is optionally counted. When the number of continuously enabling the deformation signal is over a predetermined value, the wobble clock signal is selected and fed back to be the signal source for generating the wobble clock signal itself.
In the normal case, the average mentioned above is obtained by averaging the counting values. In addition, in order to avoid the noise interference and avoid the wrongly determining of the wobble signal as the deformed signal, a process of removing the fake signal could be applied on the wobble signal first.
According to another aspect of the present invention, a method for generating a wobble clock signal is provided by the present invention, and the method comprises following steps. The width of the wobble signal at different status is counted, such that a plurality of counting data is generated. Then, a wobble clock signal is generated according to an average of the counting data.
Herein, following steps may be further comprised. An average clock signal is generated according to an average of all counting data, and a wobble clock signal is then generated by dividing the frequency of the average clock signal by a positive integer N. In addition, the average of the counting data mentioned above generally indicates an average of the half cycle of the wobble signal.
Herein, when the wobble signal becomes deformed or a defect on the optical disc is found, the wobble clock signal may be selected and fed back to generate the wobble clock signal.
The method for determining whether the wobble signal is deformed or not could at least comprises following steps. The width of the wobble signal at different status is counted, such that a plurality of counting data is generated. Then, a plurality of comparison data is generated according to the relationship between the counting data and an average. It is determined whether or not to select the wobble clock signal and feedback it back to be the signal source for generating the wobble clock signal itself according to whether the comparison data is beyond a predetermined range or not.
According to another aspect of the present invention, the present invention provides an apparatus for generating a wobble clock signal so as to improve the quality of the optical disc processing. The apparatus at least comprises a clock signal generating circuit and a selection circuit, and may optionally comprise a deformation detecting module. A wobble signal is generated when the optical disc is processed, and the clock signal generating circuit generates a stable wobble clock signal according to the wobble signal or according to the signal source which is fed back from the wobble clock signal generated by itself. In addition, the deformation detecting module also receives the wobble signal, and obtains a result of comparing the width of the wobble signal at different status with an average. Then, the deformation detecting module determines whether or not to output a deformation enabling signal according to the comparison result. In addition, the deformation detecting module also electrically couples to the selection circuit, and sends the deformation enabling signal to the selection circuit when the deformation detecting module determines to output the deformation enabling signal. The selection circuit electrically couples to both the clock signal generating circuit and the deformation detecting module. In addition, the selection circuit receives the wobble signal and the signal fed back from the wobble clock signal, such that the output wobble signal or the signal source fed back from the wobble clock signal is selected and sent to the clock signal generating circuit. When at least one enabling signal is sent to the selection circuit, the selection circuit selects the signal source fed back from the wobble clock signal and sends it to the clock signal generating circuit.
In summary, when the wobble signal becomes deformed or a defect on the optical disc is found, the wobble clock signal itself may be selected and fed back to regenerate the wobble clock signal (to replace the original wobble clock signal by the newly fed back wobble clock signal). Since the wobble clock signal is a stable clock signal source, in the case of processing the optical disc, if the non-ideal situation mentioned above occurs, the stable wobble clock signal may be used to maintain the rotation speed of the optical disc apparatus (e.g. motor) so as to improve the CD burning quality.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention, and together with the description, serve to explain the principles of the invention.
Referring to
In the present embodiment, an average of half cycle of the wobble signal Wobble is commonly used to represent the cycle length of each average clock signal Ta. Therefore, the frequency of the average clock signal Ta is twice of the average frequency of the wobble signal Wobble. Although the average clock signal Ta is a quite stable clock signal, the present invention usually cannot directly use the average clock signal Ta to control the optical disc apparatus, it is because that the component (e.g. motor) of the optical disc apparatus is controlled by the clock signal whose frequency is similar to the frequency of the wobble signal Wobble, thus the frequency of the average clock signal Ta is still too high (such as to high to drive some mechanical pars). Therefore, a frequency dividing operation is usually performed on the average clock signal Ta by the clock generating circuit 116 in the present embodiment. In other words, the frequency of the average clock signal Ta is divided by N to generate an appropriate wobble clock signal WBCLK. In the present embodiment, for example, N is usually 2.
Although the average of half cycle of the wobble signal Wobble is used as the cycle length of the average clock signal Ta in the embodiment, the present invention is not necessarily limited by it. Its value may be modified by one of the ordinary skill in the art based on the physical requirement. In addition, the value of N may be modified according to the variance of the cycle length of the average clock signal Ta.
In addition, an ATIP decoding circuit 118 may be furthered installed inside the clock signal generating circuit 110. The ATIP decoding circuit 118 electrically couples to the selection circuit 130, the counter 112, and the low-pass filter 114. The pregroove absolute time data is generated based on the wobble signal Wobble or the wobble clock signal WBCLK, and with the cooperation of the difference signal FMPRD and the average clock signal. If the selection circuit 130 selects the wobble clock signal WBCLK as its output, the pregroove absolute time data generated by the ATIP decoding circuit 118 is not the real pregroove absolute time data on the recordable disc, instead it is a set of fake pregroove absolute time data. When a defect in found on some area of the optical disc, the clock generating circuit 110 generates this set of fake pregroove absolute time data, which is used to replace the original pregroove absolute time data. Therefore, although the pregroove absolute time data in the defect area is wrong, the pregroove absolute time data in the subsequent normal area is not impacted by it.
Referring to
In addition, a deformation signal counter 126 may be optionally designed in the deformation detecting module 120 for counting the number of the continuously enabling the deformation signal MS. The deformation signal counter 126 electrically couples to the comparator 124, when the number of the continuously enabling the deformation signal MS is beyond a predetermined value, the deformation enabling signal is enabled by the deformation detecting module 120.
Referring to
Although the step S203 is performed before the step S207 in the present embodiment. In fact, the sequence of performing the step S203 and the step S207 does not impact the spirit of the present invention. Therefore, it can be freely modified by one of the ordinary skill in the art.
Moreover and more specific, the step S220 mentioned above may further comprises performing the step S222 first, where an average clock signal Ta is generated according to the average of the counting data. Then in step S224, a wobble clock signal WBCLK is generated by dividing the frequency of the average clock signal Ta by N.
More specifically, the step S310 may comprise following steps. As mentioned in step S312, when one of the comparison data is beyond the predetermined range, the deformation signal MS is enabled (herein, the number of continuously enabling the deformation signal is further counted). Then in step S316, it is determined that whether the number of continuously enabling the deformation signal MS is beyond a predetermined value or not. If it is determined that the number of continuously enabling the deformation signal MS is beyond the predetermined value (i.e. the “YES” branch of the step S318), the process moves to same step S316, where the wobble signal Wobble is determined as deformed and the wobble clock signal WBCLK is selected and fed back to generate the wobble clock signal WBCLK. If it is determined that the number of continuously enabling the deformation signal MS is not beyond the predetermined value (i.e. the “NO” branch of the step S318), the process moves to step S322, where the wobble signal Wobble is determined as not deformed and the wobble signal Wobble is selected to generate the wobble clock signal WBCLK.
In summary, the present invention at least has following advantages:
1. When the wobble signal becomes deformed or a defect on the optical disc is found, the present invention can generate a stable wobble clock signal to control the optical disc apparatus, such that a stable rotation speed can be maintained when the optical disc apparatus is operated in a CD burning mode.
2. When the wobble signal is deformed due to a defect on some area of the recordable optical disc, which causes the pregroove absolute time data cannot be accurately extracted, the present invention can generate a set of fake pregroove absolute data time, which is used to replace the original pregroove absolute data time. Therefore, the pregroove absolute data time in the subsequent normal area is not impacted by it.
Although the invention has been described with reference to a particular embodiment thereof, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed description.
Claims
1-20. (canceled)
21. An apparatus for generating a wobble clock signal, comprising:
- a selection circuit configured to receive a wobble signal from an optical disc, to receive the wobble clock signal from a clock signal generating circuit, receive a deformation enabling signal, and provide a selected signal selected from the wobble signal or the wobble clock signal based, at least in part, on the deformation enabling signal; and
- the clock signal generating circuit configured to receive the selected signal and to generate the wobble clock signal according to the selected signal.
22. The apparatus of claim 21, further comprising:
- a deformation detecting circuit configured to provide the deformation enabling signal according to a comparison of a width of the wobble signal to an average width of the selected signal.
23. The apparatus of claim 22, wherein the deformation detecting circuit comprises:
- a first counter configured to count the width of the wobble signal; and
- a comparator configured to generate comparison data according to a comparison of the count of the first counter to an indication of the average width of the selected signal and to provide a deformation signal according to whether the comparison data is within a predetermined range, wherein the deformation detecting circuit is further configured to provide the deformation enabling signal according to the deformation signal.
24. The apparatus of claim 23, wherein the deformation detecting circuit further comprises:
- a deformation signal counting circuit configured to count a duration during which the deformation signal is continuously enabled and to provide the deformation enabling signal according to the counted duration.
25. The apparatus of claim 21, wherein the clock signal generating circuit comprises:
- a second counter configured to count a width of the selected signal;
- a low-pass filter configured to average the count of the second counter and to generate an average clock signal according to the averaged count; and
- a clock signal output circuit configured to generate the wobble clock signal by dividing a frequency of the average clock signal by a positive integer.
26. The apparatus of claim 25, wherein the clock generating circuit further comprises:
- an absolute-time in pregroove decoding circuit configured to decode absolute-time in pregroove data according to the count of the second counter and the averaged count.
27. The apparatus of claim 21, wherein the selection circuit is further configured to select the selected signal based, in part, on a defect enabling signal indicative a detection of an optical disc defect.
28. The apparatus of claim 27, wherein the selection circuit comprises:
- an OR gate configured to provide a multiplexer select signal according to a logical OR of the deformation enabling signal and the defect enabling signal; and
- a multiplexer configured to receive the wobble signal, to receive the wobble clock signal, and to provide the selected signal according to the multiplexer select signal.
29. The apparatus of claim 21, further comprising:
- a deglitch circuit configured to deglitch the wobble signal.
30. A method for generating a wobble clock signal, comprising:
- providing a select signal based, at least in part, on a frequency difference between a wobble signal of an optical disc and an average frequency of a selected signal;
- if the provided select signal is at a first state, providing the wobble signal as the selected signal;
- if the provided select signal is at a second state, providing the wobble clock signal as the selected signal; and
- generating the wobble clock signal according to the selected signal.
31. The method of claim 30, wherein providing the select signal includes:
- counting a width of the selected signal;
- determining an average width of the selected signal;
- providing comparison data according to a comparison of the counted width to the determined average width; and
- providing the select signal according to whether the comparison data is within a predetermined range.
32. The method of claim 31, further comprising:
- counting a duration during which the comparison data is not within the predetermined range; and
- providing the select signal according to the counted duration.
33. The method of claim 31, wherein determining the average width includes:
- counting multiple widths of the selected signal; and
- low-pass filtering the multiple counted widths.
34. The method of claim 30, wherein generating the wobble clock signal includes:
- generating an average clock signal according to the average frequency of the selected signal; and
- dividing a frequency of the average clock signal by a positive integer.
35. The method of claim 30, wherein providing the select signal is further based on a defect enabling signal indicative of a detection of an optical disc defect.
36. The method of claim 30, further comprising:
- decoding absolute-time in pregroove data according to the selected signal.
37. The method of claim 36, further comprising:
- decoding absolute-time in pregroove data according to a difference between a frequency of the selected signal and the average frequency of the selected signal.
38. A processor-readable medium storing instructions which, when executed by a processor, enable a method for generating a wobble clock signal, the method comprising:
- providing a select signal based, at least in part, on a difference between a width of a wobble signal of an optical disc and an average width of a selected signal;
- if the provided select signal is at a first logic level, providing the selected signal according to the wobble signal;
- if the provided select signal is at a second logic level, providing the selected signal according to the wobble clock signal; and
- generating the wobble clock signal from the selected signal.
39. The processor-readable medium of claim 38, wherein generating the wobble clock includes:
- counting a width of the selected signal;
- providing count data according to a counted width of the selected signal;
- providing an average clock signal according to low-pass filtering the count data; and
- dividing a frequency of the average clock signal.
40. The processor-readable medium of claim 38, wherein the method further comprises:
- decoding absolute-time in pregroove data according to a difference between a width of the selected signal and the average width of the selected signal.
41. An apparatus for maintaining a stable rotation speed when processing an optical disc, comprising:
- means for selecting a select signal based, at least in part, on a frequency variation of a wobble signal of an optical disc;
- means for providing the wobble signal as the selected signal while the provided select signal is at a first state;
- means for providing the wobble clock signal as the selected signal while the provided select signal is at a second state; and
- means for generating the wobble clock signal according to the selected signal.
42. The apparatus of claim 41, wherein the frequency varation is a frequency difference between the wobble signal and an average frequency of the selected signal.
Type: Application
Filed: Feb 4, 2008
Publication Date: Feb 12, 2009
Applicant: Tian Holdings, L.L.C. (Wilmington, DE)
Inventors: Stanley Liow (Hsin-Tien City), Kobe Chou (Taipei)
Application Number: 12/025,730
International Classification: G11B 7/00 (20060101);