CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority to U.S. Provisional patent application Ser. No. 60/476,396, filed Jun. 6, 2003.
FIELD OF THE INVENTION The present invention provides porcine CMP-N-Acetylneuraminic-Acid Hydroxylase (CMP-Neu5Ac hydroxylase) protein, cDNA, and genomic DNA regulatory sequences. Furthermore, the present invention includes porcine animals, tissues, and organs, as well as cells and cell lines derived from such animals, tissues, and organs, which lack expression of functional CMP-Neu5Ac hydroxylase. Such animals, tissues, organs, and cells can be used in research and in medical therapy, including in xenotransplantation, and in industrial livestock farming operations. In addition, methods are provided to prepare organs, tissues, and cells lacking the porcine CMP-Neu5Ac hydroxylase gene for use in xenotransplantation.
BACKGROUND OF THE INVENTION The unavailability of acceptable human donor organs, the low rate of long term success due to host versus graft rejection, and the serious risks of infection and cancer are the main challenges now facing the field of tissue and organ transplantation. Because the demand for acceptable organs exceeds the supply, many people die each year while waiting for organs to become available. To help meet this demand, research has been focused on developing alternatives to allogenic transplantation. Dialysis is available to patients suffering from kidney failure, artificial heart models have been tested, and other mechanical systems have been developed to assist or replace failing organs. Such approaches, however, are quite expensive. The need for frequent and periodic access to dialysis machines greatly limits the freedom and quality of life of patients undergoing such therapy.
Xenograft transplantation represents a potentially attractive alternative to artificial organs for human transplantation. The potential pool of nonhuman organs is virtually limitless. Pigs are considered the most likely source of xenograft organs. The supply of pigs is plentiful, breeding programs are well established, and their organ size and physiology are compatible with humans. Therefore, xenotransplantation with pig organs offers a potential solution to the shortage of organs available for clinical transplantation.
Host rejection of such cross-species tissue remains a major concern in this area. The immunological barriers to xenotransplantation have been, and remain, formidable. The first immunological hurdle is “hyperacute rejection” (HAR). HAR is defined by the ubiquitous presence of high titers of pre-formed natural antibodies binding to the foreign tissue. The binding of these natural antibodies to target epitopes on the donor organ endothelium is believed to be the initiating event in HAR. This binding, within minutes of perfusion of the donor organ with the recipient blood, is followed by complement activation, platelet and fibrin deposition, and ultimately by interstitial edema and hemorrhage in the donor organ, all of which cause failure of the organ in the recipient (Strahan, et al. (1996) Frontiers in Bioscience 1, pp. 34-41).
Some noted xenotransplants of organs from apes or old-world monkeys (e.g., baboons) into humans have been tolerated for months without rejection. However, such attempts have ultimately failed due to a number of immunological factors. Even with heavy immunosuppression to suppress HAR, a low-grade innate immune response, attributable in part to failure of complement regulatory proteins (CRPs) within the graft tissue to control activation of heterologous complement on graft endothelium, ultimately leads to destruction of the transplanted organs (Starzl, Immunol. Rev., 141, 213-44 (1994)). In an effort to develop a pool of acceptable organs for xenotransplantation into humans, researchers have engineered animals that produce human CRPs, an approach which has been demonstrated to delay, but not eliminate, xenograft destruction in primates (McCurry, et al., Nat. Med., 1, 423-27 (1995); Bach et al., Immunol. Today, 17, 379-84 (1996)).
In addition to complement-mediated attack, human rejection of discordant xenografts appears to be mediated by a common antigen: the galactose-α(1,3)-galactose (gal-α-gal) terminal residue of many glycoproteins and glycolipids (Galili et al., Proc. Nat. Acad. Sci., (USA), 84, 1369-73 (1987); Cooper, et al., Immunol. Rev., 141, 31-58 (1994); Galili, et al., Springer Sem. Immunopathol, 15, 155-171 (1993); Sandrin, et al., Transplant Rev., 8, 134 (1994)). This antigen is chemically related to the human A, B, and O blood antigens, and it is present on many parasites and infectious agents, such as bacteria and viruses. Most mammalian tissue also contains this antigen, with the notable exception of old world monkeys, apes and humans. (see, Joziasse, et al., J. Biol. Chem., 264, 14290-97 (1989). Individuals without such carbohydrate epitopes produce abundant naturally occurring antibodies (IgM as well as IgG) specific to the epitopes. Many humans show significant levels of circulating IgG with specificity for gal-α-gal carbohydrate determinants (Galili, et al., J. Exp. Med., 162, 573-82 (1985); Galili, et al., Proc. Nat. Acad. Sci. (USA), 84, 1369-73 (1987)). The α-galactosyltransferase (α-GT) enzyme catalyzes the formation of gal-α-gal moieties. Research has focused on the modulation or elimination of this enzyme to reduce or eliminate the expression of gal-α-gal moieties on the cell surface of xenotissue.
The elimination of the α-galactosyltransferase gene from porcine has long been considered one of the most significant hurdles to accomplishing xenotransplantation from pigs to humans. Two alleles in the pig genome encode the α-GT gene. Single allelic knockouts of the α-GT gene in pigs were reported in 2002 (Dai, et al. Nature Biotechnol., 20:251 (2002); Lai, et al., Science, 295:1089 (2002)).
Recently, double allelic knockouts of the α-GT gene have been accomplished (Phelps, et al., Science, 299: pp. 411-414 (2003)). WO 2004/028243 to Revivicor Inc. describes porcine animal, tissue, organ, cells and cell lines, which lack all expression of functional α1,3 galactosyltransferase (α1,3-GT). Accordingly, the animals, tissues, organs and cells lacking functional expression of α1,3-GT can be used in xenotransplantation and for other medical purposes.
PCT patent application WO 2004/016742 to Immerge Biotherapeutics, Inc. describes α(1,3)-galactosyltransferase null cells, methods of selecting GGTA-1 null cells, α(1,3)-galactosyltransferase null swine produced therefrom (referred to as a viable GGTA-1 null swine), methods for making such swine, and methods of using cells, tissues and organs of such a null swine for xenotransplantation.
One of the earliest known xenoantigens other than gal-α-gal is an epitope that Hanganutiu Deicher antibodies recognize, and which have long been associated with serum disease. The epitope has been identified as N-glycolylneuraminic acid (Neu5Gc), a member of the sialic acid family of carbohydrates. Among carbohydrates, sialic acids are abundant and ubiquitous. Sialic acid is a generic designation used for N-acylneuraminic acids (Neu5Acyl) and their derivatives. N-Acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are two of the most abundant derivatives of sialic acids.
The Neu5Gc epitope is located in the terminal position in the glycan chains of glycoconjugates. Due to this exposed position, it plays an important role in cellular recognition, e.g. in the case of inflammatory reactions, maturation of immune cells, differentiation processes, hormone-, pathogen- and toxin binding (Varki, A., Glycobiology, 2, pp. 25-40 (1992)).
Glycoconjugates containing Neu5Gc are immunogenic in humans. In healthy humans, Neu5Gc is not detectable, although Neu5Gc is abundant in most mammals. The lack of Neu5Gc in man is due to an exon deletion in the human gene that prevents the formation of functional enzyme (Chou, H. H., et al. Proc. Natl. Acad. Sci. (USA), 95, pp. 11751-11756 (1998); Irie, A., et al. J. Biol. Chem., 273, pp. 15866-15871 (1998)). Thus, Neu5Gc-containing glycoconjugates act as antigens and can induce the formation of antibodies. Historically, the antibodies have been referred to as Hanganutziu-Deicher (HD) antigens and antibodies (Hanganutziu, M., CR Soc. Biol. (Paris), 91, p. 1457 (1924); Deicher, H., Z. Hyg., 106, p. 561 (1926)). Hanganutziu-Deicher antigens are detectable in many human tumors (colon carcinoma, retinoblastoma, melanoma and carcinoma of the breast) as well as in chicken tumor tissues (Higashi, H., et al. Cancer Res., 45, pp. 3796-3802 (1985)). Although the amount of antigen in tumors is very small (usually less than 1% of the total amount of sialic acid, often in the range of from 0.01 to 0.1%), it is capable of inducing the formation of Hanganutziu-Deicher antibodies (Higashihara, T., et al., Int Arch Allergy Appl Immunol., 95, pp. 231-235 (1991)). This immunological reaction is a potential barrier to xenotransplantation of Neu5Gc-containing pig organs to humans.
The Neu5Gc epitope is formed by the addition of a hydroxyl group to the N-acetyl moiety of Neu5Ac. The enzyme that catalyzes the hydroxylation is CMP-Neu5Ac hydroxylase. Thus, the expression of the CMP-Neu5Ac hydroxylase gene determines the presence of the Neu5Gc epitope on cell surfaces. Purification studies of CMP-Neu5Ac hydroxylase in mammals have shown that it is a soluble, cytosolic oxygenase that is dependent on cytochrome b5 and cytochrome b5 reductase (Kawano, T., et al., J. Biol. Chem., 269, pp. 9024-9029 (1994); Schneckenburger, P., et al., Glycoconj. J., 11, pp. 194-203 (1994); Schlenzka, W., et al., Glycobiology, 4, pp. 675-683 (1994); Kozutsumi, Y., et al., J. Biochem. (Tokyo), 108, pp. 704-706 (1990); and, Shaw, L., et al. Eur. J. Biochem., 219, pp. 1001-1011 (1994)).
Another important feature of Neu5Gc is that it acts as an adhesion molecule for pathogens, allowing for entry into the cell (Kelm, S. and Schauer, R., Int. Rev. Cytol, 179, pp. 137-240 (1997)). This causes disease and economic losses in certain livestock species. Specifically, enterotoxigenic Escherichia coli with K99 fimbriae infect newborn piglets by binding to Neu5Gc in gangliosides such as Nue5Gcα2→3Galβ1→4Glcβ1→1′ ceramide [GM3(Neu5Gc)], N-glycolylsialoparagloboside and GM2(Neu5Gc) attached to intestinal absorptive and mucus secreting cells, causing a potentially lethal diarrhea (Malykh, Y., et. al., Biochem. J., 370, pp. 601-607 (2003); Kyogashima, M., et al., (1993); Teneberg, S., et al., FEBS Letters, 263, pp. 10-14 (1990); Isobe, T., et al., Anal. Biochem., 236, pp. 35-40 (1996); Lindahl, M. and Carlstedt, I., J. Gen. Microbiol., 136, pp. 1609-1614 (1990); King, T. P., et al., Proceedings of the 6th International Symposium on Digestive Physiology in Pigs, pp. 290-293, (1994)). Pig rotavirus infects pig newborns causing diarrhea by binding to GM3(Neu5Gc). Pig transmissible gastroenteritis coronavirus infects pigs via entry into glycoconjugates containing α2,3-bound Neu5Gc (Schultz, B., et al., J. Virol., 70, pp. 5634-5637 (1996)).
CMP-Neu5Ac hydroxylase has been isolated from mouse liver and pig submandibular glands to homogeneity and characterized (Kawano, T., et al., J. Biol. Chem., 269, pp. 9024-9029 (1994); Schneckenburger, P., et al., Glycoconj. J., 11, pp. 194-203 (1994); and, Schlenzka, W., et al., Glycobiology, 4, pp. 675-683 (1994)).
Schlenzka, et al. (Glycobiology, Vol. 4, pp. 675-683 (1994)) purified the enzyme from pig submandibular glands using ion exchange chromatography, chromatography with immobilized triazin dyes, hydrophobic interaction chromatography and gel filtration. Schneckenburger et al. (Glycoconj. J., Vol. 11, pp. 194-203 (1994)) isolated the CMP-Neu5Ac hydroxylase from mouse liver. Both the CMP-Neu5Ac hydroxylase from pig submandibular glands and the one from mouse liver are soluble monomers having a molecular weight of 65 kDa. Their catalytic interactions with CMP-Neu5Ac and cytochrome b5 are very similar to one another. The activity of these enzymes seems to be dependent on an iron-containing prosthetic group.
JP-A 06 113838 describes the protein and DNA sequences of murine CMP-Neu5Ac hydroxylase, as well as a monoclonal antibody that specifically binds to the hydroxylase.
PCT Publication No. WO 97/03200A1 to Boehringer Manheim GMBH discloses a partial cDNA for the porcine CMP-Neu5Ac hydroxylase. This application discloses a cDNA sequence beginning in the middle of Exon 8 of the CMP-Neu5Ac hydroxylase gene (further disclosed as GenBank accession number Y15010).
Martensen, L., et al. (Eur. J. Biochem., Vol. 268, pp. 5157-5166 (2001)) discloses a full length amino acid sequence of porcine CMP-Neu5Ac hydroxylase.
PCT Publication No. WO 02/088351 to RBC Biotechnology discloses a partial cDNA and genomic sequence (exons 7-11 as well as partial genomic sequence surrounding each exon) of porcine CMP-NeuAc hydroxylase. In addition, methods are provided to generate porcine cells and animals lacking the CMP-NeuAc hydroxylase epitope, optionally, in combination with other genetic modifications, such as inactivation of the alpha-1,3-galactosyltransferase gene and/or insertion of complement proteins.
It is an object of the present invention to provide genomic and regulatory sequences of the porcine CMP-Neu5Ac hydroxylase gene.
It is an object of the present invention to provide the full length cDNA, as well as novel variants of the CMP-Neu5Ac hydroxylase gene.
It is another object of the invention to provide novel nucleic acid and amino acid sequences that encode the CMP-Neu5Ac hydroxylase gene.
It is yet a further object of the present invention to provide cells, tissues and/or organs deficient in the CMP-Neu5Ac hydroxylase gene.
It is another object of the present invention to generate animals, particularly pigs, lacking a functional CMP-Neu5Ac hydroxylase gene.
It is yet a further object of the present invention to provide cells, tissues and/or organs deficient in the CMP-Neu5Ac hydroxylase gene for use in xenotransplantation of non-human organs to human recipients in need thereof.
SUMMARY OF THE INVENTION The full length cDNA sequence, peptide sequence, and genomic organization of the porcine CMP-Neu5Ac hydroxylase gene has been determined. To date, only partial cDNA and genomic sequences have been identified. The present invention provides novel porcine CMP-Neu5Ac hydroxylase protein, cDNA, cDNA variants, and genomic DNA sequence. Furthermore, the present invention includes porcine animals, tissues, and organs, as well as cells and cell lines derived from such animals, tissue, and organs, which lack expression of functional CMP-Neu5Ac hydroxylase. Such animals, tissues, organs, and cells can be used in research and in medical therapy, including xenotransplantation. In addition, methods are provided to prepare organs, tissues, and cells lacking the porcine CMP-Neu5Ac hydroxylase gene for use in xenotransplantation.
One aspect of the present invention provides the full length cDNA of porcine CMP-Neu5Ac hydroxylase. The full length cDNA is shown in Table 1 (SEQ ID No 1) and the full length peptide sequence is provided in Table 2 (SEQ ID No 2). The start codon for the full-length cDNA is located in the 3′ portion of Exon 4, and the stop codon is found in the 3′ portion of Exon 17. Nucleotide and amino acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to SEQ ID Nos 1 or 2 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 15, 17, 20, 25 or 30 nucleotide or amino acid sequences of SEQ ID Nos 1 or 2 are also provided. Further provided is any nucleotide sequence that hybridizes, optionally under stringent conditions, to SEQ ID No 1, as well as, nucleotides homologous thereto.
In one embodiment, nucleic acid and peptide sequences encoding three novel variants of CMP-Neu5Ac hydroxylase are provided (Tables 3-8, FIG. 2). SEQ ID No 3 represents the cDNA of a variant of the gene, variant-1, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15a, 16, 17, and 18. SEQ ID No 5 represents the cDNA of a variant of the gene, variant-2, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 12a. SEQ ID No 7 represents the cDNA of a variant of the gene, variant-3, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11 and 11a. SEQ ID Nos 4, 6 and 8 represent the amino acid sequences of variant-1, variant-2 and variant-3, respectively. Nucleotide and amino acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to SEQ ID Nos 3-8 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 15, 17, 20, 25, or 30 nucleotide or amino acid sequence of SEQ ID Nos 3-8 are also provided. Further provided is any nucleotide sequence that hybridizes, optionally under stringent conditions, to SEQ ID Nos 3, 5 and 7, as well as, nucleotides homologous thereto.
A further embodiment provides nucleic acid sequences representing genomic DNA sequences of the CMP-Neu5Ac hydroxylase gene (Table 9, FIG. 1). SEQ ID Nos 10-28 represent Exons 1, 4-11, 11a, 12, 12a, 13-15, 15a, 16-18, respectively, and SEQ ID Nos 29-45 represent Introns 1a, 1b, 4-15, 15a, 16, and 17, respectively. SEQ ID No. 9 represents the 5′ untranslated region of the CMP-Neu5Ac hydroxylase gene. SEQ ID No. 46 (Table 10) represents the genomic DNA and regulatory sequence of CMP-Neu5Ac hydroxylase.
In another embodiment, the genomic sequence of the porcine CMP-Neu5Ac hydroxylase gene is represented by SEQ ID No. 47. SEQ ID No. 47 represents the 5′ contiguous genomic sequence containing 5′ UTR, Exon 1 and a portion of intronic sequence located 3′ of Exon 1 (Table 11).
In another embodiment, the genomic sequence of the porcine CMP-Neu5Ac hydroxylase gene is represented by SEQ ID No. 48. SEQ ID NO. 48 represents a contiguous genomic sequence containing intronic sequence located 5′ to Exon 4, Exon 4, Intron 4, Exon 5, Intron 5, Exon 6, Intron 6, Exon 7, Intron 7, Exon 8, Intron 8, Exon 9, Intron 9, Exon 10, Intron 10, Exon 11, Intron 11, Exon 12, Intron 12, Exon 13, Intron 13, Exon 14, Intron 14, Exon 15, Intron 15, Exon 16, Intron 16, Exon 17, Intron 17, and Exon 18 (Table 12). In addition, nucleotide sequences that contain at least 2775, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500 or 10,000 contiguous nucleotides of SEQ ID NO. 48 are provided, as well as nucleotide sequences at least 80, 85, 90, 95, 98, or 99% homologous to SEQ ID NO. 48.
In another embodiment, the genomic sequence of the porcine CMP-Neu5Ac hydroxylase gene is represented by SEQ ID No. 49. SEQ ID NO. 49 represents contiguous genomic sequences containing Intronic sequence 5′ to Exon 4, Exon 4, Intron 4, Exon 5, Intron 5, Exon 6, Intron 6, Exon 7, Intron 7 and Exon 8. Further, nucleotide sequences that contain at least 1750, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, or 20000 contiguous nucleotides of SEQ ID NO. 49 are provided, as well as nucleotide sequences at least 80, 85, 90, 95, 98, or 99% homologous to SEQ ID NO. 49.
In another embodiment, the genomic sequence of the porcine CMP-Neu5Ac hydroxylase gene is represented by SEQ ID No. 50. SEQ ID NO. 50 represents contiguous genomic sequences containing Exon 12, Intron 12, Exon 13, Intron 13, Exon 14, Intron 14, Exon 15, Intron 15, Exon 16, Intron 16, Exon 17, Intron 17, and Exon 18 are provided. Nucleotide sequences that contain at least 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000 or 20,000 contiguous nucleotides of SEQ ID NO. 50 are provided, as well as nucleotide sequences at least 80, 85, 90, 95, 98, or 99% homologous to SEQ ID NO. 50.
In further embodiments, nucleotide and amino acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to SEQ ID Nos 9-45, 46, 47, 48, 49 and 50 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 15, 17, 20, 25, 30, 50, 100, 150, 200, 300, 400, 500 or 1000 contiguous nucleotide or amino acid sequences of SEQ ID Nos 9-45, 46, 47, and 48 are also provided. Further provided is any nucleotide sequence that hybridizes, optionally under stringent conditions, to SEQ ID Nos 9-45, 46, 47, 48, 49 and 50, as well as, nucleotides homologous thereto.
Another aspect of the present invention provides nucleic acid constructs that contain cDNA or variants thereof encoding CMP-Neu5Ac hydroxylase. These cDNA sequences can be derived from Seq ID Nos. 1-8, or any fragment thereof. Constructs can contain one, or more than one, internal ribosome entry site (IRES). The construct can also contain a promoter operably linked to the nucleic acid sequence encoding CMP-Neu5Ac hydroxylase, or, alternatively, the construct can be promoterless. In another embodiment, nucleic acid constructs are provided that contain nucleic acid sequences that permit random or targeted insertion into a host genome. In addition to the nucleic acid sequences the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells.
In another embodiment, nucleic acid targeting vectors constructs are also provided wherein homologous recombination in somatic cells can be achieved. These targeting vectors can be transformed into mammalian cells to target the CMP-Neu5Ac hydroxylase gene via homologous recombination. In one embodiment, the targeting vectors can contain a 3′ recombination arm and a 5′ recombination arm that is homologous to the genomic sequence of a CMP-Neu5Ac hydroxylase. The homologous DNA sequence can include at least 15 bp, 20 bp, 25 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous to the CMP-Neu5Ac hydroxylase sequence. In another embodiment, the homologous DNA sequence can include one or more intron and/or exon sequences. In a specific embodiment, the DNA sequence can be homologous to Intron 5 and Intron 6 of the CMP-Neu5Ac hydroxylase gene (see, for example, FIGS. 6-8). In another specific embodiment, the DNA sequence can be homologous to Intron 5, a 55 bp portion of Exon 6, and Intron 6 of the CMP-Neu5Ac hydroxylase gene, and contain enhanced Green Fluorescent Protein sequence in an in-frame orientation 3′ to the 55 bp portion of Exon 6 (see, for example, FIGS. 10 and 11).
Another embodiment of the present invention provides oligonucleotide primers capable of hybridizing to porcine CMP-Neu5Ac hydroxylase cDNA or genomic sequence, such as Seq ID Nos. 1, 3, 5, 7, 9-45, 46, 47 or 48. In a preferred embodiment, the primers hybridize under stringent conditions to SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47 or 48. Another embodiment provides oligonucleotide probes capable of hybridizing to porcine CMP-Neu5Ac hydroxylase nucleic acid sequences, such as SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, or 48. The polynucleotide primers or probes can have at least 14 bases, 20 bases, preferably 30 bases, or 50 bases which hybridize to a polynucleotide of the present invention. The probe or primer can be at least 14 nucleotides in length, and in a preferred embodiment, are at least 15, 20, 25, 28, or 30 nucleotides in length.
In another aspect of the present invention, mammalian cells lacking at least one allele of the CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein are provided. These cells can be obtained as a result of homologous recombination. Particularly, by inactivating at least one allele of the CMP-NeuAc hydroxylase gene, cells can be produced which have reduced capability for expression of functional Hanganutziu-Deicher antigens.
In embodiments of the present invention, alleles of the CMP-Neu5Ac hydroxylase gene are rendered inactive according to the process, sequences and/or constructs described herein, such that the resultant CMP-Neu5Ac hydroxylase enzyme can no longer generate Hanganutziu-Deicher antigens. In one embodiment, the CMP-Neu5Ac hydroxylase gene can be transcribed into RNA, but not translated into protein. In another embodiment, the CMP-Neu5Ac hydroxylase gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the CMP-Neu5Ac hydroxylase gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the CMP-Neu5Ac hydroxylase gene can be transcribed and then translated into a nonfunctional protein.
In a further aspect of the present invention, porcine animals are provided in which at least one allele of the CMP-Neu5Ac hydroxylase gene is inactivated via a genetic targeting event produced according to the process, sequences and/or constructs described herein. In another aspect of the present invention, porcine animals are provided in which both alleles of the CMP-Neu5Ac hydroxylase gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knock-out”) or insertion (“knock-in”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
In another aspect of the present invention, porcine cells lacking one allele, optionally both alleles of the porcine CMP-Neu5Ac hydroxylase gene can be used as donor cells for nuclear transfer into enucleated oocytes to produce cloned, transgenic animals. Alternatively, porcine CMP-Neu5Ac hydroxylase knockouts can be created in embryonic stem cells, which are then used to produce offspring. Offspring lacking a single allele of the functional CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein can be breed to further produce offspring lacking functionality in both alleles through mendelian type inheritance. Cells, tissues and/or organs can be harvested from these animals for use in xenotransplantation strategies. The elimination of the Hanganutziu-Deicher antigens can reduce the immune rejection of the transplanted cell, tissue or organ due to the Neu5Gc epitope.
Alternatively, animals lacking at least one allele of the CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein can be less susceptible or resistant to enterotoxigenic infection and disease such as, for example, E. Coli infection, rotavirus infection, and gastroenteritis coronavirus. Such animals can be used, for example, in commercial farming.
In one aspect of the present invention, a pig can be prepared by a method in accordance with any aspect of the present invention. Genetically modified pigs can be used as a source of tissue and/or organs for transplantation therapy. A pig embryo prepared in this manner or a cell line developed therefrom can also be used in cell-transplantation therapy. Accordingly, there is provided in a further aspect of the invention a method of therapy comprising the administration of genetically modified cells lacking porcine CMP-Neu5Ac hydroxylase to a patient, wherein the cells have been prepared from an embryo or animal lacking CMP-Neu5Ac hydroxylase. This aspect of the invention extends to the use of such cells in medicine, e.g. cell-transplantation therapy, and also to the use of cells derived from such embryos in the preparation of a cell or tissue graft for transplantation. The cells can be organized into tissues or organs, for example, heart, lung, liver, kidney, pancreas, corneas, nervous (e.g. brain, central nervous system, spinal cord), skin, or the cells can be islet cells, blood cells (e.g. haemocytes, i.e. red blood cells, leucocytes) or haematopoietic stem cells or other stem cells (e.g. bone marrow).
In another aspect of the present invention, CMP-Neu5Ac hydroxylase-deficient pigs also lack genes encoding other xenoantigens, such as, for example, porcine iGb3 synthase (see, for example, U.S. Patent Application 60/517,524), and/or porcine Forssman synthase (see, for example, U.S. Patent Application 60/568,922). In another embodiment, porcine cells are provided that lack the α1,3 galactosyltransferase gene and the CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein. In another embodiment, porcine α1,3 galactosyltransferase gene knockout cells are further modified to knockout the CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein. In addition, CMP-Neu5Ac hydroxylase deficient pigs produced according to the process, sequences and/or constructs described herein, optionally lacking one or more additional genes associated with an adverse immune response, can be modified to express complement inhibiting proteins, such as, for example, CD59, DAF, and/or MCP can be further modified to eliminate the expression of al least one allele of the CMP-Neu5Ac hydroxylase gene. These animals can be used as a source of tissue and/or organs for transplantation therapy. These animals can be used as a source of tissue and/or organs for transplantation therapy. A pig embryo prepared in this manner or a cell line developed therefrom can also be used in cell-transplantation therapy.
DESCRIPTION OF THE INVENTION Elimination of the CMP-Neu5Ac hydroxylase gene produced according to the process, sequences and/or constructs described herein can reduce a human beings immunological response to the Neu5Gc epitope and remove an immunological barrier to xenotransplantation. The present invention is directed to novel nucleic acid sequences encoding the full-length cDNA and peptide. Information about the genomic organization, intronic sequences and regulatory regions of the gene are also provided. In one aspect, the invention provides isolated and substantially purified cDNA molecules having one of SEQ ID Nos: 1, 3, 5 or 7, or a fragment thereof. In another aspect of the invention, DNA sequences comprising the full-length genome of the CMP-NeuAc hydrolase gene are provided in SEQ ID Nos 9-45, 46, 47, 48, 49 or 50 or fragments thereof. In another aspect, primers for amplifying porcine CMP-Neu5Ac hydroxylase cDNA or genomic sequence derived from SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 or 50 are provided. Additionally probes for identifying CMP-Neu5Ac hydroxylase nucleic acid sequences derived from SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 or 50, or fragments thereof are provided. DNA represented by SEQ ID Nos 9-45, 46, 47, 48, 49 or 50, or fragments thereof, can be used to construct pigs lacking functional CMP-Neu5Ac hydroxylase genes. Thus, the invention also provides a porcine chromosome lacking a functional CMP-NeuAc hydroxylase gene and a transgenic pig lacking a functional CMP-NeuAc hydroxylase protein produced according to the process, sequences and/or constructs described herein. Such pigs can be used as tissue sources for xenotransplantation into humans. In an alternate embodiment, CMP-NeuAc hydroxylase-deficient pigs produced according to the process, sequences and/or constructs described herein also lack other genes associated with adverse immune responses in xenotransplantation, such as, for example, the α1,3 galactosyltransferase gene, iGb3 synthetase gene, or FSM synthase gene. In another embodiment, pigs lacking CMP-Neu5Ac hydroxylase produced according to the process, sequences and/or constructs described herein and/or other genes associated with adverse immune responses in xenotransplantation express complement inhibiting factors such as, for example, CD59, DAF, and/or MCP.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 represents the genomic organization of the porcine CMP-Neu5Ac hydroxylase gene. Closed bars depict each numbered exon. The length of the introns between the exons illustrates relative distances. (Open boxes also represent exons that appear in some variants (see FIG. 2); “start” and “stop” denote start and stop codons, respectively) The approximate scale is depicted in the bottom of the figure.
FIG. 2 depicts cDNA sequences of the CMP-Neu5Ac hydroxylase gene. Variant-1 contains exon 15a in place of exons 14 and 15. Variant-2 contains exon 12a, and variant-3 contains exon 11a. “Start” and “stop” denote the start and stop codons, respectively.
FIG. 3 illustrates four non-limiting examples of targeting vectors, along with their corresponding genomic organization. The selectable marker gene in this particular non-limiting example is eGFP (enhanced green fluorescent protein). eGFP can be inserted in the DNA constructs to inactivate the porcine CMP-NeuAc hydroxylase gene.
FIG. 4 illustrates transcription factor binding sites located within exon 1 (228 bp) and its 5′-flanking region spanning 601 bp.
FIG. 5 depicts oligonucleotide sequences that can be used for DNA construction of porcine CMP-Neu5Ac hydroxylase gene targeting vector.
FIG. 6 is a schematic diagram illustrating the production of a 3′-arm segment from the porcine CMP-Neu5Ac hydroxylase gene using primers pDH3 and pDH4, and its insertion into a vector (pCRII).
FIG. 7 is a schematic diagram illustrating the production of a 5′-arm segment from the porcine CMP-Neu5Ac hydroxylase gene using primers pDH1 and pDH2, followed by pDH2a, pDH2b, and pDH2c, and its insertion into a vector (pCRII) in which a 3′-arm has previously been inserted.
FIG. 8 is a non-limiting example of a schematic illustrating a targeting vector that can be utilized to delete Exon 6 of the porcine CMP-Neu5Ac hydroxylase gene through homologous recombination.
FIG. 9 represents oligonucleotide sequences used in generating a enhanced green fluorescent protein expression vector for use in a Knock-in strategy.
FIG. 10 is a schematic illustrating the insertion of a EGFP fragment with a polyA signal into the targeting vector pDHΔex6.
FIG. 11 is a schematic illustrating a knock-in vector for expression of eGFP.
FIG. 12 is a schematic illustrating homologous recombination resulting in a frameshift between the targeting cassette DNA construct (pDHΔex6) and genomic DNA.
FIG. 13 is a schematic illustrating homologous recombination resulting in a frameshift between the targeting cassette DNA construct (pDHΔex6) and genomic DNA.
DEFINITIONS A “target DNA sequence” is a DNA sequence to be modified by homologous recombination. The target DNA can be in any organelle of the animal cell including the nucleus and mitochondria and can be an intact gene, an exon or intron, a regulatory sequence or any region between genes.
A “targeting DNA sequence” is a DNA sequence containing the desired sequence modifications. The targeting DNA sequence can be substantially isogenic with the target DNA.
A “homologous DNA sequence or homologous DNA” is a DNA sequence that is at least about 80%, 85%, 90%, 95%, 98% or 99% identical with a reference DNA sequence. A homologous sequence hybridizes under stringent conditions to the target sequence, stringent hybridization conditions include those that will allow hybridization occur if there is at least 85% and preferably at least 95% or 98% identity between the sequences.
An “isogenic or substantially isogenic DNA sequence” is a DNA sequence that is identical to or nearly identical to a reference DNA sequence. The term “substantially isogenic” refers to DNA that is at least about 97-99% identical with the reference DNA sequence, and preferably at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence.
“Homologous recombination” refers to the process of DNA recombination based on sequence homology.
“Gene targeting” refers to homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not.
“Non-homologous or random integration” refers to any process by which DNA is integrated into the genome that does not involve homologous recombination.
A “selectable marker gene” is a gene, the expression of which allows cells containing the gene to be identified. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype can be, for example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.
The term “contiguous” is used herein in its standard meaning, i.e., without interruption, or uninterrupted.
The term “porcine” refers to any pig species, including pig species such as Large White, Landrace, Meishan, Minipig.
The term “oocyte” describes the mature animal ovum which is the final product of oogenesis and also the precursor forms being the oogonium, the primary oocyte and the secondary oocyte respectively.
The term “fragment” means a portion or partial sequence of a nucleotide or peptide sequence.
The terms “derivative” and “analog” means a nucleotide or peptide sequence which retains essentially the same biological function or activity as such nucleotide or peptide. For example, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
DNA (deoxyribonucleic acid) sequences provided herein are represented by the bases adenine (A), thymine (T), cytosine (C), and guanine (G).
Amino acid sequences provided herein are represented by the following abbreviations:
A alanine
P proline
B aspartate or
asparagine
Q glutamine
C cysteine
R arginine
D aspartate
S serine
E glutamate
T threonine
F phenylalanine
G glycine
V valine
H histidine
W tryptophan
I isoleucine
Y tyrosine
Z glutamate or
glutamine
K lysine
L leucine
M methionine
N asparagine
“Transfection” refers to the introduction of DNA into a host cell. Cells do not naturally take up DNA. Thus, a variety of technical “tricks” are utilized to facilitate gene transfer. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 and electroporation. (J. Sambrook, E. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, 1989). Transformation of the host cell is the indicia of successful transfection.
I. Complete cDNA Sequence and Variants of the Porcine CMP-Neu5Ac Hydroxylase Gene One aspect of the present invention provides novel, full length nucleic acid cDNA sequences of the porcine CMP-Neu5Ac hydroxylase gene (FIG. 2, Table 1, Seq ID No 1). Another aspect of the present invention provides predicted amino acid peptide sequences of the porcine CMP-Neu5Ac hydroxylase gene (Table 2, Seq ID No 2). The ATG start codon for the full-length cDNA is located in the 3′ portion of Exon 4, and the stop codon TAG is found in the 3′ portion of Exon 17. Nucleic and amino acid sequences at least 90, 95, 98 or 99% homologous to Seq ID Nos 1 or 2 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 15, 17, 20 or 25 contiguous nucleic or amino acids of Seq ID Nos 1 or 2 are also provided. Further provided are fragments, derivatives and analogs of Seq ID Nos 1-2. Fragments of Seq ID Nos. 1-2 can include any contiguous nucleic acid or peptide sequence that includes at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90. 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 700, 750, 800, 850, 900, 1000, 5000 or 10,000 nucleotides.
TABLE 1
Full length cDNA
CCCGACGTCCTGGCAGCGCCCAGGCACTGTTA Exons Seq ID No 1
TTGGTGCCTCCTGTGTCCACGCGCTTCCCGGC 1 &
CAGGCAGCCCTGGCGGATCCTATTTTCTGTTC 4-18
CCCCGATTCTGGTACCTCTCCCTCCCGCCCTC
GGTGCGCAGCCGTCCTCCTGCAGTGCCTGCTC
CTCCAGGGGCGAAACCGATCAGGGATCAGGCC
ACCCGCCTCCTGAACATCCCTCCTTAGTTCCC
ACAGTCTAATGCCTTGTGGAAGCAAATGAGCC
ACAGAAGCTGAAGGAAAAACCACCATTCTTTC
TTAATACCTGGAGAGAGGCAACGACAGACTAT
GAGCAGCATCGAACAAACGACGGAGATCCTGT
TGTGCCTCTCACCTGCCGAAGCTGCCAATCTC
AAGGAAGGAATCAATTTTGTTCGAAATAAGAG
CACTGGCAAGGATTACATCTTATTTAAGAATA
AGAGCCGCCTGAAGGCATGTAAGAACATGTGC
AAGCACCAAGGAGGCCTCTTCATTAAAGACAT
TGAGGATCTAAATGGAAGGTCTGTTAAATGCA
CAAAACACAACTGGAAGTTAGATGTAAGCAGC
ATGAAGTATATCAATCCTCCTGGAAGCTTCTG
TCAAGACGAACTGGTTGTAGAAAAGGATGAAG
AAAATGGAGTTTTGCTTCTAGAACTAAATCCT
CCTAACCCGTGGGATTCAGAACCCAGATCTCC
TGAAGATTTGGCATTTGGGGAAGTGCAGATCA
CGTACCTTACTCACGCCTGCATGGACCTCAAG
CTGGGGGACAAGAGAATGGTGTTCGACCCTTG
GTTAATCGGTCCTGCTTTTGCGCGAGGATGGT
GGTTACTACACGAGCCTCCATCTGATTGGCTG
GAGAGGCTGAGCCGCGCAGACTTAATTTACAT
CAGTCACATGCACTCAGACCACCTGAGTTACC
CAACACTGAAGAAGCTTGCTGAGAGAAGACCA
GATGTTCCCATTTATGTTGGCAACACGGAAAG
ACCTGTATTTTGGAATCTGAATCAGAGTGGCG
TCCAGTTGACTAATATCAATGTAGTGCCATTT
GGAATATGGCAGCAGGTAGACAAAAATCTTCG
ATTCATGATCTTGATGGATGGCGTTCATCCTG
AGATGGACACTTGCATTATTGTGGAATACAAA
GGTCATAAAATACTCAATACAGTGGATTGCAC
CAGACCCAATGGAGGAAGGCTGCCTATGAAGG
TTGCATTAATGATGAGTGATTTTGCTGGAGGA
GCTTCAGGCTTTCCAATGACTTTCAGTGGTGG
AAAATTTACTGAGGAATGGAAAGCCCAATTCA
TTAAAACAGAAAGGAAGAAACTCCTGAACTAC
AAGGCTCGGCTGGTGAAGGACCTACAACCCAG
AATTTACTGCCCCTTTCCTGGGTATTTCGTGG
AATCCCACCCAGCAGACAAGTATATTAAGGAA
ACAAACATCAAAAATGACCCAAATGAACTCAA
CAATCTTATCAAGAAGAATTCTGAGGTGGTAA
CCTGGACCCCAAGACCTGGAGCCACTCTTGAT
CTGGGTAGGATGCTAAAGGACCCAACAGACAG
CAAGGGCATCGTAGAGCCTCCAGAAGGGACTA
AGATTTACAAGGATTCCTGGGATTTTGGCCCA
TATTTGAATATCTTGAATGCTGCTATAGGAGA
TGAAATATTTCGTCACTCATCCTGGATAAAAG
AATACTTCACTTGGGCTGGATTTAAGGATTAT
AACCTGGTGGTCAGGATGATTGAGACAGATGA
GGACTTCAGCCCTTTGCCTGGAGGATATGACT
ATTTGGTTGACTTTCTGGATTTATCCTTTCCA
AAAGAAAGACCAAGCCGGGAACATCCATATGA
GGAAATTCGGAGCCGGGTTGATGTCATCAGAC
ACGTGGTAAAGAATGGTCTGCTCTGGGATGAC
TTGTACATAGGATTCCAAACCCGGCTTCAGCG
GGATCCTGATATATACCATCATCTGTTTTGGA
ATCATTTTCAAATAAAACTCCCCCTCACACCA
CCTGACTGGAAGTCCTTCCTGATGTGCTCTGG
GTAGAGAGGACCTGAGCTGTCCCAGGGGTGCC
CAACAACATGAAAAAATCAAGAATTTATTGCT
GCTACGTCAAAGCTTATACCAGAGATTATGCC
TTATAGACATTAGCAATGGATAATTATATGTT
GCACTTGTGAAATGTGCACATATCCTGTTTAT
GAATCACCACATAGCCAGATTATCAATATTTT
ACTTATTTCGTAAAAAATCCACAATTTTCCAT
AACAGAATCAACGTGTGCAATAGGAACAAGAT
TGCTATGGAAAACGAGGGTAACAGGAGGAGAT
ATTAATCCAAGCATAGAAGAAATAGACAAATG
AGGGGCCATAAGGGGAATATAGGGAAGAGAAA
AAAATTAAGATGGAATTTTAAAAGGAGAATGT
AAAAAATAGATATTTGTTCCTTAATAGGTTGA
TTCCTCAAATAGAGCCCATGAATATAATCAAA
TAGGAAGGGTTCATGACTGTTTTCAATTTTTC
AAAAAGCTTTGTTGAAATCATAGACTTGCAAA
ACAAGGCTGTAGAGGCCACCCTAAAATGGAAA
ATTTCACTGGGACTGAAATTATTTTGATTCAA
TGACAAAATTTGTTATTTACTGCGGATTATAA
ACTCTAACAAATAGCGATCTCTTTGCTTCATA
AAAACATAAACACTAGCTAGTAATAAAATGAG
TTCTGCAG
TABLE 2
Full length Amino Acid Sequence
M S S I E Q T T E I L L C L S P A E A A Seq ID No 2
N L K E G I N F V R N K S T G K D Y I L
F K N K S R L K A C K N M C K H Q G G L
F I K D I E D L N G R S V K C T K H N W
K L D V S S M K Y I N P P G S F C Q D E
L V V E K D E E N G V L L L E L N P P N
P W D S E P R S P E D L A F G E V Q I T
Y L T H A C M D L K L G D K R M V F D P
W L I G P A F A R G W W L L H E P P S D
W L E R L S R A D L I Y I S H M H S D H
L S Y P T L K K L A E R R P D V P I Y V
G N T E R P V F W N L N Q S G V Q L T N
I N V V P F G I W Q Q V D K N L R F M I
L M D G V H P E M D T C I I V E Y K G H
K I L N T V D C T R P N G G R L P M K V
A L M M S D F A G G A S G F P M T F S G
G K F T E E W K A Q F I K T E R K K L L
N Y K A R L V K D L Q P R I Y C P F P G
Y F V E S H P A D K Y I K E T N I K N D
P N E L N N L I K K N S E V V T W T P R
P G A T L D L G R M L K D P T D S K G I
V E P P E G T K I Y K D S W D F G P Y L
N I L N A A I G D E I F R H S S W I K E
Y F T W A G F K D Y N L V V R M I E T D
E D F S P L P G G Y D Y L V D F L D L S
F P K E R P S R E H P Y E E I R S R V D
V I R H V V K N G L L W D D L Y I G F Q
T R L Q R D P D I Y H H L F W N H F Q I
K L P L T P P D W K S F L M C S G
Variants Another aspect of the present invention provides novel nucleic acid cDNA sequences of three novel variants of CMP-Neu5Ac hydroxylase gene transcript (FIG. 2, Tables 3, 5, and 7, Seq ID Nos. 3, 5, and 7). Seq ID No 3 represents the cDNA of a variant of the gene, variant-1, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15a, 16, 17, and 18. Exon 15a is a cryptic Exon that normally appears in Intron 15, approximately 460 bp upstream of Exon 16. The start codon for variant-1 is located in Exon 4, while the stop codon is located in Exon 17. Seq ID No 5 represents the cDNA of a variant of the gene, variant-2, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 12a. Exon 12a is a cryptic Exon which is retained from a partial sequence of Intron 12 (see SEQ ID. No. 21). The start codon for variant-2 is located in Exon 4, while the stop codon is located in the terminal end of Exon 12a. Seq ID No 7 represents the cDNA of a variant of the gene, variant-3, that includes Exons 1, 4, 5, 6, 7, 8, 9, 10, 11 and 11a. Exon 11a is a cryptic Exon which is retained from a partial sequence of Intron 11 (see Seq ID No. 19). The start codon for variant-3 is located in Exon 4, while the stop codon is located in Exon 11a. Another aspect of the present invention provides predicted amino acid peptide sequences of three novel variants of the porcine CMP-Neu5Ac Hydroxylase gene transcript. Seq ID Nos 4, 6 and 8 represent the amino acid sequences of variant-1, variant-2 and variant-3, respectively. Nucleotide and amino acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 3-8 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 15, 17, 20, 25, 30, 50, 100, 150, 200, 300, 400, 500 or 1000 contiguous nucleotide or amino acid sequences of Seq ID Nos 3-8 are also provided. Further provided are fragments, derivatives and analogs of Seq ID Nos 3-8. Fragments of Seq ID Nos. 3-8 can include any contiguous nucleic acid or peptide sequence that includes at least about 10 bp, 15 bp, 17 bp, 20 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 5 kbp or 10 kbp.
TABLE 3
Variant-1 cDNA
CCCGACGTCCTGGCAGCGCCCAGGCACTGTT Exons 1, Seq ID No 3
ATTGGTGCCTCCTGTGTCCACGCGCTTCCCG 4-13,
GCCAGGCAGCCCTGGCGGATCCTATTTTCTG 15a, 16,
TTCCCCCGATTCTGGTACCTCTCCCTCCCGC 17, 18
CCTCGGTGCGCAGCCGTCCTCCTGCAGTGCC
TGCTCCTCCAGGGGCGAAACCGATCAGGGAT
CAGGCCACCCGCCTCCTGAACATCCCTCCTT
AGTTCCCACAGTCTAATGCCTTGTGGAAGCA
AATGAGCCACAGAAGCTGAAGGAAAAACCAC
CATTTCTTTCTTAATACCTGGAGAGAGGCAA
CGACAGACTATGAGCAGCATCGAACAAACGA
CGGAGATCCTGTTGTGCCTCTCACCTGCCGA
AGCTGCCAATCTCAAGGAAGGAATCAATTTT
GTTCGAAATAAGAGCACTGGCAAGGATTACA
TCTTATTTAAGAATAAGAGCCGCCTGAAGGC
ATGTAAGAACATGTGCAAGCACCAAGGAGGC
CTCTTCATTAAAGACATTGAGGATCTAAATG
GAAGGTCTGTTAAATGCACAAAACACAACTG
GAAGTTAGATGTAAGCAGCATGAAGTATATC
AATCCTCCTGGAAGCTTCTGTCAAGACGAAC
TGGTTGTAGAAAAGGATGAAGAAAATGGAGT
TTTGCTTCTAGAACTAAATCCTCCTAACCCG
TGGGATTCAGAACCCAGATCTCCTGAAGATT
TGGCATTTGGGGAAGTGCAGATCACGTACCT
TACTCACGCCTGCATGGACCTCAAGCTGGGG
GACAAGAGAATGGTGTTCGACCCTTGGTTAA
TCGGTCCTGCTTTTGCGCGAGGATGGTGGTT
ACTACACGAGCCTCCATCTGATTGGCTGGAG
AGGCTGAGCCGCGCAGACTTAATTTACATCA
GTCACATGCACTCAGACCACCTGAGTTACCC
AACACTGAAGAAGCTTGCTGAGAGAAGACCA
GATGTTCCCATTTATGTTGGCAACACGGAAA
GACCTGTATTTTGGAATCTGAATCAGAGTGG
CGTCCAGTTGACTAATATCAATGTAGTGCCA
TTTGGAATATGGCAGCAGGTAGACAAAAATC
TTCGATTCATGATCTTGATGGATGGCGTTCA
TCCTGAGATGGACACTTGCATTATTGTGGAA
TACAAAGGTCATAAAATACTCAATACAGTGG
ATTGCACCAGACCCAATGGAGGAAGGCTGCC
TATGAAGGTTGCATTAATGATGAGTGATTTT
GCTGGAGGAGCTTCAGGCTTTCCAATGACTT
TCAGTGGTGGAAAATTTACTGAGGAATGGAA
AGCCCAATTCATTAAAACAGAAAGGAAGAAA
CTCCTGAACTACAAGGCTCGGCTGGTGAAGG
ACCTACAACCCAGAATTTACTGCCCCTTTCC
TGGGTATTTCGTGGAATCCCACCCAGCAGAC
AAGTATATTAAGGAAACAAACATCAAAAATG
ACCCAAATGAACTCAACAATCTTATCAAGAA
GAATTCTGAGGTGGTAACCTGGACCCCAAGA
CCTGGAGCCACTCTTGATCTGGGTAGGATGC
TAAAGGACCCAACAGACAGATCCTGTGTCAG
GAGTTGGGATTCTTTGAAGATTCGGAGCCGG
GTTGATGTCATCAGACACGTGGTAAAGAATG
GTCTGCTCTGGGATGACTTGTACATAGGATT
CCAAACCCGGCTTCAGCGGGATCCTGATATA
TACCATCATCTGTTTTGGAATCATTTTCAAA
TAAAACTCCCCCTCACACCACCTGACTGGAA
GTCCTTCCTGATGTGCTCTGGGTAGAGAGGA
CCTGAGCTGTCCCAGGGGTGCCCAACAACAT
GAAAAAATCAAGAATTTATTGCTGCTACGTC
AAAGCTTATACCAGAGATTATGCCTTATAGA
CATTAGCAATGGATAATTATATGTTGCACTT
GTGAAATGTGCACATATCCTGTTTATGAATC
ACCACATAGCCAGATTATCAATATTTTACTT
ATTTCGTAAAAAATCCACAATTTTCCATAAC
AGAATCAACGTGTGCAATAGGAACAAGATTG
CTATGGAAAACGAGGGTAACAGGAGGAGATA
TTAATCCAAGCATAGAAGAAATAGACAAATG
AGGGGCCATAAGGGGAATATAGGGAAGAGAA
AAAAATTAAGATGGAATTTTAAAAGGAGAAT
GTAAAAAATAGATATTTGTTCCTTAATAGGT
TGATTCCTCAAATAGAGCCCATGAATATAAT
CAAATAGGAAGGGTTCATGACTGTTTTCAAT
TTTTCAAAAAGCTTTGTTGAAATCATAGACT
TGCAAAACAAGGCTGTAGAGGCCACCCTAAA
ATGGAAAATTTCACTGGGACTGAAATTATTT
TGATTCAATGACAAAATTTGTTATTTACTGC
GGATTATAAACTCTAACAAATAGCGATCTCT
TTGCTTCATAAAAACATAAACACTAGCTAGT
AATAAAATGAGTTCTGCAG
TABLE 4
Variant-1 Amino Acid Sequence
M S S I E Q T T E I L L C L S P A E A A Seq ID No 4
N L K E G I N F V R N K S T G K D Y I L
F K N K S R L K A C K N M C K H Q G G L
F I K D I E D L N G R S V K C T K H N W
K L D V S S M K Y I N P P G S F C Q D E
L V V E K D E E N G V L L L E L N P P N
P W D S E P R S P E D L A F G E V Q I T
Y L T H A C M D L K L G D K R M V F D P
W L I G P A F A R G W W L L H E P P S D
W L E R L S R A D L I Y I S H M H S D H
L S Y P T L K K L A E R R P D V P I Y V
G N T E R P V F W N L N Q S G V Q L T N
I N V V P F G I W Q Q V D K N L R F M I
L M D G V H P E M D T C I I V E Y K G H
K I L N T V D C T R P N G G R L P M K V
A L M M S D F A G G A S G F P M T F S G
G K F T E E W K A Q F I K T E R K K L L
N Y K A R L V K D L Q P R I Y C P F P G
Y F V E S H P A D K Y I K E T N I K N D
P N E L N N L I K K N S E V V T W T P R
P G A T L D L G R M L K D P T D R S C V
R S W D S L K I R S R V D V I R H V V K
N G L L W D D L Y I G F Q T R L Q R D P
D I Y H H L F W N H F Q I K L P L T P P
D W K S F L M C S G
TABLE 5
Variant-2 cDNA
CCCGACGTCCTGGCAGCGCCCAGGCACTG Exons 1, Seq ID No 5
TTATTGGTGCCTCCTGTGTCCACGCGCTT 4-12, 12a
CCCGGCCAGGCAGCCCTGGCGGATCCTAT
TTTCTGTTCCCCCGATTCTGGTACCTCTC
CCTCCCGCCCTCGGTGCGCAGCCGTCCTC
CTGCAGTGCCTGCTCCTCCAGGGGCGAAA
CCGATCAGGGATCAGGCCACCCGCCTCCT
GAACATCCCTCCTTAGTTCCCACAGTCTA
ATGCCTTGTGGAAGCAAATGAGCCACAGA
AGCTGAAGGAAAAACCACCATTCTTTCTT
AATACCTGGAGAGAGGCAACGACAGACTA
TGAGCAGCATCGAACAAACGACGGAGATC
CTGTTGTGCCTCTCACCTGCCGAAGCTGC
CAATCTCAAGGAAGGAATCAATTTTGTTC
GAAATAAGAGCACTGGCAAGGATTACATC
TTATTTAAGAATAAGAGCCGCCTGAAGGC
ATGTAAGAACATGTGCAAGCACCAAGGAG
GCCTCTTCATTAAAGACATTGAGGATCTA
AATGGAAGGTCTGTTAAATGCACAAAACA
CAACTGGAAGTTAGATGTAAGCAGCATGA
AGTATATCAATCCTCCTGGAAGCTTCTGT
CAAGACGAACTGGTTGTAGAAAAGGATGA
AGAAAATGGAGTTTTGCTTCTAGAACTAA
ATCCTCCTAACCCGTGGGATTCAGAACCC
AGATCTCCTGAAGATTTGGCATTTGGGGA
AGTGCAGATCACGTACCTTACTCACGCCT
GCATGGACCTCAAGCTGGGGGACAAGAGA
ATGGTGTTCGACCCTTGGTTAATCGGTCC
TGCTTTTGCGCGAGGATGGTGGTTACTAC
ACGAGCCTCCATCTGATTGGCTGGAGAGG
CTGAGCCGCGCAGACTTAATTTACATCAG
TCACATGCACTCAGACCACCTGAGTTACC
CAACACTGAAGAAGCTTGCTGAGAGAAGA
CCAGATGTTCCCATTTATGTTGGCAACAC
GGAAAGACCTGTATTTTGGAATCTGAATC
AGAGTGGCGTCCAGTTGACTAATATCAAT
GTAGTGCCATTTGGAATATGGCAGCAGGT
AGACAAAAATCTTCGATTCATGATCTTGA
TGGATGGCGTTCATCCTGAGATGGACACT
TGCATTATTGTGGAATACAAAGGTCATAA
AATACTCAATACAGTGGATTGCACCAGAC
CCAATGGAGGAAGGCTGCCTATGAAGGTT
GCATTAATGATGAGTGATTTTGCTGGAGG
AGCTTCAGGCTTTCCAATGACTTTCAGTG
GTGGAAAATTTACTGAGGAATGGAAAGCC
CAATTCATTAAAACAGAAAGGAAGAAACT
CCTGAACTACAAGGCTCGGCTGGTGAAGG
ACCTACAACCCAGAATTTACTGCCCCTTT
CCTGGGTATTTCGTGGAATCCCACCCAGC
AGACAAGTATGGCTGGATATTTTATATAA
CGTGTTTACGCATAAGTTAATATATGCTG
AATGAGTGATTTAGCTGTGAAACAACATG
AAATGAGAAAGAATGATTAGTAGGGGTCT
GGAGCTTATTTTAACAAGCAGCCTGAAAA
CAGAAAGTATGAATAAAAAAAATTAAATG
CAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TABLE 6
Variant-2 Amino Acid Sequence
M S S I E Q T T E I L L C L S P A E A A Seq ID No 6
N L K E G I N F V R N K S T G K D Y I L
F K N K S R L K A C K N M C K H Q G G L
F I K D I E D L N G R S V K C T K H N W
K L D V S S M K Y I N P P G S F C Q D E
L V V E K D E E N G V L L L E L N P P N
P W D S E P R S P E D L A F G E V Q I T
Y L T H A C M D L K L G D K R M V F D P
W L I G P A F A R G W W L L H E P P S D
W L E R L S R A D L I Y I S H M H S D H
L S Y P T L K K L A E R R P D V P I Y V
G N T E R P V F W N L N Q S G V Q L T N
I N V V P F G I W Q Q V D K N L R F M I
L M D G V H P E M D T C I I V E Y K G H
K I L N T V D C T R P N G G R L P M K V
A L M M S D F A G G A S G F P M T F S G
G K F T E E W K A Q F I K T E R K K L L
N Y K A R L V K D L Q P R I Y C P F P G
Y F V E S H P A D K Y G W I F Y I T C L
R I S
TABLE 7
Variant-3 cDNA
CCCGACGTCCTGGCAGCGCCCAGGCACTG Exons 1, Seq ID No 7
TTATTGGTGCCTCCTGTGTCCACGCGCTT 4-11, 11a
CCCGGCCAGGCAGCCCTGGCGGATCCTAT
TTTCTGTTCCCCCGATTCTGGTACCTCTC
CCTCCCGCCCTCGGTGCGCAGCCGTCCTC
CTGCAGTGCCTGCTCCTCCAGGGGCGAAA
CCGATCAGGGATCAGGCCACCCGCCTCCT
GAACATCCCTCCTTAGTTCCCACAGTCTA
ATGCCTTGTGGAAGCAAATGAGCCACAGA
AGCTGAAGGAAAAACCACCATTCTTTCTT
AATACCTGGAGAGAGGCAACGACAGACTA
TGAGCAGCATCGAACAAACGACGGAGATC
CTGTTGTGCCTCTCACCTGCCGAAGCTGC
CAATCTCAAGGAAGGAATCAATTTTGTTC
GAAATAAGAGCACTGGCAAGGATTACATC
TTATTTAAGAATAAGAGCCGCCTGAAGGC
ATGTAAGAACATGTGCAAGCACCAAGGAG
GCCTCTTCATTAAAGACATTGAGGATCTA
AATGGAAGGTCTGTTAAATGCACAAAACA
CAACTGGAAGTTAGATGTAAGCAGCATGA
AGTATATCAATCCTCCTGGAAGCTTCTGT
CAAGACGAACTGGTTGTAGAAAAGGATGA
AGAAAATGGAGTTTTGCTTCTAGAACTAA
ATCCTCCTAACCCGTGGGATTCAGAACCC
AGATCTCCTGAAGATTTGGCATTTGGGGA
AGTGCAGATCACGTACCTTACTCACGCCT
GCATGGACCTCAAGCTGGGGGACAAGAGA
ATGGTGTTCGACCCTTGGTTAATCGGTCC
TGCTTTTGCGCGAGGATGGTGGTTACTAC
ACGAGCCTCCATCTGATTGGCTGGAGAGG
CTGAGCCGCGCAGACTTAATTTACATCAG
TCACATGCACTCAGACCACCTGAGTTACC
CAACACTGAAGAAGCTTGCTGAGAGAAGA
CCAGATGTTCCCATTTATGTTGGCAACAC
GGAAAGACCTGTATTTTGGAATCTGAATC
AGAGTGGCGTCCAGTTGACTAATATCAAT
GTAGTGCCATTTGGAATATGGCAGCAGGT
AGACAAAAATCTTCGATTCATGATCTTGA
TGGATGGCGTTCATCCTGAGATGGACACT
TGCATTATTGTGGAATACAAAGGTCATAA
AATACTCAATACAGTGGATTGCACCAGAC
CCAATGGAGGAAGGCTGCCTATGAAGGTT
GCATTAATGATGAGTGATTTTGCTGGAGG
AGCTTCAGGCTTTCCAATGACTTTCAGTG
GTGGAAAATTTACTGGTAATTCTTTATAT
CAAAATGATGCCAAGGAGTTGGCATGGCA
CTTTGCTAAATGCTGTGTGAATCAATACA
AAGATAATTAGGACATGGTTCTTCCTCAC
AAGAGGTGTGCAATCTTATTGGGAAATCA
TACTTGCAAGTCACAAATATAGACTAAAG
TTTCCAGCTGAGAATATGCTGATGGAGCA
TGAAACACTAAGGAGACAGGGAGAATCTC
AGGAAAAATCAAGAATAATTTGGATCAAA
TGGATTCCTGACATAGAACATAGAGCTGA
TCAGAAAGAGTCTGACATTGGTAATCCAG
GCTTAAGTGCTCTTTGTATGTGGTTCAGA
ACAGAGTGTGGGCAGCCTGAGGGGGATAC
ATACCCTTGACCTCGTGGAAAGCTCATAC
GGGGGAGGGATGAGGCTAAGGAAGCCCCT
CTAAAGTGTGGGATTACGAGAGGTTGGGG
GGGTGGTAGGGAAAATAGTGGTCAAAGAG
TATAAACTTCCAGTTACAAGATGAATAAA
TTCTAGGGGTATAATAACAGCATGGCACT
ATAGATAGCATATTGTACTATATACTGGA
AGTGCTGAGAGTAGATCTTACATGTTCTA
ACCACACACACACACACACACACACACAC
ACCACACACACACACCACACACACACACG
TGCACACAAACAGAAATGGTAATTATGTG
AGGTGATGGCGGTGTTAACTAACTTTATT
GTGGTCATCATTTAGCCATACATGCATGT
CATGAAATCACCATGTTGTACACCTTAAA
GTTATGTAATACTAGATGTCAGTTATATC
TCAAAGCTAGAAAAAATGTGGGGACCAAG
GCAGAAGCTCTTCTGCTCTGTGTCTAAGG
GTGGTTCTGGGGCTGGGATGGGGAGGATG
GTTAAGTGGTATATTTTTTTCATACCTTT
GCTCAGTACTATCATTGTAAGTGTTCAAT
ATATGTCTGCTTAATAAATTAATGTTTTT
AGTAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
TABLE 8
Variant-3 Amino Acid Sequence
M S S I E Q T T E I L L C L S P A E A A Seq ID No 8
N L K E G I N F V R N K S T G K D Y I L
F K N K S R L K A C K N M C K H Q G G L
F I K D I E D L N G R S V K C T K H N W
K L D V S S M K Y I N P P G S F C Q D E
L V V E K D E E N G V L L L E L N P P N
P W D S E P R S P E D L A F G E V Q I T
Y L T H A C M D L K L G D K R M V F D P
W L I G P A F A R G W W L L H E P P S D
W L E R L S R A D L I Y I S H M H S D H
L S Y P T L K K L A E R R P D V P I Y V
G N T E R P V F W N L N Q S G V Q L T N
I N V V P F G I W Q Q V D K N L R F M I
L M D G V H P E M D T C I I V E Y K G H
K I L N T V D C T R P N G G R L P M K V
A L M M S D F A G G A S G F P M T F S G
G K F T G N S L Y Q N D A K E L A W H F
A K C C V N Q Y K D N
In other aspects of the present invention, nucleic acid constructs are provided that contain cDNA or variants thereof encoding CMP-Neu5Ac hydroxylase. These cDNA sequences can be SEQ ID NO 1, 3, 5 or 7, or derived from SEQ ID Nos. 2, 4, 6, or 8 or any fragment thereof. Constructs can contain one, or more than one, internal ribosome entry site (IRES). The construct can also contain a promoter operably linked to the nucleic acid sequence encoding CMP-Neu5Ac hydroxylase, or, alternatively, the construct can be promoterless. In another embodiment, nucleic acid constructs are provided that contain nucleic acid sequences that permit random or targeted insertion into a host genome. In addition to the nucleic acid sequences the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells. Suitable vectors and selectable markers are described below. The expression constructs can further contain sites for transcription initiation, termination, and/or ribosome binding sites. The constructs can be expressed in any prokaryotic or eukaryotic cell, including, but not limited to yeast cells, bacterial cells, such as E. Coli, mammalian cells, such as CHO cells, and/or plant cells.
Promoters for use in such constructs, include, but are not limited to, the phage lambda PL promoter, E. coli lac, E. coli trp, E. coli phoA, E. coli tac promoters, SV40 early, SV40 late, retroviral LTRs, PGKI, GALI, GALIO genes, CYCI, PH05, TRPI, ADHI, ADH2, forglymaldehyde phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, triose phosphate isomerase, phosphoglucose isomerase, glucokinase alpha-mating factor pheromone, PRBI, GUT2, GPDI promoter, metallothionein promoter, and/or mammalian viral promoters, such as those derived from adenovirus and vaccinia virus. Other promoters will be known to one skilled in the art.
II. Genomic Sequences of the CMP-Neu5Ac Hydroxylase Gene Nucleic acid sequences representing the genomic DNA organization of the CMP-Neu5Ac hydroxylase gene (FIG. 1, Table 9) are also provided. Seq ID Nos 10-28 represent Exons 1, 4-11, 11a, 12, 12a, 13-15, 15a, and 16-18, respectively. Exons 11a, 12a, and 15a are cryptic Exons that are retained in certain variant transcripts of CMP-Neu5Ac hydroxylase. SEQ ID Nos 29-45 represent Intronic sequence between Exon 1 and Exon 4 (hereinafter Intron 1a and Intron 1b, respectively), 4-15, 15a, 16, and 17, respectively. Intron 15a is the 3′ downstream portion of Intron 15 that follows the cryptic Exon 15a. Seq ID No. 9 represents the 5′ untranslated region of the porcine CMP-Neu5Ac hydroxylase gene. Nucleic acid sequence representing the genomic DNA sequence of the porcine CMP-Neu5Ac hydroxylase gene (Table 10, SEQ ID No. 46) is also provided. In addition, contiguous genomic sequence representing the 5′ contiguous genomic sequence containing 5′ UTR, Exon 1 and a portion of intronic sequence located between Exon 1 and Exon 4 (Intron 1a) (SEQ ID No. 47, Table 11) is provided. Contiguous genomic sequence containing an intronic sequence located between Exon 1 and Exon 4 (Intron 1b) through Exon 18 (SEQ ID No. 48, Table 12) is also provided. Nucleotide and amino acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to SEQ ID Nos 9-45, 46, 47, 48, 49 and 50 are provided. In addition, nucleotide and peptide sequences that contain at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90. 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 700, 750, 800, 850, 900, 1000, 5000 or 10,000 contiguous nucleotide or amino acid sequences of SEQ ID Nos 9-45, 46, 47, 48, 49 and 50 are also provided, as well as any nucleotide sequence 80, 85, 90, 95, 98 or 99% homologous thereto. Further provided are fragments, derivatives and analogs of SEQ ID Nos 9-45, 46, 47, 48, 49, and 50. Fragments of Seq ID Nos. 9-45, 46, 47, 48, 49, and 50 can include any contiguous nucleic acid or peptide sequence or at least about 10 bp, 15 bp, 17 bp, 20 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 5 kbp or 10 kbp.
In addition, regulatory regions in the form of putative transcription factor binding sites of the genomic sequence have been identified (see FIG. 4). These binding sites are located in the 5′UTR and Exon 1 of the porcine CMP-Neu5Ac hydroxylase genome, and include binding sites for transcription factors such as, for example, ETSF, MZF1, SF1, CMYB, MEF2, TATA, MEF2, NMP4, CAAT, AP1, BRN2, SATB1, ATF, GAT1, USF, WHN, NMP4, ZF5, NFKB, ZBP89, MOK2, ZF5, NFY, and MYCMAX.
TABLE 9
Genomic Organizational Sequences
ctgccagcctaagccacagccacagc 5′UTR Seq ID No 9
aacgctgggtctgagccatgtctgca
gcctatgccagagctccccgcagcgc
cggatgcttaacccactgagcaaggc
cagggattgaaccctcgtcctcatgg
atagcagttgagttgtttccacggaa
ctcttaggggaactcctgattatttt
ttatttaaatttatatttctctgact
ttttcgtgtgctcatcagccactgac
tgtgtatctccattagtcatggtttg
ttaactctgtcattcaaaccctcttc
atccttgctacgcagataacatcatt
ataataaaatcgtgcctgaagaccag
tgacgcccccaagctaagttactgct
tcccctggggggaaaaagaagcaccg
cgcgggcgctgacacgaagtccgggc
agaggaagacggggcagaggaagacg
ggggagcagtgggagcagcgggcagg
gcgcgggaagcactggggatgttccg
cgttggcaggagggtgttgggcgagc
tcccggtgatgcaggggggaggagcc
ttttccgaagtagcgggacaagagcc
acgggaaggaactgttctgagttccc
agt
CCCGACGTCCTGGCAGCGCCCAGGCA Exon 1 Seq ID No 10
CTGTTATTGGTGCCTCCTGTGTCCAC
GCGCTTCCCGGCCAGGCAGCCCTGGC
GGATCCTATTTTCTGTTCCCCCGATT
CTGGTACCTCTCCCTCCCGCCCTCGG
TGCGCAGCCGTCCTCCTGCAGTGCCT
GCTCCTCCAGGGGCGAAACCGATCAG
GGATCAGGCCACCCGCCTCCT
gtgagaaggcttcgccgctgctgccg Intron 1a Seq ID No 29
ctggcgccggcagcgccctccacgca
cttcgtagtgggcgcgcgccctcctg
cattgtttctaaaagattttttttta
tccgcttatgctatcagttactgagg
aagtatttacaaatctactattattt
tgaatttgcctttttctccttatagt
ttatcagtatctcttgagactgttat
tggtgcctgcaaatttaaaatgattg
gggttttatgaggaagtgaacctttt
atctttatgaaacgcctaactgaggc
aatgttaattgcttaaaatactttct
tattatcagtgtggccatgccagtgt
cctcttggttagaatttgcctgat
ctgccaaagctgggagatgggggaaa Intron 1b Seq ID No 30
gtagagtgggttattgaaactgaata
tagagttcagcatctaaaagcgaggt
agtagaggaggaagctgtgtcaacgg
aaatactgagctgggttcacatcctc
tttctccacacag
TCTAATGCCTTGTGGAAGCAAATGAG Exon 4 Seq ID No 11
CCACAGAAGCTGAAGGAAAAACCACC
ATTCTTTCTTAATACCTGGAGAGAGG
CAACGACAGACTATGAGCAG
gcaagtgagagggggctttagctgtc Intron 4 Seq ID No 31
agggaaggcggagataaacccttgat
gggtaggatggccattgaaaggaggg
gagaaatttgccccagcaggtagcca
ccaagcttggggacttggagggaggg
ctttcaaacgtattttcataaaaaag
acctgtggagctgtcaatgctcaggg
attctctcttaaaatctaacagtatt
aatctgctaaaacatttgccttttca
tag
CATCGAACAAACGACGGAGATCCTGT Exon 5 Seq ID No 12
TGTGCCTCTCACCTGCCGAAGCTGCC
AATCTCAAGGAAGGAATCAATTTTGT
TCGAAATAAGAGCACTGGCAAGGATT
ACATCTTATTTAAGAATAAGAGCCGC
CTGAAGGCATGTAAGAACATGTGCAA
GCACCAAGGAGGCCTCTTCATTAAAG
ACATTGAGGATCTAAATGGAAG
gtactgagaatcctttgctttctccc Intron 5 Seq ID No 32
tggcgatcctttctcccaattaggtt
tggcaggaaatgtgctcattgagaaa
ttttaaatgatccaatcaacatgcta
tttcccccagcacatgcctaactttt
tcttaagctcctttacggcagctctc
tgattttgatttatgaccttgactta
atttcccatcctctctgaagaactat
tgtttaaaatgtattcctagttgata
aacagtgaaacttctaaggcacatgt
gtgtgtgtgtgtgtgtgtgtgtgtgt
ttaccagcttttatattcaaagactc
aagcctcttttggatttcctttcctg
ctctctcagaagtgtgtgtgtgaggt
gagtgcttgtccaaacactgccctag
aacagagagactttccctgatgaaaa
cccgaaaaatggcagagctctagctg
cacctggcctcaacagcggctcttct
gatcatttcttggaagaacgagtgct
ggtaccccttttccccagccccttga
ttaaacctgcatatcgcttgcctccc
catctcaggagcaattctaggaggga
gggtgggctttcttttcaggattgac
aaagctacccagcttgcaaaccaggg
ggatctggggggggggtttgcacctg
atgctcccccactgataatgaatgag
ggattgaccccatcttttcaagcttt
gcttcagcctaacttgactctcgtag
tgtttcagccgtttccatattaggct
tgtcttccaccgtgtcgtgtcgtcaa
tcttatttctcaggtcatctgtgggc
agtttagtgcgaatggactcagaggt
aactggtagctgtccaagagctccct
gctctaactgtatagaagatcaccac
ccaagtctggaatcttcttacactgg
cccacagacttgcatcactgcatact
tagcttcagggcccagctcccaggtt
aagtgctgtcatacctgtagcttgct
tggctctgcagatagggttgctagat
taggcaaatagagggtgcccagtcaa
atttgcatttcagataaacaacgaat
atatttttagttagatatgtttcagg
cactgcatgggacatacttttggtag
gcagcctactctggaagaacctcttg
gttgtttgctgacagactgcttttga
gtcccttgcatcttctgggtggtttc
aagttagggagacctcagccataggt
tgttctgtcaccaagaagcttctgca
agcacgtgcaggccttgaggtcttcc
gacttgtggcccggggactctgcttt
ttctctgtccttttttctccttagtg
ggccatgtcctgtggtgttgtcttag
ccagttgtttaagggagtgttgcagc
tttatgattaagagcatggtctttcc
ttgcaaactgcttggtttagaagcct
ggctccaccacttagcggctctgtga
cctcggacacatttcttagcctttct
gggcctcgctcttcttcctcataaag
tgaaaatgaaagtagacaaagccttc
tctgtctggctactgagaggatggag
tgatttcatacacataaagcacttaa
aataatgtctggcatatgatacatgc
tcaataaatgtcacttacatttgcta
ttattattactctgccatgatcttgt
gtagcttaagaacagaggtctttaca
ggaattcaggctgttcttgaatctgg
cttgctcagcttaatatggtaattgc
tttgccacagactggtcttcctctcc
ttcacccaaagccttagggggtgaac
gatcccagtttcaacctattctgttg
gcaggctaacatggagatggcaccat
cttagctctgctgcaggtggggagcc
agattcacccagctttgctcccagat
acagctccccaagcatttatatgctg
aaactccatcccaagagcagtctaca
tggtacactcccccatccatctctcc
aaatttggctgcttctacttaggctc
tctgtgcagcaattcacctgaaatat
ctcttccacgatacagtcaagggcag
tgacctacctgttccaccttcccttc
ctcagccatttttcttctttgtacat
aatcaagatcaggaactctcataagc
tgtggtcctcattttgtcaatctaat
ttcacagcctcttggcacatgaagct
gtcctctctctcctttctgcctactg
cccatgagcagttgtgacactgccac
atttctcctttaacgacccagcctgc
tgaatagctgcatttggaatgttttc
aatttttgttaatttatttatttcat
cttttttttttttttttttttttttt
ttttttagggccgcacccatgggata
tggaggttcccaggctagggatccaa
tgggagctgtagctgctggcctacac
cacagccacagcaatgcacaattcga
gccaatctttgacctacaccagagct
cacggcaacactggattcttaaccca
ctgattgaggccagggatcaaactct
cgtcctcatagatacgagtcagattc
gttaacctctgagccatgatagttgt
tagttactcattgatgagaaaggaag
tgtcacaaaatatcctccataagtcg
aagtttgaatatgttttctgccttgt
tactagaaaagagcattaaaaattct
tgattggaatgaagcttggaaaaaat
cagcatagtttactgatatataagtg
aaaatagaccttgttagtttaaacca
tctgatatttctggtggaagacatat
ttgtctgtaaaaaaaaaaaatcttga
acctgtttaaaaaaaaaacttgactg
gaaacactaccaaaatatgggagttc
ctactgggacacagcagaaatgaatc
taactagtatccatgaggacacaggt
ttgatgcctggcctcgctaagtgggt
taaggatatggtgttgctgcagctcc
aattcaacccctatcctgggaacccc
catatgccaccctaaaaagcaaaaag
aaaggtgctgccctaaaaagcaaaaa
gaaagaaagaaagacagccagacaga
ctaccaaatatggagaggaaatggaa
cttttaggccctatctccaactatca
catccctatcaccgtctggtaagaaa
tggaaaaaatattactaagcctcctt
tgttgctacaattaatctgattctca
ttctgaagcagtgttgccagagttaa
caaataaaaatgcaaagctgggtagt
taaatttgaattacagataaacaaat
tttcagtatatgttcaatatcgtgta
agacgttttaaaataattttttattt
atctgaaatttatatttttcctgtat
tttatctggcaaccatgatcagaaat
ctttaaacaatcaggaagtctttttt
cttagacaaatgaaaatttgagttga
tcttaggtttagtacactatactagg
ggccaagggttatagtgtgactatta
aatcacagataatctttattactaca
ttatttccttatactggccccacttg
gatcttacccagcttagcttttgtat
gagagtcatccttaaagatgacttta
ttctttaaaaaaaaaaacaaatttta
agggctgcacccatagcatatagaag
ttcctaggctagcggtcaaattagag
ctgcagctgccagcctatgccacagc
cacagcaatgccagatctgagctgca
tctgtgacctacactgcagcttgcag
caatgctggatccttaacccattgaa
caatgccagggattgaacacacatcc
tcatggatactgctcaggttcctaac
ctgctgagccacagttggaactccaa
agcagactttattctgatggctctgc
tgatctctaacacgttattttgtgcc
atggtgtttatcttcactttactcaa
gtcagggaaacacgaagagtctcata
caggataaacccaaggagaaatgtgc
aaagtcacatacaaatcaaactgaca
aaaatcaaatacaaggaaaaaatatc
ttcactttcaaaatcacctactgatg
atgagtttatatttccttggatattt
gaatattagctatttttttcctttca
tgagttttgtgttcaaccaactacag
tcgtttactttgatcacagaataatg
catttaagccttaaatagattaatat
ttattttcaccatttcataaacctaa
gtacaatttccatccag
GTCTGTTAAATGCACAAAACACAACT Exon 6 Seq ID No 13
GGAAGTTAGATGTAAGCAGCATGAAG
TATATCAATCCTCCTGGAAGCTTCTG
TCAAGACGAACTGG
gtaaataccatcaatactgatcaatg Intron 6 Seq ID No 33
ttttctgctgttactgtcattggggt
ccctcttgtcaacttgtttccaatct
cattagaagccttggatgcattctga
ttttaaactgaggtattttaaaagta
accatcactgaaaattctaggcaagt
tttctctaaaaaatcccttcattcat
tcatttgttcagtaagtatttgatga
gaccttaccatgtgtaaacattgcac
taggtattaagaaatacaaagatgga
taagatagagtcggcgtaaatgagat
gatataatgagacgttataatgaaac
tcacaattccagttgggaaataaagt
ccttcaaattccatgactctttctgg
cacacgttagaggctacagcttctgt
gtgattctcatgctggctccacttcc
actttttccttcttcctactcaagaa
agcctatagaaatatgagtaagaagg
gcttaatcataggaataaatttgtct
ctgttctaagtgattaaaaatgtctt
tatcagtataaaaagttacttgggaa
gattcttaaaactgcttttacacact
gttctagaatgactgttatataaata
aaaaagtagatttgatctaacacaat
taaatgacctttggaaatattgacta
attctcaccttgcccctcaaagggat
gcctgaaccatttccttcttttgcca
gaaagcccccaccctttgtctgttga
cctagcctaggaaatcttcagatcac
gttgttagcacgaactggttacatgt
gctgtacaaatactatttaattcatc
tgattaaaaaaaaagagataagaagc
aaaagtttgactatcttaaactgttt
gcgtaggtgagaggacaattgaccat
ctactttatgagtatgtaacccagaa
acttaaagctccttaagggagctaag
tcttttggataagacctatagtgaga
ccttttagcaaaatggttaagactga
atggagctcactagcgtgggttcata
tcctgatgctcaaacacgcaattaaa
tgactttaggtgggttagtctctgtt
ccttagtttcctcaatgggagataat
attggtagtagcgattttactgggtt
gttgaaagaacatctgttaaatgttc
agaacgtgttacgacagagtacagag
taatgatttgcttgtatatgtatgac
tcaaatagtctgccatatgccttgtg
actgggtcctgtggagcaggaaggag
ggatttcccacccagcagaaagttgg
gtaaactggaaaatagactgaggcca
ggaaatgatgcaaagcgttgatgttc
actgccacggcaggtgaagggcaggg
ccagagttgtcagtagggtcagggga
ggactggaaataaccaagacccactg
cacttttcagcctttgctccagtaag
gtaatgttgtgagagtagaaaatttt
gttaacagaacccacttttcagtaca
gtgctaccaatactgtagtgatttca
taccacatcccaagaaagaaaaagat
ggctcaatcccatgtgagctgagatt
atttggttttattgttaaataaatag
cattgtgtggtcatcattaaaaaagg
tagatgttaggaaagtagaaggaaga
agactctcacctacattttcatcact
gttttggtatctgccagttgtcacct
tggtccccttccccgcctctcccctg
cctcctcttcctccttctcctttttt
tggaatacaattcaggtaccataaaa
tttacccttttagagtgtttgactca
atggtttttagtattttcacatgttg
tgctattactatcactatataattcc
aggtcattcacatcaccccccaaaga
aaccttctaactattagcagtccatt
cccttcttccctcagcccctggcaac
cactaatctacttactgtctccatgg
atgttcctatattgaatcaagctagc
ataaaccccacttgctcatggtcata
attcttttttatagtgctaaattaca
tttgctaatattcaattaaggatttc
tatgtccatattcataaggaatattg
gtgtgtagttttctctttgtgtgata
tctttgtctggttgggggatcagagt
aataattactgctctcatagaatgaa
ttgagaagtgttccctccttttctat
ttattggaagagtttgtgaagtatat
tggtattgattcttctttaaacattt
ggtcagattcaccagtgaagccatct
gggccatggctaatctttgtgaaaag
ttttttgattactaattaaatctctt
taatttgttatgggtctgctcctcag
acgttctagttcttcttgagtcagtt
ttgttcatttgtttcttcctaggact
ttctccctttcatttggattatttag
attgatagtaatatcccccttttaat
tcctggctgtagtaatttgggtcttt
tctcttttttcttggtcagtttagct
aaaggtttgtaattgtattaatcttt
tcaaataactaacttttttgttttgt
ttgttttttgttttttgttttttgtt
ttttgtttttttttgctttttaaggc
tgcacctgaggcatatggaagttctc
aggctagaggtctaatcggagctaca
gctgctggcctataccacaaccatag
caatgccagattcaagctgcatctgc
gacctacaccacaactcggccaggga
tcacacccgcaacctcatggttccta
gtcggatttgttaaccactgtgccac
gacgggaactcccgcccatttttttt
aacacctcatactttaacataaagat
gggcttcacatggactgatagctcaa
atgaggaaggtaagactatgaaagta
atggaagaaatgtagactatttttgt
gacctagagattactgatacttcttg
acttttcaaacaatacttcaaaagta
cagcccaaagggaaaaaagaaagaaa
aaagaaacacacatatacacaaacct
agtgaataagatatcatcgatacact
acagatttctatgaactggaagaccc
catggacaaagttaaagaacatatga
tagtttgagtgattattttgcaatat
ttacaaccaatgagggaatattatcc
agcttataggaggaagtaatgcaaat
cgacaagaaaaagataggaaacccaa
tataaaaattaagaaaatacaaaaat
taagaaaggatatgaactagcatttt
acaaaagaaaaatctccaaaagtcaa
tcagcacatgaaaatatgctcaaacc
taattattagaaaactacagactgaa
gcaatgaggtgctttactttacatct
ttttgactgataaaaagttagaaaca
aaggtgatatcaaatgtcagggataa
aaggatatagaaatcgtcatgcctgt
ggtgggagtatggccggtgcagtcat
gtgggaaggtaatctgacagtggtta
ggcagagcaggtttatgaatacactg
tggcccatcaatcccacgcctgttta
tgtaccaaagaaatcctgttgtggca
gaatctatgggtccacccctgggagc
atgaattaataaaatgtggcaccagg
gtgtgtgaaactccagctagagatga
gatgtccacatggcaacatgaatgca
tcttagaaacatagatttgagtgaaa
aagagtaagaaacagccgggaaaccc
aataccatttataaaaattaaagatg
cacacatacaatgtagtaaatatttt
gcatgaactttcaaatggttgcctac
agggggggagagtaaagaagagtaga
aaacaaagataaagggagtaagtaag
tagctctgcctggactgaatataatg
tgtcatgaactgagaaatatggttaa
cataatcctcttaacttgaggtccta
aatgaatgaatgagtccactattcat
ttacccattctttaatgtgtattgca
ttataatccatttttttagaaccaac
gaattttgttcccataactactaatc
agcctgccttttctccctcattccct
tatcagctcaggggcattcctagttt
ttcaaacgttcctcatttgaaccaaa
aatagcatcattgtttaaattatact
tgttttcaaatacgatgcttatatat
tccaagtgtgtttgcccattttctta
ggtggtagaaatttttcattctactt
ttctatctactcagattttcccgttg
gaattatttccattgctattaaactt
agaagtcccccctgtgatatgccatt
tttttcatactttttaagcacttggt
tgcttttctttgtgtctttaagcacc
tagaatacttataaccattgcacagc
actgtgtatcaggcagcccttcctct
tccactaatttatggtccttctctta
gactatattaaactgttatttaatta
ggatcctctcttcgtccttatgattt
aattattatagttttctaatatgttt
ttattataattcctcttcattattcc
tccctattaaaaattttaatgaattc
catttgtttgttcttctagttaaata
ttaagtcataatccaaataacttaga
tgtcattagtttatgtggtcaaagta
aggataccacatctttatagatgcag
gcagttggcagatgtcatgattttct
tcagtgcataaatgcaatttatcttt
gagcaaggggcataaaaacttttatg
gtattggctttgaaataatagttaag
aactgcagactcagtttttcctgctt
ttcttgaaaaagaacacttctaaaga
aggaaaatccttaagcatggatatcg
atgtaattttctgaaagtctcctgta
attccttgggatttttgttgttgttt
gttggtcggtttttttgggtttttgt
ttgtttgttttgttttgttttgtttt
gcttttagggctgcacctgtggcata
tggaagttcccaggctaggggtccaa
ctggagctacagctgccagcctactc
cacagccacagcaacatgggatccta
gctgcatctgtgacctaaccacagct
cttggtaatgccagattgttaaccca
ctgagcaatgccagagatcgaatctg
cctcctcatggacactagtcagatta
gtttctgctgagccacaatgggaatt
cccaattccttgtatttttgaactgg
ttatgtgctagcatataattttgttt
cttgaatctttgtgggtttttttttt
tttttttttttgtctcttgtcttttt
aaggctgcacccacagcatatggagg
ttcccaggctagaggtcaaattggag
ctacagctgccagcctacacaacaac
tgcagcaaagtggggcccaacttata
tgacagttcgtggcaatgccggattc
ctaacccactgagcagggccagggat
cgaacctgagtttccagtcagtttcg
ttaaccactgagccatgatagtaact
cctgtttgttcagtcttgaacctcct
ttttaattctttattccttgagggtg
aaataattgccataataatactatca
tttattacatgccttctctgtgctag
gcatagtgacactttaggatttatta
tatcacttaatccctacaacaactct
gcaaagtatgtatcataatcctattt
gacagatcaggaaattgcagcccagg
atgcagataatatgcatccatcacaa
gtgactagatatagtccctctgctat
tcagcagggtctcattgcctttccat
tccaaatgcaatagtttgcatctatt
gtatatgtgttttggggtttttttgt
ctttttttttttttttgtcttttctg
gggcctcacccttggcataggtaggt
tcccaggctaggggtcaaattgaagc
tgcagctgccagcctacaccacagcc
acagcaactcgggatctgagcctcat
ctgcaacctacaccaaagctcacggc
aacaccggatccttaacccactgagt
gaggccagagatcaaaccggcaacct
catggttcctagtcggattcattaac
cactgagccacgatgggaactcccta
aatgcaatagtttgctctattaaccc
caaactcccagtccatcccactccct
cctcctccctcttggcaaccacaagt
ctgttctccatgtccatgattttctt
ttctggggaaagtttcatttgtgcca
tttttcattttacgggtaatttttac
ttcagtttcttccactagcagttgtc
ttaaagtgagtataattaatattcat
ttggaaaatgtaagcaaaacattttt
taaagggccatgcccacagcatatga
aagtttctgggccaggggttgaatcc
aggctccaagttgcagctgtgcccta
cactgcagctgggcaatgctggatcc
tttaacccactgtgcccggctaggga
tcaaacctgcatttccacagctaccc
gagccattgcagttggattcttaacc
cactgcactacagtgggaactcccac
aaaacattttttaatgtcctttgaat
aaagtaggaaagtgctcgtctttgag
ggcagggcggcaatgccatttccaca
aggtttgctttggcttgggacctcat
ctgctgtcatttagtaatgaataaaa
ttgctgacagtaataggattaactgt
gtgtggagatagccagggttagagat
aaaaacactggagaagtcaaataagt
tgctcgaggtcctctagctaataagc
tattaagtgggagagtgagggctaga
aacaggccatctgtctcccaagcaca
tgtccattagtggtttgctgatagcc
ttccagaacaacagagaggactctca
aacatggtcttgcctccctccaattg
atcccctccatgtgcctcacagcggg
tctttctaaaattaagttctgatttt
aattctcccttgctatagcacttagg
tatggctttcagccgtgcaataaaaa
gcaggcaagagtggctcaatcatata
ggaggttgtttttcttagatcccaag
caggtaatcctgggcattatggttgt
tctgcgtttatcaaggagccaaattc
tctatcacctcctgttctatcctcct
cagtatctggctctattcttcagcat
ctcaagatggcttgtgctcctccaag
catggcagtcaaattccacacaagag
ggggaaatatgaagggcagacagtgc
tggtctcctgagctgtccctctttgt
cggggaaataaatgtattccttcaag
tcccgtgagacttctgaagtagacgt
ctgcttacgtctcacccaccagaact
atgtaaactgcacatagtgctaggtc
tacatagccactcataactgccaggg
ggtgggaaatctttaaataggtgtac
caccacacaattaggatgctaatagt
aagggagaaggagagaataggttttg
cgcaagccaccagcatgcctgccaca
attgcttaaaattcttcattgacccc
tcattgccacaggatgaaatccaaac
gccttcttagttgggaatctgaccta
cctgtctctcccacctggttcagaca
ccattctccttggtcataaaattcca
gtcatttgtgaacatccagctccccc
atgcctccatgcctttgcacatgctg
ttcttttatcttttatgttgtccttt
tatcttttatccaaaagagatatccc
atcatcacatctcttttgtcagcccc
caaatactttgtctttcaagttcagc
tggaggattacctcctatttgaaatc
agctttgtctcttacaaccaaacaag
gttttccttccgagacactcccacag
caccttgaactcatctctatcaatca
ttcatttgataatgaagttgttggtg
gtatgcctgtgtctctgacacatctg
cgatctcatgagttccttaagtggaa
tgtgaatagcgggatgaacagtattg
gtcttcagccctcatctctgcagatg
ttgcttgacccaaatgagcgttgcct
tttattttgattttgctttgatttgt
ctactccatgtacttgagccatgcat
ttctgtcttagcgatgctttttaaaa
gtcattttttggttgattatccagat
ttgtccacctttgcttctag
TTGTAGAAAAGGATGAAGAAAATGGA Exon 7 Seq ID No 14
GTTTTGCTTCTAGAACTAAATCCTCC
TAACCCGTGGGATTCAGAACCCAGAT
CTCCTGAAGATTTGGCATTTGGGGAA
GTGCAG
gtaaggaaatgttaaattgcaatatt Intron 7 Seq ID No 34
cttaaaaacacaaataaagctaacat
atcaatttatatatatatatatatat
atatttttttttttttttacatctta
tattaccttgagtattcttggaagtg
gctagttaggacatataataaagtta
ttctgaagtctttttttttctttttc
catggtgagcagtggcttgatgtgga
tctcagctcccagacgaggcactgaa
cctgagccgcagtggtgaaagcacca
agttctagccactagaccaccaggga
actccctattctaaattcttgagcac
attatttaggaacctcaggaacttgg
caggattacaggaaatatatctagat
ttaaaaaaaaatcttttaacagaggt
cccaaaggagagtcatgcacagctat
gggaggaagttcagaaactgcccttg
ctaccagatcactgtcagataaaatg
gccagctacatgtttctgcacattgc
cctaagatctttacaaacttttctgt
gcatttttccacttttaaaagaaaat
ttcggggttcctgttgttgctcagtg
gttaacgaacccaactagtatccatg
gggacaggggttcgagccctggcctc
actcagtgggttaagaatctggcatt
gctgtggctgtggcgtaggctggcgg
ctacagctcagattggacccctagcc
tgagaacctccatatgccgcaggtat
ggccctaaaaaaaaaaaaaaagagag
agagagaatttcctccagaaaaaaca
ctttggtagtttgggagaagtaaaca
accaaaaattaatttttctggagtat
tcgggaagcttgtaaaaatgggctct
tacttttttgaggagacaaatgggaa
cctacccagaagaggcacaatcacct
gcatttgatttcttgacctctcccta
ccttctttgctggctttccacatttg
gatttctgtgaccttatctctgctcc
ttggtgttttcatttttcctgtggac
gtgccagactatgggaagggagtaag
gcgttgatttagaatcctgtagtctc
tgcctgtctctagtcattgttttcac
ccttctcaaaggaccttgacatcctg
agtgagtccgcaagtaatttagggga
gaagccttagaagccagtgcagccag
gctacatgactgtgtccacccactgg
aaccagtcatttttatacctattcac
agcccccctaccatttaaatccccag
aggtctgccataacatctgtaactcc
ctttcctggtaaattgtgttctaaaa
gactggtaacaaaagatattctgtgg
tacagagcataattaaatacctggga
gctgatttgagtggggtaaatcaact
ggtttgacccctaaaacccaccatga
gcatttctgttctaataaagtaatgc
ccgtgctgggaagttctacggaaatg
ctcctgctgtgtctttcttgagtcct
gtgtcattgaacatgcttaggagcaa
aggtcccccatgtggcttgtctgcta
accagcccagttccttgttctggctg
gtaatgatccgatcatctgaatctca
ctgtcttccaacag
ATCACGTACCTTACTCACGCCTGCAT Exon 8 Seq ID No 15
GGACCTCAAGCTGGGGGACAAGAGAA
TGGTGTTCGACCCTTGGTTAATCGGT
CCTGCTTTTGCGCGAGGATGGTGGTT
ACTACACGAGCCTCCATCTGATTGGC
TGGAGAGGCTGAGCCGCGCAGACTTA
ATTTACATCAGTCACATGCACTCAGA
CCACCTGAG
gtaaggaagggtgagccctcaactcc Intron 8 Seq ID No 35
gaagaaaatgctgcaataaaagcact
gttggttttcagctttttttgtaatc
actgctcattctgaggtagattcgct
tgggctgataaaaagagaactaattc
agataaatgcttgcatttgcatagcc
tctttttttaaaaacttttttttttt
ttttttttttttggcttttcagggct
gaacctgtggcatatggaggttccca
ggctaggggtcgaatcagagctgtag
ccccgggcctatgccactgccatagc
aacatgcatagcctcctttttaaagt
gccttcctgttttataccattgggat
gtgagaagagctattgtggaaangag
catggggtnataaccctggacctctc
acgtcctaccctcaggntagtgggaa
aactctgagtttaaggacatcaaagt
gactcctttttagttacattatggng
gaatcagcncatatttttacaagggg
cggagngtaanctgttggagtttaca
agacatatggtggcattgcaactact
taaccctactattatagcacaaaagc
agccatagtcggtcctgaaggagcct
gatgccttcagctttataggcaatga
cgtgtgaatatcacaaacagtttcct
gtgtcaccaaacatgattgccttttg
atttccctttcaaccctttaaaaaaa
ggtaaaagcccttcttagcattcagc
agcaggtcgctgtgttttgccaactc
ctgatctgtagcatttcgacaacact
gagctctcaacttttgaaccctgagt
ccaccacatccttcagtgaaaccaga
gccatgtgatactaaggatagaaacg
gaaacttcctgaatccaggcgatcaa
ataggagggagaaagaggaactttca
ttgacaaaaccacaaatattgtgaat
ggactgttacaaatattgtgaatgct
cctattcccaaccccctggcttcatt
acagggtcctatgtgttcatccttat
tgagaaatttgtattgctactgccag
gttgccaatacccagcggtgcccatg
gtgttctaaaatgaagcaatttcaac
tttatttttttttcctgtgactttac
atgacaagttcacatgaaggatatac
tttgatagtaatgtccatggttaggg
aatatacattgtttgctggttgactg
gcccctggatttttctattgaaagtc
catgagatctcgaaggcacaggtgtg
ttctctcgctttttaaggaaagggtt
taaaaacttaagtaattaacagcttt
agtaacaaattacctataacacactt
aaaaaccgaataccacccactggagt
attgtgctacgattaaaaatctactt
gtctactacatgatatctttgtccca
cagaaggttctggaaccaaacttgta
atttcaggattatgagagccctgagt
tcacgcattgtgtaataactatgttg
tgtggtagtcaatttgtacagcttgc
ttagagagaacaatgtcaagttaagg
aggcgattgctttatagtgcctgtca
caagatgccattgccattgtcctagc
aagagatattctatgggagtatacta
cattttagtgaggataagaacttttt
atggcatttagtccggtcatttccca
accactgtcctgaaaaccaatttcat
tttgatttcaggggcttgtgtgggca
aagttgccaggcattaaaaagccact
tctcaactgtagtatcacaatgcttt
agttgggtagtgtattgcagatagct
tatggctgaaaagttaccaagccttg
cagttttcactcctttgagtttattt
ccttgacagaattgaccctgagtttt
ttgactcttacctgctcaactaataa
acaccagagtcatttatctccattgc
tcttgtctgacctttatttaccgaat
aatgccttatgggttcacaaaaacaa
ggggggagggggccagcatgccttag
aaactgtctttagtcaagaaatgnga
ttttattatgtaaatatatgagtatt
ataatagatagtgttattaatagaca
ccagcaagaattgtcaataatttaaa
aatcacaaattaaaatacatccatgt
tagnatcatttatcctaactcccaaa
gccctttaaagtggaagatttagatg
ttaacccagagattaaagacatgttc
aaagaatccttgatttttttttgaat
cccttgtttttagagaagaaaaccta
atgattttccccctctggattctaca
tattaaatatagttttggaacttgaa
tattagtatggttaataagtgctgat
atgctgattttgtttatatttttctt
atgagtaaatatcctatatcaccaga
cattatagtctatgtacaaatatgat
tcttaaacctgatagcacattcatta
gagttggaattgcctttttttttttt
ttttttacagttgcacctgcaacata
tgaaagttcccaggctaggggttgaa
tccaagctgcagctgccaccctacat
tacagccgtagtaacagcagatccga
gctgcatctgcaacctatgctgcagc
tcagggcaatgccagatccactgagt
gaagccagggatggaacttgcatcct
catagagacaacgtcgtgtccttaac
ccactgagccagaacaggaactccag
aatttcctttcaatagaagaagcacc
aagtttaggatcagaaagcctgaatt
tgaataccaatttactatttgttagt
catatatttctgagtgtgtttcctca
tttattaaaagcagactaaaagatga
gagggtcttttgttgagaatcaaata
caataacatgtgaaagtgtgtaacac
tatgattgaaatatacctacacagcc
atttatttgtttattgttcatgtttt
gccacccacacagtagtatataatcc
ttttatgtaataaatgctaataatga
aagttggcaacttatgtaagtactca
aaatgctggaggtcatgggatactga
ctgggatactacagaggtaatgtcat
ttcctctgcgctaaacttattgtctt
gtagttagggactgactctctttagg
acaaggagttcattctgtataccatg
tgtggctatcacccttcgaagttgaa
aaactgccccagggtgggcacccatc
cgttctcttagatatatggccgagac
ctttctctcactgggagggaaccaca
ctgaggaatgagaaaaaaaaaaggaa
aatcaagatgaaaccagaaacctctt
tggcataacttctccactctgtactt
tttgttagaactacccttgcacaaag
cagcatcagtgtggaagacagaattt
gcacacctggtttgatatacatgccg
tggtatatgggatgttctaacaataa
agaggactctcccaggaaatctcctc
actgttatagtcagccttgaggaaag
agctcttcttttggactctggggaga
gtctagtttttcagttccttgcttct
cggtcaacgtgttggtgtaaggatca
cactctctcttatactagataattct
attttttcacctttcaacctgtctat
ccttctgaccctag
TTACCCAACACTGAAGAAGCTTGCTG Exon 9 Seq ID No 16
AGAGAAGACCAGATGTTCCCATTTAT
GTTGGCAACACGGAAAGACCTGTATT
TTGGAATCTGAATCAGAGTGGCGTCC
AGTTGACTAATATCAATGTAGTGCCA
TTTGGAATATGGCAGCAG
gtctgtgttctttccacatgtttggg Intron 9 Seq ID No 36
ttatcctttctgggataaatttgagg
cgagatagaaactttaagactaaaga
aacaatggcctactttttttgtacat
ggtcctgtgtaaatctctatttgagc
tgaaataagatggtcttcctctccaa
ttatccatggtatgactctgatggat
aacaaatccagttctgaaaaaagggg
atttctttccagaagagaggacagtt
tcttcaaatattgaattaaaagcaaa
atagatgtaaaccgttgttggtttta
ttgttgaattccag
GTAGACAAAAATCTTCGATTCATGAT Exon 10 Seq ID No 17
CTTGATGGATGGCGTTCATCCTGAGA
TGGACACTTGCATTATTGTGGAATAC
AAAG
gtattttcttgccctcatcagcatga Intron 10 Seq ID No 37
aattgctcttggtagaaaggataata
atagttatccaaaacatcatcctatg
ttcatctgtttcttccctcttcattt
tccatagagtacagtatattctatct
ctgtcttaggaaaatggactgtcatt
catataatcttacagagaatcaatta
gtaatgtactctatgccgtgacaggt
gcgaaggttttttttgaaggcaacag
ataaaaatatcctatatttcacctat
tgtaatttccttaaaactgacattat
tgaataaatgttttactttcatcttg
aatattattatgttatggaatcatac
actttaccccaataatcatcgaaaag
aatttccaaaaggttgagagagttgt
gttgatctgattactttcctctgcat
cctttgagcttaacctttgaatatag
tttgctaaggaaagtagtctgtttat
gatcctggagtggaatcaggctaagt
gtcctcattcagaacccactgaatca
gacagaatgaatttatttccttgaaa
gttcaaaatgtgtcactcagagtata
aattttcaaatcttactctctctttt
ccttggatgtgagcaattcttcgata
attgaatgaggcagattatatagact
tacatggaagactgttggcctgagaa
ttcaaactatggtgttcaagacttca
cngngagtccgatgccatttgtttcc
cacag
GTCATAAAATACTCAATACAGTGGAT Exon 11 Seq ID No 18
TGCACCAGACCCAATGGAGGAAGGCT
GCCTATGAAGGTTGCATTAATGATGA
GTGATTTTGCTGGAGGAGCTTCAGGC
TTTCCAATGACTTTCAGTGGTGGAAA
ATTTACTG
GTAATTCTTTATATCAAAATGATGCC Exon 11a Seq ID No 19
AAGGAGTTGGCATGGCACTTTGCTAA
ATGCTGTGTGAATCAATACAAAGATA
ATTAGGACATGGTTCTTCCTCACAAG
AGGTGTGCAATCTTATTGGGAAATCA
TACTTGCAAGTCACAAATATAGACTA
AAGTTTCCAGCTGAGAATATGCTGAT
GGAGCATGAAACACTAAGGAGACAGG
GAGAATCTCAGGAAAAATCAAGAATA
ATTTGGATCAAATGGATTCCTGACAT
AGAACATAGAGCTGATCAGAAAGAGT
CTGACATTGGTAATCCAGGCTTAAGT
GCTCTTTGTATGTGGTTCAGAACAGA
GTGTGGGCAGCCTGAGGGGGATACAT
ACCCTTGACCTCGTGGAAAGCTCATA
CGGGGGAGGGATGAGGCTAAGGAAGC
CCCTCTAAAGTGTGGGATTACGAGAG
GTTGGGGGGGTGGTAGGGAAAATAGT
GGTCAAAGAGTATAAACTTCCAGTTA
CAAGATGAATAAATTCTAGGGGTATA
ATAACAGCATGGCACTATAGATAGCA
TATTGTACTATATACTGGAAGTGCTG
AGAGTAGATCTTACATGTTCTAACCA
CACACACACACACACACACACACACA
CCACACACACACACCACACACACACA
CGTGCACACAAACAGAAATGGTAATT
ATGTGAGGTGATGGCGGTGTTAACTA
ACTTTATTGTGGTCATCATTTAGCCA
TACATGCATGTCATGAAATCACCATG
TTGTACACCTTAAAGTTATGTAATAC
TAGATGTCAGTTATATCTCAAAGCTA
GAAAAAATGTGGGGACCAAGGCAGAA
GCTCTTCTGCTCTGTGTCTAAGGGTG
GTTCTGGGGCTGGGATGGGGAGGATG
GTTAAGTGGTATATTTTTTTCATACC
TTTGCTCAGTACTATCATTGTAAGTG
TTCAATATATGTCTGCTTAATAAATT
AATGTTTTTAGTAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
gtaattctttatatcaaaatgatgcc Intron 11 Seq ID No 38
aaggagttggcatggcactttgctaa
atgctgtgtgaatcaatacaaagata
attaggacatggttcttcctcacaag
aggtgtgcaatcttattgggaaatca
tacttgcaagtcacaaatatagacta
aagtttccagctgagaatatgctgat
ggagcatgaaacactaaggagacagg
gagaatctcaggaaaaatcaagaata
atttggatcaaatggattcctgacat
agaacatagagctgatcagaaagagt
ctgacattggtaatccaggcttaagt
gctctttgtatgtggttcagaacaga
gtgtgggcagcctgagggggatacat
acccttgacctcgtggaaagctcata
cgggggagggatgaggctaaggaagc
ccctctaaagtgtgggattacgagag
gttgggggggtggtagggaaaatagt
ggtcaaagagtataaacttccagtta
caagatgaataaattctaggggtata
ataacagcatggcactatagatagca
tattgtactatatactggaagtgctg
agagtagatcttacatgttctaacca
cacacacacacacacacacacacaca
ccacacacacacaccacacacacaca
cgtgcacacaaacagaaatggtaatt
atgtgaggtgatggcggtgttaacta
actttattgtggtcatcatttagcca
tacatgcatgtcatgaaatcaccatg
ttgtacaccttaaagttatgtaatac
tagatgtcagttatatctcaaagcta
gaaaaaatgtggggaccaaggcagaa
gctcttctgctctgtgtctaagggtg
gttctggggctgggatggggaggatg
gttaagtggtatatttttttcatacc
tttgctcagtactatcattgtaagtg
ttcaatatatgtctgcttaataaatt
aatgtttttagtaagtaatctctgtt
tagtaatgtgtcagaaatgccctact
tgcaataggaagaaaacctgtccagt
cccttccttttttctgtaagtctgat
ttcattgcctcccagaatgcatcacc
atgtgagagatagagggaaggtgctg
tccttatggggttaacagtgtgacta
gggaggcaaaatatacctactaaagg
gtggtagcataattcagttcttatgt
gagtatgtgtatgtgtgtgagtatgt
gcacatgcacatacattttaaaaggt
ctgtaatatactaacatgttcatagt
ggttacacctagcttataggtaacat
tttttcccctgtatccttgtttgtgt
ttatcaaattttcataacagtaatgg
tagaaggagtacctgacatggtacca
tacatgctnggncctgcctaatttct
cnatttcctttattgcccataccccc
attgcttgacaagcataagtccatac
tggcttgttttcgttcctcagactca
gtacaccatgtagctccatgccctgg
gtctttgtatgtgctatttctactgc
ttagagtgctattgcccctgaccacc
acgtggtcagcaacttctcttctgcg
tctgtgtctatggtctatgattccag
atgtcatcttcactaactacccttct
aatatgcccttccatcccacccgtcc
tcatccttaccccagccactctctat
ttggtggctctgttttattttcttcc
tagctcatcactctttgaaatgaact
tatttacttattcaatatttgcttct
ttcactagaatgaatgctccatgaga
gcagggacctgctttatcttgctcgc
cactgtattcacagtgcctagaacta
cgtctggcacatagtaggtgctcaat
aaatatcgatcaaatgaaagaatgag
caaacgaacaaatgaacaacacgtga
ggtaggcatcatgattccatcaacag
aggagaaaaccagacttaaagnaatg
aagtggnggagctgcatttgatcttg
actgactccaacatccatgctcttga
ccactgtgcatctccagagtgtaatg
aacatactttacttttatattccacc
aaaataacaaagccatgcccatgtta
gtagagagttaatcgacagtgccctt
aaaatatgcatgcacccagggtacaa
ctatgcatgctgccctgtgttttcag
ttggatccaaatgaattgccgtaaac
aaagaggggattcaatgtctttgact
agtttgggatattttcctagtaacca
actttgcaaaataaagccactaatga
caaggagctttgttctacttctgcat
cactcaactgtcaatttttatctctt
gcaagacttctaatctactagaactt
ttgtttttctgtgatttctgaacaga
gaagactaatccaaaccctgtcattc
cag
AGGAATGGAAAGCCCAATTCATTAAA Exon 12 Seq ID No 20
ACAGAAAGGAAGAAACTCCTGAACTA
CAAGGCTCGGCTGGTGAAGGACCTAC
AACCCAGAATTTACTGCCCCTTTCCT
GGGTATTTCGTGGAATCCCACCCAGC
AGACAA
GTATGGCTGGATATTTTATATAACGT Exon 12a Seq ID No. 21
GTTTACGCATAAGTTAATATATGCTG
AATGAGTGATTTAGCTGTGAAACAAC
ATGAAATGAGAAAGAATGATTAGTAG
GGGTCTGGAGCTTATTTTAACAAGCA
GCCTGAAAACAGAGAGTATGAATAAA
AAAAATTAAATAC
gtatggctggatattttatataacgt Intron 12 Seq ID No 39
gtttacgcataagttaatatatgctg
aatgagtgatttagctgtgaaacaac
atgaaatgagaaagaatgattagtag
gggtctggagcttattttaacaagca
gcctgaaaacagagagtatgaataaa
aaaaattaaatacaagagtgtgctat
taccaattatgtataatagtcttgta
catctaacttcaattccaatcactat
atgcttatactaaaaaacgaagtata
gagtcaaccttctttgactaacagct
cttccctagtcagggacattagctca
agtatagtctttatttttcctggggt
aagaaaagaaggattgggaagtagga
atgcaaagaaataaaaaataattctg
tcattgttcaaataagaatgtcatct
gaaaataaactgccttacatgggaat
gctcttatttgtcag
GTATATTAAGGAAACAAACATCAAAA Exon 13 Seq ID No 22
ATGACCCAAATGAACTCAACAATCTT
ATCAAGAAGAATTCTGAGGTGGTAAC
CTGGACCCCAAGACCTGGAGCCACTC
TTGATCTGGGTAGGATGCTAAAGGAC
CCAACAGACAG
gtttgacttgaatatttacagggaac Intron 13 Seq ID No 40
aaaaatgatttctgaattttttcatg
tttatgagaaaataaagggcatacct
atggcctcttggcaggtccctgtttg
taggaatattaagtttttcttgacta
gcatcctgagcttgtcatgcattaag
atctacacaccaccctttaaagtggg
agtcttactgtataaaataaactatt
aaataagtatctttcaactctggggt
ggggggggagactgagttttttcaca
gtcctatataataattttcttatcct
ataaaataattaggagttcccgtagt
ggctcagcaatagcaaacccgactag
tatcgatgaggatgcgggttcgattc
ctggcccccctcagtgggttaaggat
ctggcattgccgtgagctgtggtgta
ggtggcagacacggctcagatcccac
gttactgtggctgtggcataggccag
cagctccagctctgattagaccctta
gcctgggaacttccatatgctgtggg
tgtggccttgaaaaaaaataaataaa
taagataattactcaaatgttttcct
tgtctcagaaccttacttcaggataa
agagtgagaaagttttttttatgaag
ggccattattacagctcaaaaataag
ttgtcttcagcaagtagaaagcaata
agcctgagagttagtgttcctatcag
tgtaaatattacctcctcgccaatcc
ccagacagtccatttgaacaattaac
ggtgccctgggagtacagttcagaaa
cattaatgtggatgttccagacctgt
atttttataagtacttgtcttgagcc
ggatggaaccatcattcctcaccatt
atttagaagtggactgtgactctgtt
ggagatcagggcacacggttaccaaa
agcacacccttctcctggccttacct
ttgcaaagctggggtctgggacacag
tcagctgattatacccttttactaac
ttcccacagctcaaatctggtcaatt
ctccttcacaaatctcttaaaaatcc
atcactcacctccagcctcttctgct
gtggccttgattcagcctctcacaat
ttttttttaaccagaattctggcagt
ggcccctgacttgcctctgtgctccc
agccccgctgtcctctgatccatcct
ccatgccagcctttttcaatctgctg
gtcacgattcattgatgggttaggaa
atcaatggcatcacaactagcattta
gaaaaaggaaataggcgttcccgccg
tggcacagcagaaataaatccgacta
ggaaccataaggttgcgggttcaacc
cctggccttgttcagtgggttaagga
tccggcattgccgtgggctgttttgt
aagtcacagacatggctctgatccgg
cattgctgtggctctggcgtaggcct
gcagcatcagctccaattagacccct
atcctgggagcctccatatgctgcaa
gtgcagccctaaaaaaaataaaaaaa
taaaaaaaaataaataaaagaagtag
acaaattgtatagaacaaccctgagt
atgttgcctgagcacatataacaagg
gtaagtattatttcaggaaactctgg
tttcacagatactcttggcatatgga
cccctagagtcctgatgtaaaatata
ttcttcctgggatcttaggcaagaag
tttgaaagctccaactctgcactgct
gccaaagaaatgatttttaagtgcaa
aactcttcccgttcccttccctgtat
aaaattccataggatctctccagtgc
ctctaggataaaggcagttttcattc
tctagttcaaggtgagagaagatttt
aattatttcacgttttagtggggaat
tcaagagtctggcacctgacatttgc
tgaactctctccattatccctctcta
gttccccagacgcatcctatggtaga
aattcgcaaactagagtgagcgtcag
agtaacccaaggaaactgggtaaatg
cagctccctgggctctaccccctgag
attctgattcagtagatctgaagcag
agccctggaatatgcatatgcatcat
tgtgtcacaccaagcattctgggtaa
tgagagttgatgttaggttctcagta
gtaagacaagtatagagattccgggg
gactgagtgctcagctctgccttggg
gaggagggagagggctaaagagaaca
ggagatggggacagggaatgctcaac
ctccaatcttaggcatttgagctatg
tcttaggggtcaggaggaggttacca
atatagtgattaagagattgaggttc
cagtcagagggatatgctggagaagg
ggggtgaaaataatgtcataggtttg
gtgagtgcagatactttgagtttttt
aatatttttattgaaatatagttgat
ttacaatgctcttagtgagtacaatt
actttgaataagtgcatagatgtatg
ccattcttccagaaatgatttattga
gctcctttgggcatcatgctaagtac
aggggaaacagctgtgaagaggtcct
tcccttatgaagtcattcatcccctt
cagtaaatgaaggtaaaggaaaagga
tgagacagggacgccgtgttggacca
gggtcagaaaggccttataagacctt
gcctggagggcaaggaacttgcctgt
gagtaaggagagcttgagaaagcgat
aaagcaaagaaggaacattactgcat
tgtgttttagaaaaaccatgtcctgg
ggaagaactcctagagtcaggggggc
cagttgggagactgtgcttttttcca
ggaggagataagtgaggctgctggct
gagatggagcaaggatttagagaagc
agatatgagattcatttagaagttag
acattttaggatctgacacataattt
atcaccaaaaccagtgcatctctggc
tttgggccaccagttttggagaagtg
gaatgtagggacctaccattacctgc
caatctttactacacagatgcctatt
tccctcctcatatttcctttctccag
atcacgtcctattctattgccaggac
tcaagattccaccttgcatgcagtga
tccatcttcacactggatggacagct
ctagggatgtcagagcacactcttgt
ccatactgctgactgggtctcctgtc
agcccatctgtctatcagctgtggta
ttattagtataataagagggctgtat
atgagagacacaaaattctaggtgta
gctcaaagataggctagagttattcc
tatgtacaacaaatatttatgggacc
ccttctgtgtactgtcatggttgctg
ctttcatcatacttgtagtctaatgg
aggtgggggcagggcaggaataagcg
gatgtccacaaatcagtaagaccact
tatattcaacattttcataatttagt
tatttgagcccaaagggtccacatcc
gtggtattccaacttttttttccccg
gacatggatctttatctttttttttt
tttcttttttgcggccagacctgcgg
catatggaagttcccaggccaggggt
tgaatgggagttgcagctgcctggtc
tacaccacagccacagcaaggtggga
tctgagctgcatctgtgacatacacc
gcagctgaggtaacaccagattctga
acccactgaatgaggccagggatgga
acccgtctccttatgaacactatgtc
atgttcttcaccctctgagccacaac
gggaactccagacttcgtctttaaat
gtattctgacttggagagctatcaca
ctaagcaattaacaggagctgacctg
gtttaggctggggtggggccctactc
ctcaatgttccctgaggcacatctgt
gggacccctgggcatcatctatctga
gcagccttagagctgctcatccagtt
gactgttgatgtagaagtgcaaactt
ctgccttccttatttgttgctttctt
ttttcattgttctctcccctttgtgt
ctttaag
CAAGGGCATCGTAGAGCCTCCAGAAG Exon 14 Seq ID No 23
GGACTAAGATTTACAAGGATTCCTGG
GATTTTGGCCCATATTTGAATATCTT
GAATGCTGCTATAGGAGATGAAATAT
TTCGTCACTCATCCTGGATAAAAGAA
TACTTCACTTGGGCTGGATTTAAGGA
TTATAACCTGGTGGTCAGG
gtatgctatgaagttattatttgttt Intron 14 Seq ID No 41
ttgttttcttgtattacagagctata
tgaaaacctcttagtattccagttgg
tttctcaataagcattcattgagcct
tactgactgtcagacggagggcgtat
tggactatgtgctgaaacaatccttt
gttgaaaatgtagggaatgttgaaaa
tgtagggaatgaaatgtagatccagc
tctgtttctcttttggaggattcttt
ttcctccatcaccgtgtcttggttct
tgtttgttttgggtttttgtgggtgt
tgtattgtgttgtgttggttatggca
gtgacagctatttaaactgtgaaacg
ggggagttcccgtcgtggcgcagtgg
ttaacgaatccgactgggaaccatga
ggttgcgggttcggtccctgcccttg
ctcagtgggttaacgatccggcgttg
ccgtgagctgtggtgtaggttgcaga
cacggctcggatcccgcgttgctgtg
gctctagcgtaggccagcggctacag
ctccgattggacccctagcctgggaa
cctccatatgccgcaggagcggccca
aagaaatagcaaaaagacaaaataaa
taaataaataaataagtaagtaaaat
aaactgtgaaacggggagttcccttc
atggctcagcagttaacaaacccagc
taggatccatgaggatgtaggttcga
tccctggccttgctcagtgggttaag
aatccagcgttgctgtgagctgtgat
gtaggtcgcagatgcagcccagatcc
tgcattgctgtggctgtggcgtaggc
tggcagctgaagctccgattcaaccc
ctagcctgggaacatccatatgctgc
aggtgtggccttaagaggcaaaaaaa
taaaaaaataaaaaataaataaattg
tgggacagacaggtggctccactgca
gagctggtgtcctgtagcagcctgga
agcaggtaaggtaaggactgcagctg
ggtaaggactgaattgcaccaactgg
gaagtaagcctagatctagaacttaa
gttagccctgacatagacacacagag
ctcaccagctaagtggttcagcttat
aagctggtcactgaaactgaggatgt
ccacaaaagcaaaataagtagcaaca
ggcagcgggatgcaagagaaagagga
ggcctaaaatggtctgggaatccctg
ccatacctatattttatcctacttat
atttagtgcctgaatgtgtgcctgga
gagcaaagtttagggaaagcatcggg
aaatgcacagtattcatacccttagg
aacaaagatcagttacctccagggta
aagactatttccaagtttaaatttca
acccctgaacattagtactgggtacc
aggcaacacttgccatcctcaaaatc
aatgaatcctaaaattcaacctgggg
gtcagtgacagtctgtgacaaagttt
ttgctggtcagtaacgaaataagtat
gagcaccatctgagtatggtcaccaa
gatgtcaactctctttcctttggacg
aattgtcattattccaagattaggtc
ctttctatttttgaggtgtgaaaaca
tctttcctttcataaaataaaaggat
agtaggtggaagaattttttttgttt
tttggtctttttgctatttctttggg
ccgcttctgcagcatatggaggttcc
caggccaggggtcgaatcggagcttt
agccaccggcccacgccagagccaca
gcaacacgggatccaagccgcatctg
cagcctacaccacagctcacggcaat
gccggatcgttaacccactgagcaag
ggcagggaccgaacccgcaacctcat
ggttcctagtcggattcgttaaccac
tgcgccacgacgggaactcctaatga
tactcttttatatttagctactatgt
gatgatgagaaacagtccacatttta
ttattttttagccaatttgatatctc
attactaagataatgataattttctc
tataaattttatttaagttagtgtta
tgaagtggttttgctagtgtagaagg
ctaggatttgaattcagttcaagaaa
gaagagagggagggagggagagggat
gggtagagggatggggcagtgggaga
gagcaaagaggagagacagtttttgt
attaattctgcttcattgctatcatt
taagggcacttgggtcttgcacattc
tagaatttctaaggaccttgaccgcc
agattgatatgcttcttccctttacc
atgttgtcatttgaacag
ATGATTGAGACAGATGAGGACTTCAG Exon 15 Seq ID No 24
CCCTTTGCCTGGAGGATATGACTATT
TGGTTGACTTTCTGGATTTATCCTTT
CCAAAAGAAAGACCAAGCCGGGAACA
TCCATATGAGGAA
gtaagcaggaataccagtggaagtgc Intron 15 Seq ID No 42
ccctttcttccttccttcctaaataa
acttttttattttggaacaactttag
agttacagaaaagttgcaaagatatt
atagacagtagtgtttatatatatat
ataaatttttttttgctttttatgac
cacacctgtggcatatggaggttccc
agtctaggggttgaattggagctaca
gctgccagtctgtgccataaccacag
caatgcaggatctgggccacgtctgt
gacctacaccaaagctcacagctgga
ttcttaacccactgagcaaggccagg
gattgaacctgcatcctcgtggttcc
tagttggattcgtttccgctttgccg
caatgggaactccaaattattgttaa
tatcttactttactggggtacatttg
ttacaaccaatactctgatactgaaa
cattactgttaactccgtacttgctt
ctttttgagtcatttgcaaagactgg
cttcttgacctgcttccttccaaaca
gctggcctgcctatgctgttctcaga
cctgcaagcactgatctctgcccccc
ttgccttctctccagtggtgtctcct
tccccaaacaaacccagtgtggctct
ggaaagggagttaagtcaacataaac
caacacatattttgttgagctccaat
tttgagcaaatccctcacctacggca
gacaggcatgatgttaagaactaggg
ctttggacacaaggtcaagaccaaga
agggttcctcacccctactgattcag
ataaccaataatgaggctttgaatcc
ctgtccaaaggttgttttttttccct
tctattgagcttcttgccaccttatc
agttttttttatgacagtcaaatgac
atgatatatgtgagcatacatggtaa
tttttaattctatataaatgaatcac
taaataaattaggaggatatatagtc
cacctttaagcgtattacacgtgtca
catgaatgtgtggcgacttaattgta
gaggtttaaatgtagcttcctataat
agatgtgttcctaaactacattttaa
tcattggacttgtatttttatgttag
cacttgctgttgaagaaaagcctatg
ccaaaagttcagtgaaaccaataatc
cactgccagctttctgagttaaaaaa
aatccctgggttttcacacacaggaa
caccctgtgtgaaacactcatttaga
gcaaaatgcatctgataaggagttcc
tgttgtgcctcaactggttaaggacc
tgacattctccatgagaatgtgagtt
tgatccccggccccactcgatgggtt
aaggatctggtgttgccacaaactgc
agctccgattcatctcctagcctaga
aacttccacagcccagaatatgccac
agaattcggctgtttaaaaaaaaaaa
gaaaaaaaaaagaatcataaatgtgt
tggtttgttcaccaaatacatgataa
cttgctcttgccaagctcagcttcat
aaatattaagtcatttaatacagcag
ccaccttatgaacagatattactata
cttcccatttacagataaggaaaatg
ccatatttaaccaagagattaaataa
ctttcccgaggtcttatagcaagtaa
atcatggtgcaggggtttgaccacac
gcagtctatcctccagagtctgtgta
tttagccactgttttactttcaaatt
taaatttataaaacttctaaattatc
tgttaaccataatctttggaattttt
aaaaccacgagttcctataaaatgtt
tcattgaaagtaagtcacttttccat
agcttttgataatacatctgtaggat
aaagtaagccacagctctcttgcaga
cttggtacaccctggggcaaagcatc
atgcctgtcacgtacatggtggtcct
tactttgactctcagtgcttttattg
cccaggaattttgtgagatttctagt
tgttgaggtttgtttaaagaggttat
gccggtacttggaagagctcttttct
tgctacctggagccttctcatatttc
ctttttgaggagggacatgaattgcc
tttcaaactcataaatatattttcta
gtacacaagtctccatcttccttaga
cgcatggctcctggagttctccatcc
tcctgctccactttgggtgggctcct
ctctgggtctgccaccaatctgccac
ccagagacatccttgacccacttcca
gaccccaccatggcttcactttcttc
gctttcctcctttgtggaaccttctg
cttaagaatctgaggaagaaaatttg
cacgtgagctaaactggaggtacttt
cctgcctggtcttgcacgatagcttg
gctgagcccatgatgctgggtggctg
ttactttccatggacacccgaaggcg
ttgctcctttggcttctagttgcatg
cagtgttgcttatcccaggctgatct
ttcttccactgtaggtgacttttaag
aattaagggattaatctatatctaca
acaacaacaacaaagaccttttcaag
ctgaggtagggctttctgtatatgtt
tggagtggttatccagcagactttac
ttgaaggcaggggtcatatcctcaag
tgctcataaacggaccacagaaagat
ctcataattgggtggagctgggtggg
gaccgtgtcatgtggccaggaaatgc
cagatgggaagggagtggcccttact
gagctccagctgaactctgaattttc
tagaaaactcagaaatctggattttt
catgtgtaatacccagatttatagat
gtggaaagctaattcttttttttttt
aagggactataggcaatgaactaaga
tctaggttgtatttggacaaggggtc
atcagtttaagctgtgtagttgagcg
ctcagctattgggctgagggacccct
aaatactgagacggggaggtccttgc
tctggggcatcacaagtacactccct
ggtctcattcaaacacttttcctaca
aaattgatcccatttcttcagtgcac
tgtctgaatgcatttggcccagagcc
gtgctgaggcatagggaaggggtcca
cggtttcatggcatcgttttgtgctg
tgtgtccctgctgtcgtccaggatac
ctacctctcctcctcctgcatctgaa
tgtccccccacagactctctgggatt
ctacagcctctggcctgttcctcaga
cacctcttacctgccagctttccaga
ttcacattagttagtccaaatctact
gccgtcagtgactcacttcatttctt
cttctccgaggcagttcagcccggta
cagttgttttgtcaacacttcagttg
agtctggaagatgtgcatgggttatg
cacgagagcggtccatcattttgagc
tagaagtcctttctcagcccagagac
aagtcctcatctcctttacttcctga
ctcttcttcctctgcatccttccaag
atatctctttctccagccaccaccta
aatctcttcttttcccggggttccgt
gctcaacccactcttcttcttaaatc
tgtggctgggtgaacgcatctgctgg
caccacttctctgctaaagactccaa
aaatccataggtcctgcccggccttt
gcccacctctctccaacactgtccag
ctttagatgtagagctaatcccccca
gagatatcattccctggatgtctaag
tcctttggtatctcactttcagcgtg
ttcaaaatcctcttacaactgttctt
tctccttttccatcttgattattggc
aacatgccagcctttcccctaccccc
agcagtgagccaagctagaaacaagg
gcttaatcttcaatctttccttctcc
atccctaaacctaatgagtctccaag
cccttcccagtttacaccctaaatgt
tgctcaaaacatcccctagttcttcc
acgtgctctcctctatattgaaaggt
caagaaaggccatcttccctccactg
tgaggaaatagatcttgatactgccc
ctgagctgggcagtcctcgacctgac
aaactgtgcagtgtttctaaatctct
actggcaaaatgagagtgcctttgac
ctgtgttgcgatctcagatcacagtg
gatgtaattgttttataggaatggtg
aacgaaaaagaagtaaatccctaatg
ccaaactcctgatcattctatgtcat
ttaatagcctgtcatttatgataaag
tttcctctactggcattagcacaata
cttctcaggaaaaaaaaatatgatgc
cagatactgaaaagctcctgggtaaa
catgaacatgggtaccgataaaatgg
tgaagccagtccaatcttagagtgac
ttcccttcatgctacttcatgctctt
ttttttttttttttttaagaaaaacc
ccttttttttttctcacaccagtcac
agaggagaccgaggcttagcaaggtt
aaggtcacatgattagtaagtgctgg
gctgaaactcaaaaccatctctgctt
gtctcctaaccctgtgcacctctgac
tattcaacag
ATCCTGTGTCAGGAGTTGGGATTCTT Exon 15a Seq ID No 25
TGAAG
gtaagggccttgaccaccgaattaag Intron 15a Seq ID No 43
gtaatcttgctctgtggcaggccttg
ttttcagtattttaagtacactggct
caggtaatcctcacaacagccccagg
aggaatgttctattacctccactgta
tagatgaggaacttgaggcacagaat
ggttgccaaggtcacacagctatatt
gggggttcatacccagccatccaact
ctgtctgtactctctgccactctgca
cccccagctcctgatccacttcctgt
ttccatccctcgatttctgctgcact
caggggcccctctccccctcggcctg
tgagatctgcttcagtaggcttttct
ccctgactcctccatccctgtcctta
caggcagctgcttctctccgggacac
gaggggtccatacggacactctctac
tggctgggttgcgcctaactcgtgat
tcctcctctgtttcag
ATTCGGAGCCGGGTTGATGTCATCAG Exon 16 Seq ID No 26
ACACGTGGTAAAGAATGGTCTGCTCT
GGGATGACTTGTACATAGGATTCCAA
ACCCGGCTTCAGCGGGATCCTGATAT
ATACCATCATCT
gtaagtccgaaaatgcctgtcgtgtg Intron 16 Seq ID No 44
tgccttaggctgctgcggaggaggcc
agggctatataagcagagtcagtgac
tgactgtgccctgcagtgttgatggc
catggagattccaccgttagagcttt
tttctttgttaaccttgaaggcaaat
ctggttaggaagataactttcaaaga
gtcaccatctggacattcatgcccat
gtgcttcaatcctgtatacaagcagt
ttagagtacagggaagggaaggacat
tatgaaagggagagggtgtgtttgga
tccagcagctccatcctcagaattta
tctgaagacactgcaaaattactaag
aatcactatgacaagaatgaggatgg
ggtgatatggcaaagttgtgatcctg
gaagaccttcatctcccatgttgccc
aactctgaacatgaatttggtgaact
agttggttaaggggatgatcctccaa
gtttctccctggttgagctccaaaaa
ccatgtaagtttctcatagcaaaacc
gtataggtccttagggctttagttgg
aatatttgtgctgaaatgctggaaag
ccccatttgccatttttgtatttgca
aaataatcatcaagaggggagaatgc
attctttcatgaccactgaccctctg
aaaaggtcaggaatttagtctgaagt
aggcaagcctcctaccccgcttctgc
catgagcttgcacgcacaggcctgtc
ttgacatttcttctttatagatttct
ttttgaatatcttgaaattgctttaa
aaatatttaaagaatgtagaattata
taaaataaaaaggaaataaccccaca
cctcccacaaaaccctgtttcctgcc
tttctccacccactctccagggtaac
acttggtaacagcatagttgtatcac
cccaggcctatttttgagcatatcag
catttcaagaaatgtattttttctca
ataaaacatcccttatagttgaggag
gggaggttatcattcctgggttttgt
tttttttttttttttaatgtaatcct
ggtacatcggtaatttgcatttttta
ttcattaatatctttggtatttctag
tgttgggacacacaggtcaacctcag
tttttgggtttttttttttgtctttt
tgtctttctagggccacacctgcagc
atatggacgttcccaagctaggagtc
taatcagagctgtagccaccagccta
cgtcatagccatagcaacgtcagatc
caagccgtgtctgtgacctacaagca
cagctcatggcaacaccggatcctta
accactgaacgaggccaggggatcga
acacacatcctcatggatcctagtca
tgttcattaaccactgagtcatgatg
ggaactccaacttcaactattttaat
gtctgtaaaacattccatttggaaac
catttcatttgtaaagcaaaatgaaa
acattttgttcattttcaacagagtt
cgtagctgacttctgttctggaaaaa
aggaaatggagcaaatttgagtgaga
aagattcaaagataacttttctttta
aaaaaaattatatcttggaaacttct
gggctattgattctgaagactatttt
tctatatactgttttgatagcaaagt
tcataaatgtgaaaggatcctgcgat
gaatcttgggaagcagtcatagccca
atatatctttgttgcttttaaaatga
gatttagtttactaaatatttttctg
atcataaaaataacacagatctaccg
cagaaaatttggaaaaaaaaaaactt
ttaaattcaaaaaacagttaaaccac
aaatgatcccaccatccagagagcaa
tttgtactttggtgtctagttcatct
ttctttttctgtttacaagcacatat
accacaagcattttttcaaaaaatga
aaatgggataatactatacatacgtc
tgtacacctgcatagttactgaacag
tctttgatctaccctgtaagtttcta
acttttcattatttgaaatgatgttt
tggcaaagaaatatgtaggtgtgtct
cgcacactttcataatgatttcttag
gataaatttcttaggataaattcata
atgatttcttataataatccatactc
tgccaactgatcttcagggaagccaa
ctcgccttctcagaaataacatataa
cccatttacttgccctctcaccaata
ctaggtcctaatgtttttgtgtacag
attctatatttttacatacaagaatt
ccttaaagcaaggcatgtcacagaaa
aatagaaggaagacacaattgtcatg
tttaaggactgcattctgtaccaaaa
atgctaagttaaatgaacatctgaaa
cagtacagaaacgctatctttcaggg
aaagctgagtaccaggtactgaacag
attttggcaaatacagcaggcatgga
tgtttccaaaacatgtttttctactt
tatctcttacag
GTTTTGGAATCATTTTCAAATAAAAC Exon 17 Seq ID No 27
TCCCCCTCACACCACCTGACTGGAAG
TCCTTCCTGATGTGCTCTGGGTAGAG
AGGACCTGAGCTGTCCCAG
gtaaagcatcctgcaggtctgggaga Intron 17 Seq ID No 45
cactcttattctccagcccatcacac
tgtgtttggcatcagaattaagcagg
cactatgcctatcagaaaacctgact
tttgggggaatgaaagaagctaacat
tacaagaatgtctgtgtttaaaaata
agtcaataagggagttcccatcgtgg
ctcagtggtaacgaaccctactagta
tccattgaggacacaggttcaatatc
tggcctcactcagtcggctaaggatc
cagtgatgccgtgagctgcagtgtag
gccacagacgtggctcagatctggtg
ctgctgtggctatggtgtaggccggc
cccctgtaactccaattcgaccccta
ggctgggaacctaaaaagaccccaaa
aaagtcgctttaatgaatagtgaata
catccagcccaaagtccacagactct
ttggtctggttgtggcaaacatacag
ccagttaacaaacaagacaaaaatta
tcctaggtggtcagtgggggttcaga
gctgaatcctgaacactggaaggaaa
acagcaaccaaatccaaatactgtat
ggttttgcttatatgtagaatctaaa
ttcaaagcaaatgagcaaaccaattg
aaacagttatggaagacaagcaggtg
gttgtcaggggggagataaggggagg
caggaaagacctgggcgagggagatt
aagaggtaccaactttcagttgcaaa
acaaatgagtcaccagtatgaaatgt
gcaatgtgggaaatacaggccataac
tttataatctcttttttttttttgtc
ttttttgccttttctaaggctgctcc
cgtggcatatggaggttcccaggcta
ggagtccaaacagagctgtagctgcc
agcctacaccagagccacagcaacac
gggaaccttaacccgctgagcaaggc
cagggatcgaacccgagtcctcacag
atgccagtagggttcattaaccactg
agccacgacaggaattccagggtctg
ttgtgttcttaaaacacttccaggag
agtgagtggtatgtcataagtaaaca
ataaatgttaaccacaacaagcttat
gaaataaacaggaaagccatatgacc
tacaatcagtcattgggagaatccac
aaaaggttgagcagaggatcaattcc
agctcacactccagttttagattctc
ccctgccttaaagcatcacagactac
ataatctgagctgaagaataaaaatt
aaaactcaccccagtgcaaaacagaa
atgaaaaagtattaaaacgaggttca
tactgttgttcattagcaatatcttt
tattcacag
GGGTGCCCAACAACATGAAAAAATCA Exon 18 Seq ID No 28
AGAATTTATTGCTGCTACGTCAAAGC
TTATACCAGAGATTATGCCTTATAGA
CATTAGCAATGGATAATTATATGTTG
CACTTGTGAAATGTGCACATATCCTG
TTTATGAATCACCACATAGCCAGATT
ATCAATATTTTACTTATTTCGTAAAA
AATCCACAATTTTCCATAACAGAATC
AACGTGTGCAATAGGAACAAGATTGC
TATGGAAAACGAGGGTAACAGGAGGA
GATATTAATCCAAGCATAGAAGAAAT
AGACAAATGAGGGGCCATAAGGGGAA
TATAGGGAAGAGAAAAAAATTAAGAT
GGAATTTTAAAAGGAGAATGTAAAAA
ATAGATATTTGTTCCTTAATAGGTTG
ATTCCTCAAATAGAGCCCATGAATAT
AATCAAATAGGAAGGGTTCATGACTG
TTTTCAATTTTTCAAAAAGCTTTGTT
GAAATCATAGACTTGCAAAACAAGGC
TGTAGAGGCCACCCTAAAATGGAAAA
TTTCACTGGGACTGAAATTATTTTGA
TTCAATGACAAAATTTGTTATTTACT
GCGGATTATAAACTCTAACAAATAGC
GATCTCTTTGCTTCATAAAAACATAA
ACACTAGCTAGTAATAAAATGAGTTC
TGCAG
TABLE 10
Genomic Sequence of CMP-Neu5Ac Hydroxylase gene
ctgccagcctaagccacagccacagcaacgctgggtc Seq ID No. 46
tgagccatgtctgcagcctatgccagagctccccgca
gcgccggatgcttaacccactgagcaaggccagggat
tgaaccctcgtcctcatggatagcagttgagttgttt
ccacggaactcttaggggaactcctgattatttttta
tttaaatttatatttctctgactttttcgtgtgctca
tcagccactgactgtgtatctccattagtcatggttt
gttaactctgtcattcaaaccctcttcatccttgcta
cgcagataacatcattataataaaatcgtgcctgaag
accagtgacgcccccaagctaagttactgcttcccct
ggggggaaaaagaagcaccgcgcgggcgctgacacga
agtccgggcagaggaagacggggcagaggaagacggg
ggagcagtgggagcagcgggcagggcgcgggaagcac
tggggatgttccgcgttggcaggagggtgttgggcga
gctcccggtgatgcaggggggaggagccttttccgaa
gtagcgggacaagagccacgggaaggaactgttctga
gttcccagtCCCGACGTCCTGGCAGCGCCCAGGCACT
GTTATTGGTGCCTCCTGTGTCCACGCGCTTCCCGGCC
AGGCAGCCCTGGCGGATCCTATTTTCTGTTCCCCCGA
TTCTGGTACCTCTCCCTCCCGCCCTCGGTGCGCAGCC
GTCCTCCTGCAGTGCCTGCTCCTCCAGGGGCGAAACC
GATCAGGGATCAGGCCACCCGCCTCCTGAACATCCCT
CCTTAGTTCCCACAGgtgagaaggcttcgccgctgct
gccgctggcgccggcagcgccctccacgcacttcgta
gtgggcgcgcgccctcctgcattgtttctaaaagatt
tttttttatccgcttatgctatcagttactgaggaag
tatttacaaatctactattattttgaatttgcctttt
tctccttatagtttatcagtatctcttgagactgtta
ttggtgcctgcaaatttaaaatgattggggttttatg
aggaagtgaaccttttatctttatgaaacgcctaact
gaggcaatgttaattgcttaaaatactttctttatta
tcagtgtggccatgccagtgtcctcttggttagaatt
tgcctgat.............................
............ctgccaaagctgggagatgggggaa
agtagagtgggttattgaaactgaatatagagttcag
catctaaaagcgaggtagtagaggaggaagctgtgtc
aacggaaatactgagctgggttcacatcctctttctc
cacacagTCTAATGCCTTGTGGAAGCAAATGAGCCAC
AGAAGCTGAAGGAAAAACCACCATTCTTTCTTAATAC
CTGGAGAGAGGCAACGACAGACTATGAGCAGgcaagt
gagagggggctttagctgtcagggaaggcggagataa
acccttgatgggtaggatggccattgaaaggagggga
gaaatttgccccagcaggtagccaccaagcttgggga
cttggagggagggctttcaaacgtattttcataaaaa
agacctgtggagctgtcaatgctcagggattctctct
taaaatctaacagtattaatctgctaaaacatttgcc
ttttcatagCATCGAACAAACGACGGAGATCCTGTTG
TGCCTCTCACCTGCCGAAGCTGCCAATCTCAAGGAAG
GAATCAATTTTGTTCGAAATAAGAGCACTGGCAAGGA
TTACATCTTATTTAAGAATAAGAGCCGCCTGAAGGCA
TGTAAGAACATGTGCAAGCACCAAGGAGGCCTCTTCA
TTAAAGACATTGAGGATCTAAATGGAAGgtactgaga
atcctttgctttctccctggcgatcctttctcccaat
taggtttggcaggaaatgtgctcattgagaaatttta
aatgatccaatcaacatgctatttcccccagcacatg
cctaactttttcttaagctcctttacggcagctctct
gattttgatttatgaccttgacttaatttcccatcct
ctctgaagaactattgtttaaaatgtattcctagttg
ataaacagtgaaacttctaaggcacatgtgtgtgtgt
gtgtgtgtgtgtgtgtgtttaccagcttttatattca
aagactcaagcctcttttggatttcctttcctgctct
ctcagaagtgtgtgtgtgaggtgagtgcttgtccaaa
cactgccctagaacagagagactttccctgatgaaaa
cccgaaaaatggcagagctctagctgcacctggcctc
aacagcggctcttctgatcatttcttggaagaacgag
tgctggtaccccttttccccagccccttgattaaacc
tgcatatcgcttgcctccccatctcaggagcaattct
aggagggagggtgggctttcttttcaggattgacaaa
gctacccagcttgcaaaccagggggatctgggggggg
ggtttgcacctgatgctcccccactgataatgaatga
gggattgaccccatcttttcaagctttgcttcagcct
aacttgactctcgtagtgtttcagccgtttccatatt
aggccttccaccgtgtcgtgtcgtcaatcttatttct
caggtcatctgtgggcagtttagtgcgaatggactca
gaggtaactggtagctgtccaagagctccctgctcta
actgtatagaagatcaccacccaagtctggaatcttc
ttacactggcccacagacttgcatcactgcatactta
gcttcagggcccagctcccaggttaagtgctgtcata
cctgtagcttgcttggctctgcagatagggttgctag
attaggcaaatagagggtgcccagtcaaatttgcatt
tcagataaacaacgaatatatttttagttagatatgt
ttcaggcactgcatgggacatacttttggtaggcagc
ctactctggaagaacctcttggttgtttgctgacaga
ctgcttttgagtcccttgcatcttctgggtggtttca
agttagggagacctcagccataggttgttctgtcacc
aagaagcttctgcaagcacgtgcaggccttgaggtct
tccgacttgtggcccggggactctgctttttctctgt
ccttttttctccttagtgggccatgtcctgtggtgtg
tcttagccagttgtttaagggagtgttgcagctttat
gattaagagcatggtctttccttgcaaactgcttggt
ttagaagcctggctccaccacttagcggctctgtgac
ctcggacacatttcttagcctttctgggcctcgctct
tcttcctcataaagtgaaaatgaaagtagacaaagcc
ttctctgtctggctactgagaggatggagtgatttca
tacacataaagcacttaaaataatgtctggcatatga
tacatgctcaataaatgtcacttacatttgctattat
tattactctgccatgatcttgtgtagcttaagaacag
aggtctttacaggaattcaggctgttcttgaatctgg
cttgctcagcttaatatggtaattgctttgccacaga
ctggtcttcctctccttcacccaaagccttagggggt
gaacgatcccagtttcaacctattctgttggcaggct
aacatggagatggcaccatcttagctctgctgcaggt
ggggagccagattcacccagctttgctcccagataca
gctccccaagcatttatatgctgaaactccatcccag
agcagtctacatggtacactcccccatccatctctcc
aaatttggctgcttctacttaggctctctgtgcagca
attcacctgaaatatctcttccacgatacagtcaagg
gcagtgacctacctgttccaccttcccttcctcagcc
atttttcttctttgtacataatcaagatcaggaactc
tcataagctgtggtcctcattttgtcaatctaatttc
acagcctcttggcacatgaagctgtcctctctctcct
ttctgcctactgcccatgagcagttgtgacactgcca
catttctcctttaacgacccagcctgctgaatagctg
catttggaatgttttcaatttttgttaatttatttat
ttcatcttttttttttttttttttttttttttttttt
agggccgcacccatgggatatggaggttcccaggcta
gggatccaatgggagctgtagctgctggcctacacca
cagccacagcaatgcacaattcgagccaatctttgac
ctacaccagagctcacggcaacactggattcttaacc
cactgattgaggccagggatcaaactctcgtcctcat
agatacgagtcagattcgttaacctctgagccatgat
agttgttagttactcattgatgagaaaggaagtgtca
caaaatatcctccataagtcgaagtttgaatatgttt
tctgccttgttactagaaaagagcattaaaaattctt
gattggaatgaagcttggaaaaaatcagcatagttta
ctgatatataagtgaaaatagaccttgttagtttaaa
ccatctgatatttctggtggaagacatatttgtctgt
aaaaaaaaaaaatcttgaacctgtttaaaaaaaaaac
ttgactggaaacactaccaaaatatgggagttcctac
tgggacacagcagaaatgaatctaactagtatccatg
aggacacaggtttgatgcctggcctcgctaagtgggt
taaggatatggtgttgctgcagctccaattcaacccc
tatcctgggaacccccatatgccaccctaaaaagcaa
aaagaaaggtgctgccctaaaaagcaaaaagaaagaa
agaaagacagccagacagactaccaaatatggagagg
aaatggaacttttaggccctatctccaactatcacat
ccctatcaccgtctggtaagaaatggaaaaaatatta
ctaagcctcctttgttgctacaattaatctgattctc
attctgaagcagtgttgccagagttaacaaataaaaa
tgcaaagctgggtagttaaatttgaattacagataaa
caaattttcagtatatgttcaatatcgtgtaagacgt
tttaaaataattttttatttatctgaaatttatattt
ttcctgtattttatctggcaaccatgatcagaaatct
ttaaacaatcaggaagtcttttttcttagacaaatga
aaatttgagttgatcttaggtttagtacactatacta
ggggccaagggttatagtgtgactattaaatcacaga
taatctttattactacattatttccttatactggccc
cacttggatcttacccagcttagcttttgtatgagag
tcatccttaaagatgactttattctttaaaaaaaaaa
acaaattttaagggctgcacccatagcatatagaagt
tcctaggctagcggtcaaattagagctgcagctgcca
gcctatgccacagccacagcaatgccagatctgagct
gcatctgtgacctacactgcagcttgcagcaatgctg
gatccttaacccattgaacaatgccagggattgaaca
cacatcctcatggatactgctcaggttcctaacctgc
tgagccacagttggaactccaaagcagactttattct
gatggctctgctgatctctaacacgttattttgtgcc
atggtgtttatcttcactttactcaagtcagggaaac
acgaagagtctcatacaggataaacccaaggagaaat
gtgcaaagtcacatacaaatcaaactgacaaaaatca
aatacaaggaaaaaatatcttcactttcaaaatcacc
tactgatgatgagtttatatttccttggatatttgaa
tattagctatttttttcctttcatgagttttgtgttc
aaccaactacagtcgtttactttgatcacagaataat
gcatttaagccttaaatagattaatatttattttcac
catttcataaacctaagtacaatttccatccagGTCT
GTTAAATGCACAAAACACAACTGGAAGTTAGATGTAA
GCAGCATGAAGTATATCAATCCTCCTGGAAGCTTCTG
TCAAGACGAACTGGgtaaataccatcaatactgatca
atgttttctgctgttactgtcattggggtccctcttg
tcaacttgtttccaatctcattagaagccttggatgc
attctgattttaaactgaggtattttaaaagtaacca
tcactgaaaattctaggcaagttttctctaaaaaatc
ccttcattcattcatttgttcagtaagtatttgatga
gaccttaccatgtgtaaacattgcactaggtattaag
aaatacaaagatggataagatagagtcggcgtaaatg
agatgatataatgagacgttataatgaaactcacaat
tccagttgggaaataaagtccttcaaattccatgact
ctttctggcacacgttagaggctacagcttctgtgtg
attctcatgctggctccacttccactttttccttctt
cctactcaagaaagcctatagaaatatgagtaagaag
ggcttaatcataggaataaatttgtctctgttctaag
tgattaaaaatgtctttatcagtataaaaagttactt
gggaagattcttaaaactgcttttacacactgttcta
gaatgactgttatataaataaaaaagtagatttgatc
taacacaattaaatgacctttggaaatattgactaat
tctcaccttgcccctcaaagggatgcctgaaccattt
ccttcttttgccagaaagcccccaccctttgtctgtt
gacctagcctaggaaatcttcagatcacgttgttagc
acgaactggttacatgtgctgtacaaatactatttaa
ttcatctgattaaaaaaaaagagataagaagcaaaag
tttgactatcttaaactgtttgcgtaggtgagaggac
aattgaccatctactttatgagtatgtaacccagaaa
cttaaagctccttaagggagctaagtcttttggataa
gacctatagtgagaccttttagcaaaatggttaagac
tgaatggagctcactagcgtgggttcatatcctgatg
ctcaaacacgcaattaaatgactttaggtgggttagt
ctctgttccttagtttcctcaatgggagataatattg
gtagtagcgattttactgggttgttgaaagaacatct
gttaaatgttcagaacgtgttacgacagagtacagag
taatgatttgcttgtatatgtatgactcaaatagtct
gccatatgccttgtgactgggtcctgtggagcaggaa
ggagggatttcccacccagcagaaagttgggtaaact
ggaaaatagactgaggccaggaaatgatgcaaagcgt
tgatgttcactgccacggcaggtgaagggcagggcca
gagttgtcagtagggtcaggggaggactggaaataac
caagacccactgcacttttcagcctttgctccagtaa
ggtaatgttgtgagagtagaaaattttgttaacagaa
cccacttttcagtacagtgctaccaatactgtagtga
tttcataccacatcccaagaaagaaaaagatggctca
atcccatgtgagctgagattatttggttttattgtta
aataaatagcattgtgtggtcatcattaaaaaaggta
gatgttaggaaagtagaaggaagaagactctcaccta
cattttcatcactgttttggtatctgccagttgtcac
cttggtccccttccccgcctctcccctgcctcctctt
cctccttctcctttttttggaatacaattcaggtacc
ataaaatttacccttttagagtgtttgactcaatggt
ttttagtattttcacatgttgtgctattactatcact
atataattccaggtcattcacatcaccccccaaagaa
accttctaactattagcagtccattcccttcttccct
cagcccctggcaaccactaatctacttactgtctcca
tggatgttcctatattgaatcaagctagcataaaccc
cacttgctcatggtcataattcttttttatagtgcta
aattacatttgctaatattcaattaaggatttctatg
tccatattcataaggaatattggtgtgtagttttctc
tttgtgtgatatctttgtctggttgggggatcagagt
aataattactgctctcatagaatgaattgagaagtgt
tccctccttttctatttattggaagagtttgtgaagt
atattggtattgattcttctttaaacatttggtcaga
ttcaccagtgaagccatctgggccatggctaatcttt
gtgaaaagttttttgattactaattaaatctctttaa
tttgttatgggtctgctcctcagacgttctagttctt
cttgagtcagttttgttcatttgtttcttcctaggac
tttctccctttcatttggattatttagattgatagta
atatcccccttttaattcctggctgtagtaatttggg
tcttttctcttttttcttggtcagtttagctaaaggt
ttgtaattgtattaatcttttcaaataactaactttt
ttgttttgtttgttttttgttttttgttttttgtttt
ttgtttttttttgctttttaaggctgcacctgaggca
tatggaagttctcaggctagaggtctaatcggagcta
cagctgctggcctataccacaaccatagcaatgccag
attcaagctgcatctgcgacctacaccacaactcggc
cagggatcacacccgcaacctcatggttcctagtcgg
atttgttaaccactgtgccacgacgggaactcccgcc
cattttttttaacacctcatactttaacataaagatg
ggcttcacatggactgatagctcaaatgaggaaggta
agactatgaaagtaatggaagaaatgtagactatttt
tgtgacctagagattactgatacttcttgacttttca
aacaatacttcaaaagtacagcccaaagggaaaaaag
aaagaaaaaagaaacacacatatacacaaacctagtg
aataagatatcatcgatacactacagatttctatgaa
ctggaagaccccatggacaaagttaaagaacatatga
tagtttgagtgattattttgcaatatttacaaccaat
gagggaatattatccagcttataggaggaagtaatgc
aaatcgacaagaaaaagataggaaacccaatataaaa
attaagaaaatacaaaaattaagaaaggatatgaact
agcattttacaaaagaaaaatctccaaaagtcaatca
gcacatgaaaatatgctcaaacctattaattattaga
aaactacagactgaagcaatgaggtgctttactttac
atctttttgactgataaaaagttagaaacaaaggtga
tatcaaatgtcagggataaaaggatatagaaatcgtc
atgcctgtggtgggagtatggccggtgcagtcatgtg
ggaaggtaatctgacagtggttaggcagagcaggttt
atgaatacactgtggcccatcaatcccacgcctgttt
atgtaccaaagaaatcctgttgtggcagaatctatgg
gtccacccctgggagcatgaattaataaaatgtggca
ccagggtgtgtgaaactccagctagagatgagatgtc
cacatggcaacatgaatgcatcttagaaacatagatt
tgagtgaaaaagagtaagaaacagccgggaaacccaa
taccatttataaaaattaaagatgcacacatacaatg
tagtaaatattttgcatgaactttcaaatggttgcct
acagggggggagagtaaagaagagtagaaaacaaaga
taaagggagtaagtaagtagctctgcctggactgaat
ataatgtgtcatgaactgagaaatatggttaacataa
tcctcttaacttgaggtcctaaatgaatgaatgagtc
cactattcatttacccattctttaatgtgtattgcat
tataatccatttttttagaaccaacgaattttgttcc
cataactactaatcagcctgccttttctccctcattc
ccttatcagctcaggggcattcctagtttttcaaacg
ttcctcatttgaaccaaaaatagcatcattgtttaaa
ttatacttgttttcaaatacgatgcttatatattcca
agtgtgtttgcccattttcttaggtggtagaaatttt
tcattctacttttctatctactcagattttcccgttg
gaattatttccattgctattaaacttagaagtccccc
ctgtgatatgccatttttttcatactttttaagcact
tggttgcttttctttgtgtctttaagcacctagaata
cttataaccattgcacagcactgtgtatcaggcagcc
cttcctcttccactaatttatggtccttctcttagac
tatattaaactgttatttaattaggatcctctcttcg
tccttatgatttaattattatagttttctaatatgtt
tttattataattcctcttcattattcctccctattaa
aaattttaatgaattccatttgtttgttcttctagtt
aaatattaagtcataatccaaataacttagatgtcat
tagtttatgtggtcaaagtaaggataccacatcttta
tagatgcaggcagttggcagatgtcatgattttcttc
agtgcataaatgcaatttatctttgagcaaggggcat
aaaaacttttatggtattggctttgaaataatagtta
agaactgcagactcagtttttcctgcttttcttgaaa
aagaacacttctaaagaaggaaaatccttaagcatgg
atatcgatgtaattttctgaaagtctcctgtaattcc
ttgggatttttgttgttgtttgttggtcggttttttt
gggtttttgtttgtttgttttgttttgttttgttttg
cttttagggctgcacctgtggcatatggaagttccca
ggctaggggtccaactggagctacagctgccagccta
ctccacagccacagcaacatgggatcctagctgcatc
tgtgacctaaccacagctcttggtaatgccagattgt
taacccactgagcaatgccagagatcgaatctgcctc
ctcatggacactagtcagattagtttctgctgagcca
caatgggaattcccaattccttgtatttttgaactgg
ttatgtgctagcatataattttgtttcttgaatcttt
gtgggtttttttttttttttttttttgtctcttgtct
ttttaaggctgcacccacagcatatggaggttcccag
gctagaggtcaaattggagctacagctgccagcctac
acaacaactgcagcaaagtggggcccaacttatatga
cagttcgtggcaatgccggattcctaacccactgagc
agggccagggatcgaacctgagtttccagtcagtttc
gttaaccactgagccatgatagtaactcctgtttgtt
cagtcttgaacctcctttttaattctttattccttga
gggtgaaataattgccataataatactatcatttatt
acatgccttctctgtgctaggcatagtgacactttag
gatttattatatcacttaatccctacaacaactctgc
aaagtatgtatcataatcctatttgacagatcaggaa
attgcagcccaggatgcagataatatgcatccatcac
aagtgactagatatagtccctctgctattcagcaggg
tctcattgcctttccattccaaatgcaatagtttgca
tctattgtatatgtgttttggggtttttttgtctttt
tttttttttttgtcttttctggggcctcacccttggc
ataggtaggttcccaggctaggggtcaaattgaagct
gcagctgccagcctacaccacagccacagcaactcgg
gatctgagcctcatctgcaacctacaccaaagctcac
ggcaacaccggatccttaacccactgagtgaggccag
agatcaaaccggcaacctcatggttcctagtcggatt
cattaaccactgagccacgatgggaactccctaaatg
caatagtttgctctattaaccccaaactcccagtcca
tcccactccctcctcctccctcttggcaaccacaagt
ctgttctccatgtccatgattttcttttctggggaaa
gtttcatttgtgccatttttcattttacgggtaattt
ttacttcagtttcttccactagcagttgtcttaaagt
gagtataattaatattcatttggaaaatgtaagcaaa
acattttttaaagggccatgcccacagcatatgaaag
tttctgggccaggggttgaatccaggctccaagttgc
agctgtgccctacactgcagctgggcaatgctggatc
ctttaacccactgtgcccggctagggatcaaacctgc
atttccacagctacccgagccattgcagttggattct
taacccactgcactacagtgggaactcccacaaaaca
ttttttaatgtcctttgaataaagtaggaaagtgctc
gtctttgagggcagggcggcaatgccatttccacaag
gtttgctttggcttgggacctcatctgctgtcattta
gtaatgaataaaattgctgacagtaataggattaact
gtgtgtggagatagccagggttagagataaaaacact
ggagaagtcaaataagttgctcgaggtcctctagcta
ataagctattaagtgggagagtgagggctagaaacag
gccatctgtctcccaagcacatgtccattagtggttt
gctgatagccttccagaacaacagagaggactctcaa
acatggtcttgcctccctccaattgatcccctccatg
tgcctcacagcgggtctttctaaaattaagttctgat
tttaattctcccttgctatagcacttaggtatggctt
tcagccgtgcaataaaaagcaggcaagagtggctcaa
tcatataggaggttgtttttcttagatcccaagcagg
taatcctgggcattatggttgttctgcgtttatcaag
gagccaaattctctatcacctcctgttctatcctcct
cagtatctggctctattcttcagcatctcaagatggc
ttgtgctcctccaagcatggcagtcaaattccacaca
agagggggaaatatgaagggcagacagtgctggtctc
ctgagctgtccctctttgtcggggaaataaatgtatt
ccttcatgtcccgtgagacttctgaagtagacgtctg
cttacgtctcacccaccagaactatgtaaactgcaca
tagtgctaggtctacatagccactcataactgccagg
gggtgggaaatctttaaataggtgtaccaccacacaa
ttaggatgctaatagtaagggagaaggagagaatagg
ttttgcgcaagccaccagcatgcctgccacaattgct
taaaattcttcattgacccctcattgccacaggatga
aatccaaacgccttcttagttgggaatctgacctacc
tgtctctcccacctggttcagacaccattctccttgg
tcataaaattccagtcatttgtgaacatccagctccc
ccatgcctccatgcctttgcacatgctgttcttttat
cttttatgttgtccttttatcttttatccaaaagaga
tatcccatcatcacatctcttttgtcagcccccaaat
actttgtctttcaagttcagctggaggattacctcct
atttgaaatcagctttgtctcttacaaccaaacaagg
ttttccttccgagacactcccacagcaccttgaactc
atctctatcaatcattcatttgattgtaatgaagttg
ttggtggtatgcctgtgtctctgacacatctgcgatc
tcatgagttccttaagtggaatgtgaatagcgggatg
aacagtattggtcttcagccctcatctctgcagatgt
tgcttgacccaaatgagcgttgccttttattttgatt
ttgctttgatttgtctactccatgtacttgagccatg
catttctgtcttagcgatgctttttaaaagtcatttt
ttggttgattatccagatttgtccacctttgcttcta
gTTGTAGAAAAGGATGAAGAAAATGGAGTTTTGCTTC
TAGAACTAAATCCTCCTAACCCGTGGGATTCAGAACC
CAGATCTCCTGAAGATTTGGCATTTGGGGAAGTGCAG
gtaaggaaatgttaaattgcaatattcttaaaaacac
aaataaagctaacatatcaatttatatatatatatat
atatatatttttttttttttttacatcttatattacc
ttgagtattcttggaagtggctagttaggacatataa
taaagttattctgaagtctttttttttctttttccat
ggtgagcagtggcttgatgtggatctcagctcccaga
cgaggcactgaacctgagccgcagtggtgaaagcacc
aagttctagccactagaccaccagggaactccctatt
ctaaattcttgagcacattatttaggaacctcaggaa
cttggcaggattacaggaaatatatctagatttaaaa
aaaaatcttttaacagaggtcccaaaggagagtcatg
cacagctatgggaggaagttcagaaactgcccttgct
accagatcactgtcagataaaatggccagctacatgt
ttctgcacattgccctaagatctttacaaacttttct
gtgcatttttccacttttaaaagaaaatttcggggtt
cctgttgttgctcagtggttaacgaacccaactagta
tccatggggacaggggttcgagccctggcctcactca
gtgggttaagaatctggcattgctgtggctgtggcgt
aggctggcggctacagctcagattggacccctagcct
gagaacctccatatgccgcaggtatggccctaaaaaa
aaaaaaaaagagagagagagaatttcctccagaaaaa
acactttggtagtttgggagaagtaaacaaccaaaaa
ttaatttttctggagtattcgggaagcttgtaaaaat
gggctcttacttttttgaggagacaaatgggaaccta
cccagaagaggcacaatcacctgcatttgatttcttg
acctctccctaccttctttgctggctttccacatttg
gatttctgtgaccttatctctgctccttggtgttttc
atttttcctgtggacgtgccagactatgggaagggag
taaggcgttgatttagaatcctgtagtctctgcctgt
ctctagtcattgttttcacccttctcaaaggaccttg
acatcctgagtgagtccgcaagtaatttaggggagaa
gccttagaagccagtgcagccaggctacatgactgtg
tccacccactggaaccagtcatttttatacctattca
cagcccccctaccatttaaatccccagaggtctgcca
taacatctgtaactccctttcctggtaaattgtgttc
taaaagactggtaacaaaagatattctgtggtacaga
gcataattaaatacctgggagctgatttgagtggggt
aaatcaactggtttgacccctaaaacccaccatgagc
atttctgttctaataaagtaatgcccgtgctgggaat
tgtgttctacggaaatgctcctgctgtgtctttcttg
agtcctgtgtcattgaacatgcttaggagcaaaggtc
ccccatgtggcttgtctgctaaccagcccagttcctt
gttctggctggtaatgatccgatcatctgaatctcac
tgtcttccaacagATCACGTACCTTACTCACGCCTGC
ATGGACCTCAAGCTGGGGGACAAGAGAATGGTGTTCG
ACCCTTGGTTAATCGGTCCTGCTTTTGCGCGAGGATG
GTGGTTACTACACGAGCCTCCATCTGATTGGCTGGAG
AGGCTGAGCCGCGCAGACTTAATTTACATCAGTCACA
TGCACTCAGACCACCTGAGgtaaggaagggtgagccc
tcaactccgaagaaaatgctgcaataaaagcactgtt
ggttttcagctttttttgtaatcactgctcattctga
ggtagattcgcttgggctgataaaaagagaactaatt
cagataaatgcttgcatttgcatagcctcttttttta
aaaactttttttttttttttttttttttggcttttca
gggctgaacctgtggcatatggaggttcccaggctag
gggtcgaatcagagctgtagccccgggcctatgccac
tgccatagcaacatgcatagcctcctttttaaagtgc
cttcctgttttataccattgggatgtgagaagagcta
ttgtggaaangagcatggggtnataaccctggacctc
tcacgtcctaccctcaggntagtgggaaaactctgag
tttaaggacatcaaagtgactcctttttagttacatt
atggnggaatcagcncatatttttacaaggggcggag
ngtaanctgttggagtttacaagacatatggtggcat
tgcaactacttaaccctactattatagcacaaaagca
gccatagtcggtcctgaaggagcctgatgccttcagc
tttataggcaatgacgtgtgaatatcacaaacagttt
cctgtgtcaccaaacatgattgccttttgatttccct
ttcaaccctttaaaaaaaggtaaaagcccttcttagc
attcagcagcaggtcgctgtgttttgccaactcctga
tctgtagcatttcgacaacactgagctctcaactttt
gaaccctgagtccaccacatccttcagtgaaaccaga
gccatgtgatactaaggatagaaacggaaacttcctg
aatccaggcgatcaaataggagggagaaagaggaact
ttcattgacaaaaccacaaatattgtgaatggactgt
tacaaatattgtgaatgctcctattcccaaccccctg
gcttcattacagggtcctatgtgttcatccttattga
gaaatttgtattgctactgccaggttgccaataccca
gcggtgcccatggtgttctaaaatgaagcaatttcaa
ctttatttttttttcctgtgactttacatgacaagtt
cacatgaaggatatactttgatagtaatgtccatggt
tagggaatatacattgtttgctggttgactggcccct
ggatttttctattgaaagtccatgagatctcgaaggc
acaggtgtgttctctcgctttttaaggaaagggttta
aaaacttaagtaattaacagctttagtaacaaattac
ctataacacacttaaaaaccgaataccacccactgga
gtattgtgctacgattaaaaatctacttgtctactac
atgatatctttgtcccacagaaggttctggaaccaaa
cttgtaatttcaggattatgagagccctgagttcacg
cattgtgtaataactatgttgtgtggtagtcaatttg
tacagcttgcttagagagaacaatgtcaagttaagga
ggcgattgctttatagtgcctgtcacaagatgccatt
gccattgtcctagcaagagatattctatgggagtata
ctacattttagtgaggataagaactttttatggcatt
tagtccggtcatttcccaaccactgtcctgaaaacca
atttcattttgatttcaggggcttgtgtgggcaaagt
tgccaggcattaaaaagccacttctcaactgtagtat
cacaatgctttagttgggtagtgtattgcagatagct
tatggctgaaaagttaccaagccttgcagttttcact
cctttgagtttatttccttgacagaattgaccctgag
ttttttgactcttacctgctcaactaataaacaccag
agtcatttatctccattgctcttgtctgacctttatt
taccgaataatgccttatgggttcacaaaaacaaggg
gggagggggccagcatgccttagaaactgtctttagt
caagaaatgngattttattatgtaaatatatgagtat
tataatagatagtgttattaatagacaccagcaagaa
ttgtcaataatttaaaaatcacaaattaaaatacatc
catgttagnatcatttatcctaactcccaaagccctt
taaagtggaagatttagatgttaacccagagattaaa
gacatgttcaaagaatccttgatttttttttgaatcc
cttgtttttagagaagaaaacctaatgattttccccc
tctggattctacatattaaatatagttttggaacttg
aatattagtatggttaataagtgctgatatgctgatt
ttgtttatatttttcttatgagtaaatatcctatatc
accagacattatagtctatgtacaaatatgattctta
aacctgatagcacattcattagagttggaattgcctt
ttttttttttttttttacagttgcacctgcaacatat
gaaagttcccaggctaggggttgaatccaagctgcag
ctgccaccctacattacagccgtagtaacagcagatc
cgagctgcatctgcaacctatgctgcagctcagggca
atgccagatccactgagtgaagccagggatggaactt
gcatcctcatagagacaacgtcgtgtccttaacccac
tgagccagaacaggaactccagaatttcctttcaata
gaagaagcaccaagtttaggatcagaaagcctgaatt
tgaataccaatttactatttgttagtcatatatttct
gagtgtgtttcctcatttattaaaagcagactaaaag
atgagagggtcttttgttgagaatcaaatacaataac
atgtgaaagtgtgtaacactatgattgaaatatacct
acacagccatttatttgtttattgttcatgttttgcc
acccacacagtagtatataatccttttatgtaataaa
tgctaataatgaaagttggcaacttatgtaagtactc
aaaatgctggaggtcatgggatactgactgggatact
acagaggtaatgtcatttcctctgcgctaaacttatt
gtctgtagttagggactgactctctttaggacaagga
gttcattctgtataccatgtgtggctatcacccttcg
aagttgaaaaactgccccagggtgggcacccatccgt
tctcttagatatatggccgagacctttctctcactgg
gagggaaccacactgaggaatgagaaaaaaaaaagga
aaatcaagatgaaaccagaaacctctttggcataact
tctccactctgtactttttgttagaactacccttgca
caaagcagcatcagtgtggaagacagaatttgcacac
ctggtttgatatacatgccgtggtatatgggatgttc
taacaataaagaggactctcccaggaaatctcctcac
tgttatagtcagccttgaggaaagagctcttcttttg
gactctggggagagtctagtttttcagttccttgctt
ctcggtcaacgtgttggtgtaaggatcacactctctc
ttatactagataattctattttttcacctttcaacct
gtctatccttctgaccctagTTACCCAACACTGAAGA
AGCTTGCTGAGAGAAGACCAGATGTTCCCATTTATGT
TGGCAACACGGAAAGACCTGTATTTTGGAATCTGAAT
CAGAGTGGCGTCCAGTTGACTAATATCAATGTAGTGC
CATTTGGAATATGGCAGCAGgtctgtgttctttccac
atgtttgggttatcctttctgggataaatttgaggcg
agatagaaactttaagactaaagaaacaatggcctac
tttttttgtacatggtcctgtgtaaatctctatttga
gctgaaataagatggtcttcctctccaattatccatg
gtatgactctgatggataacaaatccagttctgaaaa
aaggggatttctttccagaagagaggacagtttcttc
aaatattgaattaaaagcaaaatagatgtaaaccgtt
gttggttttattgttgaattccagGTAGACAAAAATC
TTCGATTCATGATCTTGATGGATGGCGTTCATCCTGA
GATGGACACTTGCATTATTGTGGAATACAAAGgtatt
ttcttgccctcatcagcatgaaattgctcttggtaga
aaggataataatagttatccaaaacatcatcctatgt
tcatctgtttcttccctcttcattttccatagagtac
agtatattctatctctgtcttaggaaaatggactgtc
attcatataatcttacagagaatcaattagtaatgta
ctctatgccgtgacaggtgcgaaggttttttttgaag
gcaacagataaaaatatcctatatttcacctattgta
atttccttaaaactgacattattgaataaatgtttta
ctttcatcttgaatattattatgttatggaatcatac
actttaccccaataatcatcgaaaagaatttccaaaa
ggttgagagagttgtgttgatctgattactttcctct
gcatcctttgagcttaacctttgaatatagtttgcta
aggaaagtagtctgtttatgatcctggagtggaatca
ggctaagtgtcctcattcagaacccactgaatcagac
agaatgaatttatttccttgaaagttcaaaatgtgtc
actcaagagtataaattttcaaatcttactctctctt
ttccttggatgtgagcaattcttcgataattgaatga
ggcagattatatagacttacatggaagactgttggcc
tgagaattcaaactatggtgttcaagacttcacngng
agtccgatgccatttgtttcccacagGTCATAAAATA
CTCAATACAGTGGATTGCACCAGACCCAATGGAGGAA
GGCTGCCTATGAAGGTTGCATTAATGATGAGTGATTT
TGCTGGAGGAGCTTCAGGCTTTCCAATGACTTTCAGT
GGTGGAAAATTTACTGgtaattctttatatcaaaatg
atgccaaggagttggcatggcactttgctaaatgctg
tgtgaatcaatacaaagataattaggacatggttctt
cctcacaagaggtgtgcaatcttattgggaaatcata
cttgcaagtcacaaatatagactaaagtttccagctg
agaatatgctgatggagcatgaaacactaaggagaca
gggagaatctcaggaaaaatcaagaataatttggatc
aaatggattcctgacatagaacatagagctgatcaga
aagagtctgacattggtaatccaggcttaagtgctct
ttgtatgtggttcagaacagagtgtgggcagcctgag
ggggatacatacccttgacctcgtggaaagctcatac
gggggagggatgaggctaaggaagcccctctaaagtg
tgggattacgagaggttgggggggtggtagggaaaat
agtggtcaaagagtataaacttccagttacaagatga
ataaattctaggggtataataacagcatggcactata
gatagcatattgtactatatactggaagtgctgagag
tagatcttacatgttctaaccacacacacacacacac
acacacacacaccacacacacacaccacacacacaca
cgtgcacacaaacagaaatggtaattatgtgaggtga
tggcggtgttaactaactttattgtggtcatcattta
gccatacatgcatgtcatgaaatcaccatgttgtaca
ccttaaagttatgtaatactagatgtcagttatatct
caaagctagaaaaaatgtggggaccaaggcagaagct
cttctgctctgtgtctaagggtggttctggggctggg
atggggaggatggttaagtggtatatttttttcatac
ctttgctcagtactatcattgtaagtgttcaatatat
gtctgcttaataaattaatgtttttagtaagtaatct
ctgtttagtaatgtgtcagaaatgccctacttgcaat
aggaagaaaacctgtccagtcccttccttttttctgt
aagtctgatttcattgcctcccagaatgcatcaccat
gtgagagatagagggaaggtgctgtccttatggggtt
aacagtgtgactagggaggcaaaatatacctactaaa
gggtggtagcataattcagttcttatgtgagtatgtg
tatgtgtgtgagtatgtgcacatgcacatacatttta
aaaggtctgtaatatactaacatgttcatagtggtta
cacctagcttataggtaacattttttcccctgtatcc
ttgtttgtgtttatcaaattttcataacagtaatggt
agaaggagtacctgacatggtaccatacatgctnggn
cctgcctaatttctcnatttcctttattgcccatacc
cccattgcttgacaagcataagtccatactggcttgt
tttcgttcctcagactcagtacaccatgtagctccat
gccctgggtctttgtatgtgctatttctactgcttag
agtgctattgcccctgaccaccacgtggtcagcaact
tctcttctgcgtctgtgtctatggtctatgattccag
atgtcatcttcactaactacccttctaatatgccctt
ccatcccacccgtcctcatccttaccccagccactct
ctatttggtggctctgttttattttcttcctagctca
tcactctttgaaatgaacttatttacttattcaatat
ttgcttctttcactagaatgaatgctccatgagagca
gggacctgctttatcttgctcgccactgtattcacag
tgcctagaactacgtctggcacatagtaggtgctcaa
taaatatcgatcaaatgaaagaatgagcaaacgaaca
aatgaacaacacgtgaggtaggcatcatgattccatc
aacagaggagaaaaccagacttaaagnaatgaagtgg
nggagctgcatttgatcttgactgactccaacatcca
tgctcttgaccactgtgcatctccagagtgtaatgaa
catactttacttttatattccaccaaaataacaaagc
catgcccatgttagtagagagttaatcgacagtgccc
ttaaaatatgcatgcacccagggtacaactatgcatg
ctgccctgtgttttcagttggatccaaatgaattgcc
gtaaacaaagaggggattcaatgtctttgactagttt
gggatattttcctagtaaccaactttgcaaaataaag
ccactaatgacaaggagctttgttctacttctgcatc
actcaactgtcaatttttatctcttgcaagacttcta
atctactagaacttttgtttttctgtgatttctgaac
agagaagactaatccaaaccctgtcattccagAGGAA
TGGAAAGCCCAATTCATTAAAACAGAAAGGAAGAAAC
TCCTGAACTACAAGGCTCGGCTGGTGAAGGACCTACA
ACCCAGAATTTACTGCCCCTTTCCTGGGTATTTCGTG
GAATCCCACCCAGCAGACAAgtatggctggatatttt
atataacgtgtttacgcataagttaatatatgctgaa
tgagtgatttagctgtgaaacaacatgaaatgagaaa
gaatgattagtaggggtctggagcttattttaacaag
cagcctgaaaacagagagtatgaataaaaaaaattaa
atacaagagctattaccaattatgtataatagtcttg
tacatctaacttcaattccaatcactatatgcttata
ctaaaaaacgaagtatagagtcaaccttctttgacta
acagctcttccctagtcagggacattagctcaagtat
agtctttatttttcctggggtaagaaaagaaggattg
ggaagtaggaatgcaaagaaataaaaaataattctgt
cattgttcaaataagaatgtcatctgaaaataaactg
ccttacatgggaatgctcttatttgtcagGTATATTA
AGGAAACAAACATCAAAAATGACCCAAATGAACTCAA
CAATCTTATCAAGAAGAATTCTGAGGTGGTAACCTGG
ACCCCAAGACCTGGAGCCACTCTTGATCTGGGTAGGA
TGCTAAAGGACCCAACAGACAGgtttgacttgaatat
ttacagggaacaaaaatgatttctgaattttttcatg
tttatgagaaaataaagggcatacctatggcctcttg
gcaggtccctgtttgtaggaatattaagtttttcttg
actagcatcctgagcttgtcatgcattaagatctaca
caccaccctttaaagtgggagtcttactgtataaaat
aaactattaaataagtatctttcaactctggggtggg
gggggagactgagttttttcacagtcctatataataa
ttttcttatcctataaaataattaggagttcccgtag
tggctcagcaatagcaaacccgactagtatcgatgag
gatgcgggttcgattcctggcccccctcagtgggtta
aggatctggcattgccgtgagctgtggtgtaggtggc
agacacggctcagatcccacgttactgtggctgtggc
ataggccagcagctccagctctgattagacccttagc
ctgggaacttccatatgctgtgggtgtggccttgaaa
aaaaataaataaataagataattactcaaatgttttc
cttgtctcagaaccttacttcaggataaagagtgaga
aagttttttttatgaagggccattattacagctcaaa
aataagttgtcttcagcaagtagaaagcaataagcct
gagagttagtgttcctatcagtgtaaatattacctcc
tcgccaatccccagacagtccatttgaacaattaacg
gtgccctgggagtacagttcagaaacattaatgtgga
tgttccagacctgtatttttataagtacttgtcttga
gccggatggaaccatcattcctcaccattatttagaa
gtggactgtgactctgttggagatcagggcacacggt
taccaaaagcacacccttctcctggccttacctttgc
aaagctggggtctgggacacagtcagctgattatacc
cttttactaacttcccacagctcaaatctggtcaatt
ctccttcacaaatctcttaaaaatccatcactcacct
ccagcctcttctgctgtggccttgattcagcctctca
caatttttttttaaccagaattctggcagtggcccct
gacttgcctctgtgctcccagccccgctgtcctctga
tccatcctccatgccagcctttttcaatctgctggtc
acgattcattgatgggttaggaaatcaatggcatcac
aactagcatttagaaaaaggaaataggcgttcccgcc
gtggcacagcagaaataaatccgactaggaaccataa
ggttgcgggttcaacccctggccttgttcagtgggtt
aaggatccggcattgccgtgggctgttttgtaagtca
cagacatggctctgatccggcattgctgtggctctgg
cgtaggcctgcagcatcagctccaattagacccctat
cctgggagcctccatatgctgcaagtgcagccctaaa
aaaaataaaaaaataaaaaaaaataaataaaagaagt
agacaaattgtatagaacaaccctgagtatgttgcct
gagcacatataacaagggtaagtattatttcaggaaa
ctctggtttcacagatactcttggcatatggacccct
agagtcctgatgtaaaatatattcttcctgggatctt
aggcaagaagtttgaaagctccaactctgcactgctg
ccaaagaaatgatttttaagtgcaaaactcttcccgt
tcccttccctgtataaaattccataggatctctccag
tgcctctaggataaaggcagttttcattctctagttc
aaggtgagagaagattttaattatttcacgttttagt
ggggaattcaagagtctggcacctgacatttgctgaa
ctctctccattatccctctctagttccccagacgcat
cctatggtagaaattcgcaaactagagtgagcgtcag
agtaacccaaggaaactgggtaaatgcagctccctgg
gctctaccccctgagattctgattcagtagatctgaa
gcagagccctggaatatgcatatgcatcattgtgtca
caccaagcattctgggtaatgagagttgatgttaggt
tctcagtagtaagacaagtatagagattccgggggac
tgagtgctcagctctgccttggggaggagggagaggg
ctaaagagaacaggagatggggacagggaatgctcaa
cctccaatcttaggcatttgagctatgtcttaggggt
caggaggaggttaccaatatagtgattaagagattga
ggttccagtcagagggatatgctggagaaggggggtg
aaaataatgtcataggtttggtgagtgcagatacttt
gagttttttaatatttttattgaaatatagttgattt
acaatgctcttagtgagtacaattactttgaataagt
gcatagatgtatgccattcttccagaaatgatttatt
gagctcctttgggcatcatgctaagtacaggggaaac
agctgtgaagaggtccttcccttatgaagtcattcat
ccccttcagtaaatgaaggtaaaggaaaaggatgaga
cagggacgccgtgttggaccagggtcagaaaggcctt
ataagaccttgcctggagggcaaggaacttgcctgtg
agtaaggagagcttgagaaagcgataaagcaaagaag
gaacattactgcattgtgttttagaaaaaccatgtcc
tggggaagaactcctagagtcaggggggccagttggg
agactgtgcttttttccaggaggagataagtgaggct
gctggctgagatggagcaaggatttagagaagcagat
atgagattcatttagaagttagacattttaggatctg
acacataatttatcaccaaaaccagtgcatctctggc
tttgggccaccagttttggagaagtggaatgtaggga
cctaccattacctgccaatctttactacacagatgcc
tatttccctcctcatatttcctttctccagatcacgt
cctattctattgccaggactcaagattccaccttgca
tgcagtgatccatcttcacactggatggacagctcta
gggatgtcagagcacactcccatactgctgactgggt
ctcctgtcagcccatctgtctatcagctgtggtatta
ttagtataataagagggctgtatatgagagacacaaa
attctaggtgtagctcaaagataggctagagttattc
ctatgtacaacaaatatttatgggaccccttctgtgt
actgtcatggttgctgctttcatcatacttgtagtct
aatggaggtgggggcagggcaggaataagcggatgtc
cacaaaatcagtaagaccacttatattcaacattttc
ataatttagttatttgagcccaaagggtccacatccg
tggtattccaacttttttttccccggacatggatctt
tatctttttttttttttcttttttgcggccagacctg
cggcatatggaagttcccaggccaggggttgaatggg
agttgcagctgcctggtctacaccacagccacagcaa
ggtgggatctgagctgcatctgtgacatacaccgcag
ctgaggtaacaccagattctgaacccactgaatgagg
ccagggatggaacccgtctccttatgaacactatgtc
atgttcttcaccctctgagccacaacgggaactccag
acttcgtctttaaatgtattctgacttggagagctat
cacactaagcaattaacaggagctgacctggtttagg
ctggggtggggccctactcctcaatgttccctgaggc
acatctgtgggacccctgggcatcatctatctgagca
gccttagagctgctcatccagttgactgttgatgtag
aagtgcaaacttctgccttccttatgcttlctttttt
cattgttctctcccctttgtgtctttaagCAAGGGCA
TCGTAGAGCCTCCAGAAGGGACTAAGATTTACAAGGA
TTCCTGGGATTTTGGCCCATATTTGAATATCTTGAAT
GCTGCTATAGGAGATGAAATATTTCGTCACTCATCCT
GGATAAAAGAATACTTCACTTGGGCTGGATTTAAGGA
TTATAACCTGGTGGTCAGGgtatgctatgaagttatt
atttgtttttgttttcttgtattacagagctatatga
aaacctcttagtattccagttggtttctcaataagca
ttcattgagccttactgactgtcagacggagggcgta
ttggactatgtgctgaaacaatcctttgttgaaaatg
tagggaatgttgaaaatgtagggaatgaaatgtagat
ccagctctgtttctcttttggaggattctttttcctc
catcaccgtgtcttggttcttgtttgttttgggtttt
tgtgggtgttgtattgtgttgtgttggttatggcagt
gacagctatttaaactgtgaaacgggggagttcccgt
cgtggcgcagtggttaacgaatccgactgggaaccat
gaggttgcgggttcggtccctgcccttgctcagtggg
ttaacgatccggcgttgccgtgagctgtggtgtaggt
tgcagacacggctcggatcccgcgttgctgtggctct
agcgtaggccagcggctacagctccgattggacccct
agcctgggaacctccatatgccgcaggagcggcccaa
agaaatagcaaaaagacaaaataaataaataaataaa
taagtaagtaaaataaactgtgaaacggggagttccc
ttcatggctcagcagttaacaaacccagctaggatcc
atgaggatgtaggttcgatccctggccttgctcagtg
ggttaagaatccagcgttgctgtgagctgtgatgtag
gtcgcagatgcagcccagatcctgcattgctgtggct
gtggcgtaggctggcagctgaagctccgattcaaccc
ctagcctgggaacatccatatgctgcaggtgtggcct
taagaggcaaaaaaataaaaaaataaaaaataaataa
attgtgggacagacaggtggctccactgcagagctgg
tgtcctgtagcagcctggaagcaggtaaggtaaggac
tgcagctgggtaaggactgaattgcaccaactgggaa
gtaagcctagatctagaacttaagttagccctgacat
agacacacagagctcaccagctaagtggttcagctta
taagctggtcactgaaactgaggatgtccacaaaagc
aaaataagtagcaacaggcagcgggatgcaagagaaa
gaggaggcctaaaatggtctgggaatccctgccatac
ctatattttatcctacttatatttagtgcctgaatgt
gtgcctggagagcaaagtttagggaaagcatcgggaa
atgcacagtattcatacccttaggaacaaagatcagt
tacctccagggtaaagactatttccaagtttaaattt
caacccctgaacattagtactgggtaccaggcaacac
ttgccatcctcaaaatcaatgaatcctaaaattcaac
ctgggggtcagtgacagtctgtgacaaagtttttgct
ggtcagtaacgaaataagtatgagcaccatctgagta
tggtcaccaagatgtcaactctctttcctttggacga
attgtcattattccaagattaggtcctttctattttt
gaggtgtgaaaacatctttcctttcataaaataaaag
gatagtaggtggaagaattttttttgttttttggtct
ttttgctatttctttgggccgcttctgcagcatatgg
aggttcccaggccaggggtcgaatcggagctttagcc
accggcccacgccagagccacagcaacacgggatcca
agccgcatctgcagcctacaccacagctcacggcaat
gccggatcgttaacccactgagcaagggcagggaccg
aacccgcaacctcatggttcctagtcggattcgttaa
ccactgcgccacgacgggaactcctaatgatactctt
ttatatttagctactatgtgatgatgagaaacagtcc
acattttattattttttagccaatttgatatctcatt
actaagataatgataattttctctataaattttattt
aagttagtgttatgaagtggttttgctagtgtagaag
gctaggatttgaattcagttcaagaaagaagagaggg
agggagggagagggatgggtagagggatggggcagtg
ggagagagcaaagaggagagacagtttttgtattaat
tctgcttcattgctatcatttaagggcacttgggtct
tgcacattctagaattttctaaggaccttgaccgcca
gattgatatgcttcttccctttaccatgttgtcattt
gaacagATGATTGAGACAGATGAGGACTTCAGCCCTT
TGCCTGGAGGATATGACTATTTGGTTGACTTTCTGGA
TTTATCCTTTCCAAAAGAAAGACCAAGCCGGGAACAT
CCATATGAGGAAgtaagcaggaataccagtggaagtg
cccctttcttccttccttcctaaataaacttttttat
tttggaacaactttagagttacagaaaagttgcaaag
atattatagacagtagtgtttatatatatatataaat
ttttttttgctttttatgaccacacctgtggcatatg
gaggttcccagtctaggggttgaattggagctacagc
tgccagtctgtgccataaccacagcaatgcaggatct
gggccacgtctgtgacctacaccaaagctcacagctg
gattcttaacccactgagcaaggccagggattgaacc
tgcatcctcgtggttcctagttggattcgtttccgct
ttgccgcaatgggaactccaaattattgttaatatct
tactttactggggtacatttgttacaaccaatactct
gatactgaaacattactgttaactccgtacttgcttc
tttttgagtcatttgcaaagactggcttcttgacctg
cttccttccaaacagctggcctgcctatgctgttctc
agacctgcaagcactgatctctgccccccttgccttc
tctccagtggtgtctccttccccaaacaaacccagtg
tggctctggaaagggagttaagtcaacataaaccaac
acatattttgttgagctccaattttgagcaaatccct
cacctacggcagacaggcatgatgttaagaactaggg
ctttggacacaaggtcaagaccaagaagggttcctca
cccctactgattcagataaccaataatgaggctttga
atccctgtccaaaggttgttttttttcccttctattg
agcttcttgccaccttatcagttttttttatgacagt
caaatgacatgatatatgtgagcatacatggtaattt
ttaattctatataaatgaatcactaaataaataggag
gatatatagtccacctttaagcgtattacacgtgtca
catgaatgtggcgacttaattgtagaggtttaaatgt
agcttcctataatagatgtgttcctaaactacatttt
aatcattggacttgtatttttatgttagcacttgctg
ttgaagaaaagcctatgccaaaagttcagtgaaacca
ataatccactgccagctttctgagttaaaaaaaatcc
ctgggttttcacacacaggaacaccctgtgtgaaaca
ctcatttagagcaaaatgcatctgataaggagttcct
gttgtgcctcaactggttaaggacctgacattctcca
tgagaatgtgagtttgatccccggccccactcgatgg
gttaaggatctggtgttgccacaaactgcagctccga
ttcatctcctagcctagaaacttccacagcccagaat
atgccacagaattcggctgtttaaaaaaaaaaagaaa
aaaaaaagaatcataaatgtgttggtttgttcaccaa
atacatgataacttgctcttgccaagctcagcttcat
aaatattaagtcatttaatacagcagccaccttatga
acagatattactatacttcccatttacagataaggaa
aatgccatatttaaccaagagattaaataactttccc
gaggtcttatagcaagtaaatcatggtgcaggggttt
gaccacacgcagtctatctccagagtctgtgtattta
gccactgttttactttcaaatttaaatttataaaact
tctaaattatctgttaaccataatctttggaattttt
aaaaccacgagttcctataaaatgtttcattgaaagt
aagtcacttttccatagcttttgataatacatctgta
ggataaagtaagccacagctctcttgcagacttggta
caccctggggcaaagcatcatgcctgtcacgtacatg
gtggtccttactttgactctcagtgcttttattgccc
aggaattttgtgagatttctagttgttgaggtttgtt
taaagaggttatgccggtacttggaagagctcttttc
ttgctacctggagccttctcatatttcctttttgagg
agggacatgaattgcctttcaaactcataaatatatt
ttctagtacacaagtctccatcttccttagacgcatg
gctcctggagttctccatcctcctgctccactttggg
tgggctcctctctgggtctgccaccaatctgccaccc
agagacatccttgacccacttccagaccccaccatgg
cttcactttcttcgctttcctcctttgtggaaccttc
tgcttaagaatctgaggaagaaaatttgcacgtgagc
taaactggaggtactttcctgcctggtcttgcacgat
agcttggctgagcccatgatgctgggtggctgttact
ttccatggacacccgaaggcgttgctcctttggcttc
tagttgcatgcagtgttgcttatcccaggctgatctt
tcttccactgtaggtgacttttaagaattaagggatt
aatctatatctacaacaacaacaacaaagaccttttc
aagctgaggtagggctttctgtatatgtttggagtgg
ttatccagcagactttacttgaaggcaggggtcatat
cctcaagtgctcataaacggaccacagaaagatctca
taattgggtggagctgggtggggaccgtgtcatgtgg
ccaggaaatgccagatgggaagggagtggcccttact
gagctccagctgaactctgaattttctagaaaactca
gaaatctggatttttcatgtgtaatacccagatttat
agatgtggaaagctaattctttttttttttaagggac
tataggcaatgaactaagatctaggttgtatttggac
aaggggtcatcagtttaagctgtgtagttgagcgctc
agctattgggctgagggacccctaaatactgagacgg
ggaggtccttgctctggggcatcacaagtacactccc
tggtctcattcaaacacttttcctacaaaattgatcc
catttcttcagtgcactgtctgaatgcatttggccca
gagccgtgctgaggcatagggaaggggtccacggttt
catggcatcgttttgtgctgtgtgtccctgctgtcgt
ccaggatacctacctctcctcctcctgcatctgaatg
tccccccacagactctctgggattctacagcctctgg
cctgttcctcagacacctcttacctgccagctttcca
gattcacattagttagtccaaatctactgccgtcagt
gactcacttcatttcttcttctccgaggcagttcagc
ccggtacagttgttttgtcaacacttcagttgagtct
ggaagatgtgcatgggttatgcacgagagcggtccat
cattttgagctagaagtcctttctcagcccagagaca
agtcctcatctcctttacttcctgactcttcttcctc
tgcatccttccaagatatctctttctccagccaccac
ctaaatctcttcttttcccggggttccgtgctcaacc
cactcttcttcttaaatctgtggctgggtgaacgcat
ctgctggcaccacttctctgctaagactccaaaaatc
cataggtcctgcccggcctttgcccacctctctccaa
cactgtccagctttagatgtagagctaatccccccag
agatatcattccctggatgtctaagtcctttggtatc
tcactttcagcgtgttcaaaatcctcttacaactgtt
ctttctccttttccatcttgattattggcaacatgcc
agcctttcccctacccccagcagtgagccaagctaga
aacaagggcttaatcttcaatctttccttctccatcc
ctaaacctaatgagtctccaagcccttcccagtttac
accctaaatgttgctcaaaacatcccctagttcttcc
acgtgctctcctctatattgaaaggtcaagaaaggcc
atcttccctccactgtgaggaaatagatcttgatact
gcccctgagctgggcagtcctcgacctgacaaactgt
gcagtgtttctaaatctctactggcaaaatgagagtg
cctttgacctgtgttgcgatctcagatcacagtggat
gtaattgttttataggaatggtgaacgaaaaagaagt
aaatccctaatgccaaactcctgatcattctatgtca
tttaatagcctgtcatttatgataaagtttcctctac
tggcattagcacaatacttctcaggaaaaaaaaatat
gatgccagatactgaaaagctcctgggtaaacatgaa
catgggtaccgataaaatggtgaagccagtccaatct
tagagtgacttcccttcatgctacttcatgctctttt
ttttttttttttttaagaaaaaccccttttttttttc
tcacaccagtcacagaggagaccgaggcttagcaagg
ttaaggtcacatgattagtaagtgctgggctgaaact
caaaaccatctctgcttgtctcctaaccctgtgcacc
tctgactattcaacagATCCTGTGTCAGGAGTTGGGA
TTCTTTGAAGgtaagggccttgaccaccgaattaagg
taatcttgctctgtggcaggccttgttttcagtattt
taagtacactggctcaggtaatcctcacaacagcccc
aggaggaatgttctattacctccactgtatagatgag
gaacttgaggcacagaatggttgccaaggtcacacag
ctatattgggggttcatacccagccatccaactctgt
ctgtactctctgccactctgcacccccagctcctgat
ccacttcctgtttccatccctcgatttctgctgcact
caggggcccctctccccctcggcctgtgagatctgct
tcagtaggcttttctccctgactcctccatccctgtc
cttacaggcagctgcttctctccgggacacgaggggt
ccatacggacactctctactggctgggttgcgcctaa
ctcgtgattcctcctctgtttcagATTCGGAGCCGGG
TTGATGTCATCAGACACGTGGTAAAGAATGGTCTGCT
CTGGGATGACTTGTACATAGGATTCCAAACCCGGCTT
CAGCGGGATCCTGATATATACCATCATCTgtaagtcc
gaaaatgcctgtcgtgtgtgccttaggctgctgcgga
ggaggccagggctatataagcagagtcagtgactgac
tgtgccctgcagtgttgatggccatggagattccacc
gttagagcttttttctttgttaaccttgaaggcaaat
ctggttaggaagataactttcaaagagtcaccatctg
gacattcatgcccatgtgcttcaatcctgtatacaag
cagtttagagtacagggaagggaaggacattatgaaa
gggagagggtgtgtttggatccagcagctccatcctc
agaatttatctgaagacactgcaaaattactaagaat
cactatgacaagaatgaggatggggtgatatggcaaa
gttgtgatcctggaagaccttcatctcccatgttgcc
caactctgaacatgaatttggtgaactagttggttaa
ggggatgatcctccaagtttctccctggttgagctcc
aaaaaccatgtaagtttctcatagcaaaaccgtatag
gtccttagggctttagttggaatatttgtgctgaaat
gctggaaagccccatttgccatttttgtatttgcaaa
ataatcatcaagaggggagaatgcattctttcatgac
cactgaccctctgaaaaggtcaggaatttagtctgaa
gtaggcaagcctcctaccccgcttctgccatgagctt
gcacgcacaggcctgtcttgacatttcttctttatag
atttctttttgaatatcttgaaattgctttaaaaata
tttaaagaatgtagaattatataaaataaaaaggaaa
taaccccacacctcccacaaaaccctgtttcctgcct
ttctccacccactctccagggtaacacttggtaacag
catagttgtatcaccccaggcctatttttgagcatat
cagcatttcaagaaatgtattttttctcaataaaaca
tcccttatagttgaggaggggaggttatcattcctgg
gttttgttttttttttttttttaatgtaatcctggta
catcggtaatttgcattttttattcattaatatcttt
ggtatttctagtgttgggacacacaggtcaacctcag
tttttgggtttttttttttgtctttttgtctttctag
ggccacacctgcagcatatggacgttcccaagctagg
agtctaatcagagctgtagccaccagcctacgtcata
gccatagcaacgtcagatccaagccgtgtctgtgacc
tacaagcacagctcatggcaacaccggatccttaacc
actgaacgaggccaggggatcgaacacacatcctcat
ggatcctagtcatgttcattaaccactgagtcatgat
gggaactccaacttcaactattttaatgtctgtaaaa
cattccatttggaaaccatttcatttgtaaagcaaaa
tgaaaacattttgttcattttcaacagagttcgtagc
tgacttctgttctggaaaaaaggaaatggagcaaatt
tgagtgagaaagattcaaagataacttttcttttaaa
aaaaattatatcttggaaacttctgggctattgattc
tgaagactatttttctatatactgttttgatagcaaa
gttcataaatgtgaaaggatcctgcgatgaatcttgg
gaagcagtcatagcccaatatatctttgttgctttta
aaatgagatttagtttactaaatatttttctgatcat
aaaaataacacagatctaccgcagaaaatttggaaaa
aaaaaaacttttaaattcaaaaaacagttaaaccaca
aatgatcccaccatccagagagcaatttgtactttgg
tgtctagttcatctttctttttctgtttacaagcaca
tataccacaagcattttttcaaaaaatgaaaatggga
taatactatacatacgtctgtacacctgcatagttac
tgaacagtctttgatctaccctgtaagtttctaactt
ttcattatttgaaatgatgttttggcaaagaaatatg
taggtgtgtctcgcacactttcataatgatttcttag
gataaatttcttaggataaattcataatgatttctta
taataatccatactctgccaactgatcttcagggaag
ccaactcgccttctcagaaataacatataacccattt
acttgccctctcaccaatactaggtcctaatgttttt
gtgtacagattctatatttttacatacaagaattcct
taaagcaaggcatgtcacagaaaaatagaaggaagac
acaattgtcatgtttaaggactgcattctgtaccaaa
aatgctaagttaaatgaacatctgaaacagtacagaa
acgctatctttcagggaaagctgagtaccaggtactg
aacagattttggcaaatacagcaggcatggatgtttc
caaaacatgtttttctactttatctcttacagGTTTT
GGAATCATTTTCAAATAAAACTCCCCCTCACACCACC
TGACTGGAAGTCCTTCCTGATGTGCTCTGGGTAGAGA
GGACCTGAGCTGTCCCAGgtaaagcatcctgcaggtc
tgggagacactcttattctccagcccatcacactgtg
tttggcatcagaattaagcaggcactatgcctatcag
aaaacctgacttttgggggaatgaaagaagctaacat
tacaagaatgtctgtgtttaaaaataagtcaataagg
gagttcccatcgtggctcagtggtaacgaaccctact
agtatccattgaggacacaggttcaatatctggcctc
actcagtcggctaaggatccagtgatgccgtgagctg
cagtgtaggccacagacgtggctcagatctggtgctg
ctgtggctatggtgtaggccggccccctgtaactcca
attcgacccctaggctgggaacctaaaaagaccccaa
aaaagtcgctttaatgaatagtgaatacatccagccc
aaagtccacagactctttggtctggttgtggcaaaca
tacagccagacaaacaagacaaaaattatcctaggtg
gtcagtgggggttcagagctgaatcctgaacactgga
aggaaaacagcaaccaaatccaaatactgtatggttt
tgcttatatgtagaatctaaattcaaagcaaatgagc
aaaccaattgaaacagttatggaagacaagcaggtgg
ttgtcaggggggagataaggggaggcaggaaagacct
gggcgagggagattaagaggtaccaactttcagttgc
aaaacaaatgagtcaccagtatgaaatgtgcaatgtg
ggaaatacaggccataactttataatctctttttttt
ttttgtcttttttgccttttctaaggctgctcccgtg
gcatatggaggttcccaggctaggagtccaaacagag
ctgtagctgccagcctacaccagagccacagcaacac
gggaaccttaacccgctgagcaaggccagggatcgaa
cccgagtcctcacagatgccagtagggttcattacca
ctgagccacgacaggaattccagggtctgttgtgttc
ttaaaacacttccaggagagtgagtggtatgtcataa
gtaaacaataaatgttaaccacaacaagcttatgaaa
taaacaggaaagccatatgacctacaatcagtcattg
ggagaatccacaaaaggttgagcagaggatcaattcc
agctcacactccagttttagattctcccctgccttaa
agcatcacagactacataatctgagctgaagaataaa
aattaaaactcaccccagtgcaaaacagaaatgaaaa
agtattaaaacgaggttcatactgttgttcattagca
atatcttttattcacagGGGTGCCCAACAACATGAAA
AAATCAAGAATTTATTGCTGCTACGTCAAAGCTTATA
CCAGAGATTATGCCTTATAGACATTAGCAATGGATAA
TTATATGTTGCACTTGTGAAATGTGCACATATCCTGT
TTATGAATCACCACATAGCCAGATTATCAATATTTTA
CTTATTTCGTAAAAAATCCACAATTTTCCATAACAGA
ATCAACGTGTGCAATAGGAACAAGATTGCTATGGAAA
ACGAGGGTAACAGGAGGAGATATTAATCCAAGCATAG
AAGAAATAGACAAATGAGGGGCCATAAGGGGAATATA
GGG
TABLE 11
Contiguous 5′ Genomic Sequence of CMP-Neu5Ac
Hydroxylase gene
ctgccagcctaagccacagccacagcaacgctgggtc Seq ID No. 47
tgagccatgtctgcagcctatgccagagctccccgca
gcgccggatgcttaacccactgagcaaggccagggat
tgaaccctcgtcctcatggatagcagttgagttgttt
ccacggaactcttaggggaactcctgattatttttta
tttaaatttatatttctctgactttttcgtgtgctca
tcagccactgactgtgtatctccattagtcatggttt
gttaactctgtcattcaaaccctcttcatccttgcta
cgcagataacatcattataataaaatcgtgcctgaag
accagtgacgcccccaagctaagttactgcttcccct
ggggggaaaaagaagcaccgcgcgggcgctgacacga
agtccgggcagaggaagacggggcagaggaagacggg
ggagcagtgggagcagcgggcagggcgcgggaagcac
tggggatgttccgcgttggcaggagggtgttgggcga
gctcccggtgatgcaggggggaggagccttttccgaa
gtagcgggacaagagccacgggaaggaactgttctga
gttcccagtCCCGACGTCCTGGCAGCGCCCAGGCACT
GTTATTGGTGCCTCCTGTGTCCACGCGCTTCCCGGCC
AGGCAGCCCTGGCGGATCCTATTTTCTGTTCCCCCGA
TTCTGGTACCTCTCCCTCCCGCCCTCGGTGCGCAGCC
GTCCTCCTGCAGTGCCTGCTCCTCCAGGGGCGAAACC
GATCAGGGATCAGGCCACCCGCCTCCTGAACATCCCT
CCTTAGTTCCCACAGgtgagaaggcttcgccgctgct
gccgctggcgccggcagcgccctccacgcacttcgta
gtgggcgcgcgccctcctgcattgtttctaaaagatt
tttttttatccgcttatgctatcagttactgaggaag
tatttacaaatctactattattttgaatttgcctttt
tctccttatagtttatcagtatctcttgagactgtta
ttggtgcctgcaaatttaaaatgattggggttttatg
aggaagtgaaccttttatctttatgaaacgcctaact
gaggcaatgttaattgcttaaaatactttctttatta
tcagtgtggccatgccagtgtcctcttggttagaatt
tgcctgat
TABLE 12
Contiguous 3′ Genomic Sequence of the Porcine
CMP-Neu5Ac Hydroxylase Gene
ctgccaaagctgggagatgggggaaagtagagtgggt Seq ID No. 48
tattgaaactgaatatagagttcagcatctaaaagcg
aggtagtagaggaggaagctgtgtcaacggaaatact
gagctgggttcacatcctctttctccacacagTCTAA
TGCCTTGTGGAAGCAAATGAGCCACAGAAGCTGAAGG
AAAAACCACCATTCTTTCTTAATACCTGGAGAGAGGC
AACGACAGACTATGAGCAGgcaagtgagagggggctt
tagctgtcaGggaaggcggagataaacccttgatggg
taggatggccattgaaaggaggggagaaatttgcccc
agcaggtagccaccaagcttggggacttggagggagg
gctttcaaacgtattttcataaaaaagacctgtggag
ctgtcaatgctcagggattctctcttaaaatctaaca
gtattaatctgctaaaacatttgccttttcatagCAT
CGAACAAACGACGGAGATCCTGTTGTGCCTCTCACCT
GCCGAAGCTGCCAATCTCAAGGAAGGAATCAATTTTG
TTCGAAATAAGAGCACTGGCAAGGATTACATCTTATT
TAAGAATAAGAGCCGCCTGAAGGCATGTAAGAACATG
TGCAAGCACCAAGGAGGCCTCTTCATTAAAGACATTG
AGGATCTAAATGGAAGgtactgagaatcctttgcttt
ctccctggcgatcctttctcccaattaggtttggcag
gaaatgtgctcattgagaaattttaaatgatccaatc
aacatgctatttcccccagcacatgcctaactttttc
ttaagctcctttacggcagctctctgattttgattta
tgaccttgacttaatttcccatcctctctgaagaact
attgtttaaaatgtattcctagttgataaacagtgaa
acttctaaggcacatgtgtgtgtgtgtgtgtgtgtgt
gtgtgtttaccagcttttatattcaaagactcaagcc
tcttttggatttcctttcctgctctctcagaagtgtg
tgtgtgaggtgagtgcttgtccaaacactgccctaga
acagagagactttccctgatgaaaacccgaaaaatgg
cagagctctagctgcacctggcctcaacagcggctct
tctgatcatttcttggaagaacgagtgctggtacccc
ttttccccagccccttgattaaacctgcatatcgctt
gcctccccatctcaggagcaattctaggagggagggt
gggctttcttttcaggattgacaaagctacccagctt
gcaaaccagggggatctggggggggggtttgcacctg
atgctcccccactgataatgaatgagggattgacccc
atcttttcaagctttgcttcagcctaacttgactctc
gtagtgtttcagccgtttccatattaggctcttccac
cgtgtcgtgtcgtcaatcttatttctcaggtcatctg
tgggcagtttagtgcgaatggactcagaggtaactgg
tagctgtccaagagctccctgctctaactgtatagaa
gatcaccacccaagtctggaatcttcttacactggcc
cacagacttgcatcactgcatacttagcttcagggcc
cagctcccaggttaagtgctgtcatacctgtagcttg
cttggctctgcagatagggttgctagattaggcaaat
agagggtgcccagtcaaatttgcatttcagataaaca
acgaatatatttttagttagatatgtttcaggcactg
catgggacatacttttggtaggcagcctactctggaa
gaacctcttggttgtttgctgacagactgcttttgag
tcccttgcatcttctgggtggtttcaagttagggaga
cctcagccataggttgttctgtcaccaagaagcttct
gcaagcacgtgcaggccttgaggtcttccgacttgtg
gcccggggactctgctttttctctgtccttttttctc
cttagtgggccatgtcctgtggtgttgtcttagccag
ttgtttaagggagtgttgcagctttatgattaagagc
atggtctttccttgcaaactgcttggtttagaagcct
ggctccaccacttagcggctctgtgacctcggacaca
tttcttagcctttctgggcctcgctcttcttcctcat
aaagtgaaaatgaaagtagacaaagccttctctgtct
ggctactgagaggatggagtgatttcatacacataaa
gcacttaaaataatgtctggcatatgatacatgctca
ataaatgtcacttacatttgctattattattactctg
ccatgatcgtagcttaagaacagaggtctttacagga
attcaggctgttcttgaatctggcttgctcagcttaa
tatggtaattgctttgccacagactggtcttcctctc
cttcacccaaagccttagggggtgaacgatcccagtt
tcaacctattctgttggcaggctaacatggagatggc
accatcttagctctgctgcaggtggggagccagattc
acccagctttgctcccagatacagctccccaagcatt
tatatgctgaaactccatcccaagagcagtctacatg
gtacactcccccatccatctctccaaatttggctgct
tctacttaggctctctgtgcagcaattcacctgaaat
atctcttccacgatacagtcaagggcagtgacctacc
tgttccaccttcccttcctcagccatttttcttcttt
gtacataatcaagatcaggaactctcataagctgtgg
tcctcattttgtcaatctaatttcacagcctcttggc
acatgaagctgtcctctctctcctttctgcctactgc
ccatgagcagttgtgacactgccacatttctccttta
acgacccagcctgctgaatagctgcatttggaatgtt
ttcaatttttgttaatttatttatttcatcttttttt
tttttttttttttttttttttttagggccgcacccat
gggatatggaggttcccaggctagggatccaatggga
gctgtagctgctggcctacaccacagccacagcaatg
cacaattcgagccaatctttgacctacaccagagctc
acggcaacactggattcttaacccactgattgaggcc
agggatcaaactctcgtcctcatagatacgagtcaga
tcgttaacctctgagccatgatagttgttagttactc
attgatgagaaaggaagtgtcacaaaatatcctccat
aagtcgaagtttgaatatgttttctgccttgttacta
gaaaagagcattaaaaattcttgattggaatgaagct
tggaaaaaatcagcatagtttactgatatataagtga
aaatagaccttgttagtttaaaccatctgatatttct
ggtggaagacatatttgtctgtaaaaaaaaaaaatct
tgaacctgtttaaaaaaaaaacttgactggaaacact
accaaaatatgggagttcctactgggacacagcagaa
atgaatctaactagtatccatgaggacacaggtttga
tgcctggcctcgctaagtgggttaaggatatggtgtt
gctgcagctccaattcaacccctatcctgggaacccc
catatgccaccctaaaaagcaaaaagaaaggtgctgc
cctaaaaagcaaaaagaaagaaagaaagacagccaga
cagactaccaaatatggagaggaaatggaacttttag
gccctatctccaactatcacatccctatcaccgtctg
gtaagaaatggaaaaaatattactaagcctcctttgt
tgctacaattaatctgattctcattctgaagcagtgt
tgccagagttaacaaataaaaatgcaaagctgggtag
ttaaatttgaattacagataaacaaattcagtatatg
ttcaatatcgtgtaagacgttttaaaataatttttat
ttatctgaaatttatatttttcctgtattttatctgg
caaccatgatcagaaatctttaaacaatcaggaagtc
ttttttcttagacaaatgaaaatttgagttgatctta
ggtttagtacactatactaggggccaagggttatagt
gtgactattaaatcacagataatctttattactacat
tatttccttatactggccccacttggatcttacccag
cttagcttttgtatgagagtcatccttaaagatgact
ttattctttaaaaaaaaaaacaaattttaagggctgc
acccatagcatatagaagttcctaggctagcggtcaa
attagagctgcagctgccagcctatgccacagccaca
gcaatgccagatctgagctgcatctgtgacctacact
gcagcttgcagcaatgctggatccttaacccattgaa
caatgccagggattgaacacacatcctcatggatact
gctcaggttcctaacctgctgagccacagttggaact
ccaaagcagactttattctgatggctctgctgatctc
taacacgttattttgtgccatggtgtttatcttcact
ttactcaagtcagggaaacacgaagagtctcatacag
gataaacccaaggagaaatgtgcaaagtcacatacaa
atcaaactgacaaaaatcaaatacaaggaaaaaatat
cttcactttcaaaatcacctactgatgatgagtttat
atttccttggatatttgaatattagctatttttttcc
tttcatgagttttgtgttcaaccaactacagtcgttt
actttgatcacagaataatgcatttaagccttaaata
gattaatatttattttcaccatttcataaacctaagt
acaatttccatccagGTCTGTTAAATGCACAAAACAC
AACTGGAAGTTAGATGTAAGCAGCATGAAGTATATCA
ATCCTCCTGGAAGCTTCTGTCAAGACGAACTGGgtaa
ataccatcaatactgatcaatgttttctgctgttact
gtcattggggtccctcttgtcaacttgtttccaatct
cattagaagccttggatgcattctgattttaaactga
ggtattttaaaagtaaccatcactgaaaattctaggc
aagttttctctaaaaaatcccttcattcattcatttg
ttcagtaagtatttgatgagaccttaccatgtgtaaa
cattgcactaggtattaagaaatacaaagatggataa
gatagagtcggcgtaaatgagatgatataatgagacg
ttataatgaaactcacaattccagttgggaaataaag
tccttcaaattccatgactctttctggcacacgttag
aggctacagcttctgtgtgattctcatgctggctcca
cttccactttttccttcttcctactcaagaaagccta
tagaaatatgagtaagaagggcttaatcataggaata
aatttgtctctgttctaagtgattaaaaatgtcttta
tcagtataaaaagttacttgggaagattcttaaaact
gcttttacacactgttctagaatgactgttatataaa
taaaaaagtagatttgatctaacacaattaaatgacc
tttggaaatattgactaattctcaccttgcccctcaa
agggatgcctgaaccatttccttcttttgccagaaag
cccccaccctttgtctgttgacctagcctaggaaatc
ttcagatcacgttgttagcacgaactggttacatgtg
ctgtacaaatactatttaattcatctgattaaaaaaa
aagagataagaagcaaaagtttgactatcttaaactg
tttgcgtaggtgagaggacaattgaccatctacttta
tgagtatgtaacccagaaacttaaagctccttaaggg
agctaagtcttttggataagacctatagtgagacctt
ttagcaaaatggttaagactgaatggagctcactagc
gtgggttcatatcctgatgctcaaacacgcaattaaa
tgactttaggtgggttagtctctgttccttagtttcc
tcaatgggagataatattggtagtagcgattttactg
ggttgttgaaagaacatctgttaaatgttcagaacgt
gttacgacagagtacagagtaatgatttgcttgtata
tgtatgactcaaatagtctgccatatgccttgtgact
gggtcctgtggagcaggaaggagggatttcccaccca
gcagaaagttgggtaaactggaaaatagactgaggcc
aggaaatgatgcaaagcgttgatgttcactgccacgg
caggtgaagggcagggccagagttgtcagtagggtca
ggggaggactggaaataaccaagacccactgcacttt
tcagcctttgctccagtaaggtaatgtgtgagagtag
aaaattttgttaacagaacccacttttcagtacagtg
ctaccaatactgtagtgatttcataccacatcccaag
aaagaaaaagatggctcaatcccatgtgagctgagat
tatttggttttattgttaaataaatagcattgtgtgg
tcatcattaaaaaaggtagatgttaggaaagtagaag
gaagaagactctcacctacattttcatcactgttttg
gtatctgccagttgtcaccttggtccccttccccgcc
tctcccctgcctcctcttcctccttctcctttttttg
gaatacaattcaggtaccataaaatttacccttttag
agtgtttgactcaatggtttttagtattttcacatgt
tgtgctattactatcactatataattccaggtcattc
acatcaccccccaaagaaaccttctaactattagcag
tccattcccttcttccctcagcccctggcaaccacta
atctacttactgtctccatggatgttcctatattgaa
tcaagctagcataaaccccacttgctcatggtcataa
ttcttttttatagtgctaaattacatttgctaatatt
caattaaggatttctatgtccatattcataaggaata
ttggtgtgtagttttctctttgtgatatcttgtctgg
ttgggggatcagagtaataattactgctctcatagaa
tgaattgagaagtgttccctccttttctatttattgg
aagagtttgtgaagtatattggtattgattcttcttt
aaacatttggtcagattcaccagtgaagccatctggg
ccatggctaatctttgtgaaaagttttttgattacta
attaaatctctttaatttgttatgggtctgctcctca
gacgttctagttcttcttgagtcagttttgttcattt
gtttcttcctaggactttctccctttcatttggatta
tttagattgatagtaatatcccccttttaattcctgg
ctgtagtaatttgggtcttttctcttttttcttggtc
agtttagctaaaggtttgtaattgtattaatcttttc
aaataactaacttttttgttttgtttgttttttgttt
tttgttttttgttttttgtttttttttgctttttaag
gctgcacctgaggcatatggaagttctcaggctagag
gtctaatcggagctacagctgctggcctataccacaa
ccatagcaatgccagattcaagctgcatctgcgacct
acaccacaactcggccagggatcacacccgcaacctc
atggttcctagtcggatttgttaaccactgtgccacg
acgggaactcccgcccattttttttaacacctcatac
tttaacataaagatgggcttcacatggactgatagct
caaatgaggaaggtaagactatgaaagtaatggaaga
aatgtagactatttttgtgacctagagattactgata
cttcttgacttttcaaacaatacttcaaaagtacagc
ccaaagggaaaaaagaaagaaaaaagaaacacacata
tacacaaacctagtgaataagatatcatcgatacact
acagatttctatgaactggaagaccccatggacaaag
ttaaagaacatatgatagtttgagtgattattttgca
atatttacaaccaatgagggaatattatccagcttat
aggaggaagtaatgcaaatcgacaagaaaaagatagg
aaacccaatataaaaattaagaaaatacaaaaattaa
gaaaggatatgaactagcattttacaaaagaaaaatc
tccaaaagtcaatcagcacatgaaaatatgctcaaac
ctattaattattagaaaactacagactgaagcaatga
ggtgctttactttacatctttttgactgataaaaagt
tagaaacaaaggtgatatcaaatgtcagggataaaag
gatatagaaatcgtcatgcctgtggtgggagtatggc
cggtgcagtcatgtgggaaggtaatctgacagtggtt
aggcagagcaggtttatgaatacactgtggcccatca
atcccacgcctgtttatgtaccaaagaaatcctgttg
tggcagaatctatgggtccacccctgggagcatgaat
taataaaatgtggcaccagggtgtgtgaaactccagc
tagagatgagatgtccacatggcaacatgaatgcatc
ttagaacatagatttgagtgaaaaagagtaagaaaca
gccgggaaacccaataccatttataaaaattaaagat
gcacacatacaatgtagtaaatattttgcatgaactt
tcaaatggttgcctacagggggggagagtaaagaaga
gtagaaaacaaagataagggagtaagtaagtagctct
gcctggactgaatataatgtgtcatgaactgagaaat
atggttaacataatcctcttaacttgaggtcctaaat
gaatgaatgagtccactattcatttacccattcttta
atgtgtattgcattataatccatttttttagaaccaa
cgaattttgttcccataactactaatcagcctgcctt
ttctccctcattcccttatcagctcaggggcattcct
agtttttcaaacgttcctcatttgaaccaaaaatagc
atcattgtttaaattatacttgttttcaaatacgatg
cttatatattccaagtgtgtttgcccattttcttagg
tggtagaaatttttcattctacttttctatctactca
gattttcccgttggaattatttccattgctattaaac
ttagaagtcccccctgtgatatgccatttttttcata
ctttttaagcacttggttgcttttctttgtgtcttta
agcacctagaatacttataaccattgcacagcactgt
gtatcaggcagcccttcctcttccactaatttatggt
ccttctcttagactatattaaactgttatttaattag
gatcctctcttcgtccttatgatttaattattatagt
tttctaatatgtttttattataattcctcttcattat
tcctccctattaaaaattttaatgaattccatttgtt
tgttcttctagttaaatattaagtcataatccaaata
acttagatgtcattagtttatgtggtcaaagtaagga
taccacatctttatagatgcaggcagttggcagatgt
catgattttcttcagtgcataaatgcaatatctttga
gcaaggggcataaaaacttttatggtattggctttga
aataatagttaagaactgcagactcagtttttcctgc
ttttcttgaaaaagaacacttctaaagaaggaaaatc
cttaagcatggatatcgatgtaattttctgaaagtct
cctgtaattccttgggatttttgttgttgtttgttgg
tcggtttttttgggtttttgtttgtttgttttgtttt
gttttgttttgcttttagggctgcacctgtggcatat
ggaagttcccaggctaggggtccaactggagctacag
ctgccagcctactccacagccacagcaacatgggatc
ctagctgcatctgtgacctaaccacagctcttggtaa
tgccagattgttaacccactgagcaatgccagagatc
gaatctgcctcctcatggacactagtcagattagttt
ctgctgagccacaatgggaattcccaattccttgtat
ttttgaactggttatgtgctagcatataattttgttt
cttgaatctttgtgggttttttttttttttttttttt
gtctcttgtctttttaaggctgcacccacagcatatg
gaggttcccaggctagaggtcaaattggagctacagc
tgccagcctacacaacaactgcagcaaagtggggccc
aacttatatgacagttcgtggcaatgccggattccta
acccactgagcagggccagggatcgaacctgagtttc
cagtcagtttcgttaaccactgagccatgatagtaac
tcctgtttgttcagtcttgaacctcctttttaattct
ttattccttgagggtgaaataattgccataataatac
tatcatttattacatgccttctctgtgctaggcatag
tgacactttaggatttattatatcacttaatccctac
aacaactctgcaaagtatgtatcataatcctatttga
cagatcaggaaattgcagcccaggatgcagataatat
gcatccatcacaagtgactagatatagtccctctgct
attcagcagggtctcattgcctttccattccaaatgc
aatagtttgcatctattgtatatgtgttttggggttt
ttttgtctttttttttttttttgtcttttctggggcc
tcacccttggcataggtaggttcccaggctaggggtc
aaattgaagctgcagctgccagcctacaccacagcca
cagcaactcgggatctgagcctcatctgcaacctaca
ccaaagctcacggcaacaccggatccttaacccactg
agtgaggccagagatcaaaccggcaacctcatggttc
ctagtcggattcattaaccactgagccacgatgggaa
ctccctaaatgcaatagtttgctctattaaccccaaa
ctcccagtccatcccactccctcctcctccctcttgg
caaccacaagtctgttctccatgtccatgattttctt
ttctggggaaagtttcatttgtgccatttttcatttt
acgggtaatttttacttcagtttcttccactagcagt
tgtcttaaagtgagtataattaatattcatttggaaa
atgtaagcaaaacattttttaaagggccatgcccaca
gcatatgaaagtttctgggccaggggttgaatccagg
ctccaagttgcagctgtgccctacactgcagctgggc
aatgctggatcctttaacccactgtgcccggctaggg
atcaaacctgcatttccacagctacccgagccattgc
agttggattcttaacccactgcactacagtgggaact
cccacaaaacattttttaatgtcctttgaataaagta
ggaaagtgctcgtctttgagggcagggcggcaatgcc
atttccacaaggtttgctttggcttgggacctcatct
gctgtcatttagtaatgaataaaattgctgacagtaa
taggattaactgtgtgtggagatagccagggttagag
ataaaaacactggagaagtcaaataagttgctcgagg
tcctctagctaataagctattaagtgggagagtgagg
gctagaaacaggccatctgtctcccaagcacatgtcc
attagtggtttgctgatagccttccagaacaacagag
aggactctcaaacatggtcttgcctccctccaattga
tcccctccatgtgcctcacagcgggtctttctaaaat
taagttctgattttaattctcccttgctatagcactt
aggtatggctttcagccgtgcaataaaaagcaggcaa
gagtggctcaatcatataggaggttgtttttcttaga
tcccaagcaggtaatcctgggcattatggttgttctg
cgtttatcaaggagccaaattctctatcacctcctgt
tctatcctcctcagtatctggctctattcttcagcat
ctcaagatggcttgtgctcctccaagcatggcagtca
aattccacacaagagggggaaatatgaagggcagaca
gtgctggtctcctgagctgtccctccggggaaataaa
tgtattccttcaagtcccgtgagacttctgaagtaga
cgtctgcttacgtctcacccaccagaactatgtaaac
tgcacatagtgctaggtctacatagccactcataact
gccagggggtgggaaatctttaaataggtgtaccacc
acacaattaggatgctaatagtaagggagaaggagag
aataggttttgcgcaagccaccagcatgcctgccaca
attgcttaaaattcttcattgacccctcattgccaca
ggatgaaatccaaacgccttcttagttgggaatctga
cctacctgtctctcccacctggttcagacaccattct
ccttggtcataaaattccagtcatttgtgaacatcca
gctcccccatgcctccatgcctttgcacatgctgttc
ttttatcttttatgttgtccttttatcttttatccaa
aagagatatcccatcatcacatctcttttgtcagccc
ccaaatactttgtctttcaagttcagctggaggatta
cctcctatttgaaatcagctttgtctcttacaaccaa
acaaggttttccttccgagacactcccacagcacctt
gaactcatctctatcaatcattcatttgattgtaatg
aagttgttggtggtatgcctgtgtctctgacacatct
gcgatctcatgagttccttaagtggaatgtgaatagc
gggatgaacagtattggtcttcagccctcatctctgc
agatgttgcttgacccaaatgagcgttgccttttatt
ttgattttgctttgatttgtctactccatgtacttga
gccatgcatttctgtcttagcgatgctttttaaaagt
cattttttggttgattatccagatttgtccacctttg
cttctagTTGTAGAAAAGGATGAAGAAAATGGAGTTT
TGCTTCTAGAACTAAATCCTCCTAACCCGTGGGATTC
AGAACCCAGATCTCCTGAAGATTTGGCATTTGGGGAA
GTGCAGgtaaggaaatgttaaattgcaatattcttaa
aaacacaaataaagctaacatatcaatttatatatat
atatatatatatatttttttttttttttacatcttat
attaccttgagtattcttggaagtggctagttaggac
atataataaagttattctgaagtctttttttttcttt
ttccatggtgagcagtggcttgatgtggatctcagct
cccagacgaggcactgaacctgagccgcagtggtgaa
agcaccaagttctagccactagaccaccagggaactc
cctattctaaattcttgagcacattatttaggaacct
caggaacttggcaggattacaggaaatatatctagat
ttaaaaaaaaatcttttaacagaggtcccaaaggaga
gtcatgcacagctatgggaggaagttcagaaactgcc
cttgctaccagatcactgtcagataaaatggccagct
acatgtttctgcacattgccctaagatctttacaaac
ttttctgtgcatttttccacttttaaaagaaaatttc
ggggttcctgttgttgctcagtggttaacgaacccaa
ctagtatccatggggacaggggttcgagccctggcct
cactcagtgggttaagaatctggcattgctgtggctg
tggcgtaggctggcggctacagctcagattggacccc
tagcctgagaacctccatatgccgcaggtatggccct
aaaaaaaaaaaaaaagagagagagagaatttcctcca
gaaaaaacactttggtagtttgggagaagtaaacaac
caaaaattaatttttctggagtattcgggaagcttgt
aaaaatgggctcttacttttttgaggagacaaatggg
aacctacccagaagaggcacaatcacctgcatttgat
ttcttgacctctccctaccttctttgctggctttcca
catttggatttctgtgaccttatctctgctccttggt
gttttcatttttcctgtggacgtgccagactatggga
agggagtaaggcgttgatttagaatcctgtagtctct
gcctgtctctagtcattgttttcacccttctcaaagg
accttgacatcctgagtgagtccgcaagtaatttagg
ggagaagccttagaagccagtgcagccaggctacatg
actgtgtccacccactggaaccagtcatttttatacc
tattcacagcccccctaccatttaaatccccagaggt
ctgccataacatctgtaactccctttcctggtaaatt
gtgttctaaaagactggtaacaaaagatattctgtgg
tacagagcataattaaatacctgggagctgatttgag
tggggtaaatcaactggtttgacccctaaaacccacc
atgagcatttctgttcaataaagtaatgcccgtgctg
ggaattgtgttctacggaaatgctcctgctgtgtctt
tcttgagtcctgtgtcattgaacatgcttaggagcaa
aggtcccccatgtggcttgtctgctaaccagcccagt
tccttgttctggctggtaatgatccgatcatctgaat
ctcactgtcttccaacagATCACGTACCTTACTCACG
CCTGCATGGACCTCAAGCTGGGGGACAAGAGAATGGT
GTTCGACCCTTGGTTATCGGTCCTGCTTTTGCGCGAG
GATGGTGGTTACTACACGAGCCTCCATCTGATTGGCT
GGAGAGGCTGAGCCGCGCAGACTTAATTTACATCAGT
CACATGCACTCAGACCACCTGAGgtaaggaagggtga
gccctcaactccgaagaaaatgctgcaataaaagcac
tgttggttttcagctttttttgtaatcactgctcatt
ctgaggtagattcgcttgggctgataaaaagagaact
aattcagataaatgcttgcatttgcatagcctctttt
tttaaaaactttttttttttttttttttttttggctt
ttcagggctgaacctgtggcatatggaggttcccagg
ctaggggtcgaatcagagctgtagccccgggcctatg
ccactgccatagcaacatgcatagcctcctttttaaa
gtgccttcctgttttataccattgggatgtgagaaga
gctattgtggaaangagcatggggtnataaccctgga
cctctcacgtcctaccctcaggntagtgggaaaactc
tgagtttaaggacatcaaagtgactcctttttagtta
cattatggnggaatcagcncatatttttacaaggggc
ggagngtaanctgttggagtttacaagacatatggtg
gcattgcaactacttaaccctactattatagcacaaa
agcagccatagtcggtcctgaaggagcctgatgcctt
cagctttataggcaatgacgtgtgaatatcacaaaca
gtttcctgtgtcaccaaacatgattgccttttgattt
ccctttcaaccctttaaaaaaaggtaaaagcccttct
tagcattcagcagcaggtcgctgtgttttgccaactc
ctgatctgtagcatttcgacaacactgagctctcaac
ttttgaaccctgagtccaccacatccttcagtgaaac
cagagccatgtgatactaaggatagaaacggaaactt
cctgaatccaggcgatcaaataggagggagaaagagg
aactttcattgacaaaaccacaaatattgtgaatgga
ctgttacaaatattgtgaatgctcctattcccaaccc
cctggcttcattacagggtcctatgtgttcatcctta
ttgagaaatttgtattgctactgccaggttgccaata
cccagcggtgcccatggtgttctaaaatgaagcaatt
tcaactttatttttttttcctgtgactttacatgaca
agttcacatgaaggatatactttgatagtaatgtcca
tggttagggaatatacattgtttgctggttgactggc
ccctggatttttctattgaaagtccatgagatctcga
aggcacaggtgtgttctctcgctttttaaggaaaggg
tttaaaaacttaagtaattaacagctttagtaacaaa
ttacctataacacacttaaaaaccgaataccacccac
tggagtattgtgctacgattaaaaatctacttgtcta
ctacatgatatctttgtcccacagaaggttctggaac
caaacttgtaatttcaggattatgagagccctgagtt
cacgcattgtgtaataactatgttgtgtggtagtcaa
tttgtacagcttgcttagagagaacaatgtcaagtta
aggaggcgattgctttatagtgcctgtcacaagatgc
cattgccattgtcctagcaagagatattctatgggag
tatactacattttagtgaggataagaactttttatgg
catttagtccggtcatttcccaaccactgtcctgaaa
accaatttcattttgatttcaggggcttgtgtgggca
aagttgccaggcattaaaaagccacttctcaactgta
gtatcacaatgctttagttgggtagtgtattgcagat
agcttatggctgaaaagttaccaagccttgcagtttt
cactcctttgagtttatttccttgacagaattgaccc
tgagttttttgactcttacctgctcaactaataaaca
ccagagtcatttatctccattgctcttgtctgacctt
tatttaccgaataatgccttatgggttcacaaaaaca
aggggggagggggccagcatgccttagaaactgtctt
tagtcaagaaatgngattttattatgtaaatatatga
gtattataatagatagtgttattaatagacaccagca
agaattgtcaataatttaaaaatcacaaattaaaata
catccatgttagnatcatttatcctaactcccaaagc
cctttaaagtggaagatttagatgttaacccagagat
taaagacatgttcaaagaatccttgatttttttttga
atcccttgtttttagagaagaaaacctaatgattttc
cccctctggattctacatattaaatatagttttggaa
cttgaatattagtatggttaataagtgctgatatgct
gattttgtttatatttttcttatgagtaaatatccta
tatcaccagacattatagtctatgtacaaatatgatt
cttaaacctgatagcacattcattagagttggaattg
ccttttttttttttttttttacagttgcacctgcaac
atatgaaagttcccaggctaggggttgaatccaagct
gcagctgccaccctacattacagccgtagtaacagca
gatccgagctgcatctgcaacctatgctgcagctcag
ggcaatgccagatccactgagtgaagccagggatgga
acttgcatcctcatagagacaacgtcgtgtccttaac
ccactgagccagaacaggaactccagaatttcctttc
aatagaagaagcaccaagtttaggatcagaaagcctg
aatttgaataccaatttactattttagtcatatattt
ctgagtgtgntcctcatttattaaaagcagactaaaa
gatgagagggtcttttgttgagaatcaaatacaataa
catgtgaaagtgtgtaacactatgattgaaatatacc
tacacagccatttatttgtttattgttcatgttttgc
cacccacacagtagtatataatccttttatgtaataa
atgctaataatgaaagttggcaacttatgtaagtact
caaaatgctggaggtcatgggatactgactgggatac
tacagaggtaatgtcatttcctctgcgctaaacttat
tgtcttgtagttagggactgactctctttaggacaag
gagttcattctgtataccatgtgtggctatcaccctt
cgaagttgaaaaactgccccagggtgggcacccatcc
gttctcttagatatatggccgagacctttctctcact
gggagggaaccacactgaggaatgagaaaaaaaaaag
gaaaatcaagatgaaaccagaaacctctttggcataa
cttctccactctgtactttttgttagaactacccttg
cacaaagcagcatcagtgtggaagacagaatttgcac
acctggtttgatatacatgccgtggtatatgggatgt
tctaacaataaagaggactctcccaggaaatctcctc
actgttatagtcagccttgaggaaagagctcttcttt
tggactctggggagagtctagtttttcagttccttgc
ttctcggtcaacgtgttggtgtaaggatcacactctc
tcttatactagataattctattttttcaccTTTcaac
ctgtctatccttctgaccctagTTACCCAACACTGAA
GAAGCTTGCTGAGAGAAGACCAGATGTTCCCATTTAT
GTTGGCAACACGGAAAGACCTGTATTTTGGAATCTGA
ATCAGAGTGGCGTCCAGTTGACTAATATCAATGTAGT
GCCATTTGGAATATGGCAGCAGgtctgtgttctttcc
acatgtttgggttatcctttctgggataaatttgagg
cgagatagaaactttaagactaaagaaacaatggcct
actttttttgtacatggtcctgtgtaaatctctattt
gagctgaaataagatggtcttcctctccaattatcca
tggtatgactctgatggataacaaatccagttctgaa
aaaaggggatttctttccagaagagaggacagtttct
tcaaatattgaattaaaagcaaaatagatgtaaaccg
ttgttggttttattgttgaattccagGTAGACAAAAA
TCTTCGATTCATGATCTTGATGGATGGCGTTCATCCT
GAGATGGACACTTGCATTATTGTGGAATACAAAGgta
ttttcttgccctcatcagcatgaaattgctcttggta
gaaaggataataatagttatccaaaacatcatcctat
gttcatctgtttcttccctcttcattttccatagagt
acagtatattctatctctgtcttaggaaaatggactg
tcattcatataatcttacagagaatcaattagtaatg
tactctatgccgtgacaggtgcgaaggttttttttga
aggcaacagataaaaatatcctatatttcacctattg
taatttccttaaaactgacattattgaataaatgttt
tactttcatcttgaatattattatgttatggaatcat
acactttaccccaataatcatcgaaaagaatttccaa
aaggttgagagagttgtgttgatctgattactttcct
ctgcatcctttgagcttaacctttgaatatagtttgc
taaggaaagtagtctgtttatgatcctggagtggaat
caggctaagtgtcctcattcagaacccactgaatcag
acagaatgaatttatttccttgaaagttcaaaatgtg
tcactcaagagtataaattttcaaatcttactctctc
ttttccttggatgtgagcaattcttcgataattgaat
gaggcagattatatagacttacatggaagactgttgg
cctgagaattcaaactatggtgttcaagacttcacng
ngagtccgatgccatttgtttcccacagGTCATAAAA
TACTCAATACAGTGGATTGCACCAGACCCAATGGAGG
AAGGCTGCCTATGAAGGTTGCATTAATGATGAGTGAT
TTTGCTGGAGGAGCTTCAGGCTTTCCAATGACTTTCA
GTGGTGGAAAATTTACTGgtaattctttatatcaaaa
tgatgccaaggagttggcatggcactttgctaaatgc
tgtgtgaatcaatacaaagataattaggacatggttc
ttcctcacaagaggtgtgcaatcttattgggaaatca
tacttgcaagtcacaaatatagactaaagtttccagc
tgagaatatgctgatggagcatgaaacactaaggaga
cagggagaatctcaggaaaaatcaagaataatttgga
tcaaatggattcctgacatagaacatagagctgatca
gaaagagtctgacattggtaatccaggcttaagtgct
ctttgtatgtggttcagaacagagtgtgggcagcctg
agggggatacatacccttgacctcgtggaaagctcat
acgggggagggatgaggctaaggaagcccctctaaag
tgtgggattacgagaggttgggggggtggtagggaaa
atagtggtcaaagagtataaacttccagttacaagat
gaataaattctaggggtataataacagcatggcacta
tagatagcatattgtactatatactggaagtgctgag
agtagatcttacatgttctaaccacacacacacacac
acacacacacacaccacacacacacaccacacacaca
cacgtgcacacaaacagaaatggtaattatgtgaggt
gatggcggtgttaactaactttattgtggtcatcatt
tagccatacatgcatgtcatgaaatcaccatgttgta
caccttaaagttatgtaatactagatgtcagttatat
ctcaaagctagaaaaaatgtggggaccaaggcagaag
ctcttctgctctgtgtctaagggtggttctggggctg
ggatggggaggatggttaagtggtatatttttttcat
acctttgctcagtactatcattgtaagtgttcaatat
atgtctgcttaataaattaatgtttttagtaagtaat
ctctgtttagtaatgtgtcagaaatgccctacttgca
ataggaagaaaacctgtccagtcccttccttttttct
gtaagtctgatttcattgcctcccagaatgcatcacc
atgtgagagatagagggaaggtgctgtccttatgggg
ttaacagtgtgactagggaggcaaaatatacctacta
aagggtggtagcataattcagttcttatgtgagtatg
tgtatgtgtgtgagtatgtgcacatgcacatacattt
taaaaggtctgtaatatactaacatgttcatagtggt
tacacctagcttataggtaacattttttcccctgtat
ccttgtttgtgtttatcaaattttcataacagtaatg
gtagaaggagtacctgacatggtaccatacatgctng
gncctgcctaatttctcnatttcctttattgcccata
cccccattgcttgacaagcataagtccatactggctt
gttttcgttcctcagactcagtacaccatgtagctcc
atgccctgggtctttgtatgtgctatttctactgctt
agagtgctattgcccctgaccaccacgtggtcagcaa
cttctcttctgcgtctgtgtctatggtctatgattcc
agatgtcatcttcactaactacccttctaatatgccc
ttccatcccacccgtcctcatccttaccccagccact
ctctatttggtggctctgttttattttcttcctagct
catcactctttgaaatgaacttatttacttattcaat
tgcttctttcactagaatgaatgctccatgagagcag
ggacctgctttatcttgctcgccactgtattcacagt
gcctagaactacgtctggcacatagtaggtgctcaat
aaatatcgatcaaatgaaagaatgagcaaacgaacaa
atgaacaacacgtgaggtaggcatcatgattccatca
acagaggagaaaaccagacttaaagnaatgaagtggn
ggagctgcatttgatcttgactgactccacatccatg
ctcttgaccactgtgcatctccagagtgtaatgaaca
tactttacttttatattccaccaaaataacaaagcca
tgcccatgttagtagagagttaatcgacagtgccctt
aaaatatgcatgcacccagggtacaactatgcatgct
gccctgtgttttcagttggatccaaatgaattgccgt
aaacaaagaggggattcaatgtctttgactagtttgg
gatattttcctagtaaccaactttgcaaaataaagcc
actaatgacaaggagctttgttctacttctgcatcac
tcaactgtcaatttttatctcttgcaagacttctaat
ctactagaacttttgtttttctgtgatttctgaacag
agaagactaatccaaaccctgtcattccagAGGAATG
GAAAGCCCAATTCATTAAAACAGAAAGGAAGAAACTC
CTGAACTACAAGGCTCGGCTGGTGAAGGACCTACAAC
CCAGAATTTACTGCCCCTTTCCTGGGTATTTCGTGGA
ATCCCACCCAGCAGACAAgtatggctggatattttat
ataacgtgtttacgcataagttaatatatgctgaatg
agtgatttagctgtgaaacaacatgaaatgagaaaga
atgattagtaggggtctggagcttattttaacaagca
gcctgaaaacagagagtatgaataaaaaaaattaaat
acaagagtgtgctattaccaattatgtataatagtct
tgtacatctaacttcaattccaatcactatatgctta
tactaaaaaacgaagtatagagtcaaccttctttgac
taacagctcttccctagtcagggacattagctcaagt
atagtctttatttttcctggggtaagaaaagaaggat
tgggaagtaggaatgcaaagaaataaaaaataattct
gtcattgttcaaataagaatgtcatctgaaaataaac
tgccttacatgggaatgctcttatttgtcagGTATAT
TAAGGAAACAAACATCAAAAATGACCCAAATGAACTC
AACAATCTTATCAAGAAGAATTCTGAGGTGGTAACCT
GGACCCCAAGACCTGGAGCCACTCTTGATCTGGGTAG
GATGCTAAAGGACCCAACAGACAGgtttgacttgaat
atttacagggaacaaaaatgatttctgaattttttca
tgtttatgagaaaataaagggcatacctatggcctct
tggcaggtccctgtttgtaggaatattaagtttttct
tgactagcatcctgagcttgtcatgcattaagatcta
cacaccaccctttaaagtgggagtcttactgtataaa
ataaactattaaataagtatctttcaactctggggtg
gggggggagactgagttttttcacagtcctatataat
aattttcttatcctataaaataattaggagttcccgt
agtggctcagcaatagcaaacccgactagtatcgatg
aggatgcgggttcgattcctggcccccctcagtgggt
taaggatctggcattgccgtgagctgtggtgtaggtg
gcagacacggctcagatcccacgttactgtggctgtg
gcataggccagcagctccagctctgattagaccctta
gcctgggaacttccatatgctgtgggtgtggccttga
aaaaaaataaataaataagataattactcaaatgttt
tccttgtctcagaaccttacttcaggataaagagtga
gaaagttttttttatgaagggccattattacagctca
aaaataagttgtcttcagcaagtagaaagcaataagc
ctgagagttagtgttcctatcagtgtaaatattacct
cctcgccaatccccagacagtccatttgaacaattaa
cggtgccctgggagtacagttcagaaacattaatgtg
gatgttccagacctgtatttttataagtacttgtctt
gagccggatggaaccatcattcctcaccattatttag
aagtggactgtgactctgttggagatcagggcacacg
gttaccaaaagcacacccttctcctggccttaccttt
gcaaagctggggtctgggacacagtcagctgattata
cccttttactaacttcccacagctcaaatctggtcaa
ttctccttcacaaatctcttaaaaatccatcactcac
ctccagcctcttctgctgtggccttgattcagcctct
cacaatttttttttaaccagaattctggcagtggccc
ctgacttgcctctgtgctcccagccccgctgtcctct
gatccatcctccatgccagccttcaatctgctggtca
cgattcattgatgggttaggaaatcaatggcatcaca
actagcatttagaaaaaggaaataggcgttcccgccg
tggcacagcagaaataaatccgactaggaaccataag
gttgcgggttcaacccctggccttgttcagtgggtta
aggatccggcattgccgtgggctgttttgtaagtcac
agacatggctctgatccggcattgctgtggctctggc
gtaggcctgcagcatcagctccaattagacccctatc
ctgggagcctccatatgctgcaagtgcagccctaaaa
aaaataaaaaaataaaaaaaaataaataaaagaagta
gacaaattgtatagaacaaccctgagtatgttgcctg
agcacatataacaagggtaagtattatttcaggaaac
tctggtttcacagatactcttggcatatggaccccta
gagtcctgatgtaaaatatattcttcctgggatctta
ggcaagaagtttgaaagctccaactctgcactgctgc
caaagaaatgatttttaagtgcaaaactcttcccgtt
cccttccctgtataaaattccataggatctctccagt
gcctctaggataaaggcagttttcattctctagttca
aggtgagagaagattttaattatttcacgttttagtg
gggaattcaagagtctggcacctgacatttgctgaac
tctctccattatccctctctagttccccagacgcatc
ctatggtagaaattcgcaactagagtgagcgtcagag
taacccaaggaaactgggtaaatgcagctccctgggc
tctaccccctgagattctgattcagtagatctgaagc
agagccctggaatatgcatatgcatcattgtgtcaca
ccaagcattctgggtaatgagagttgatgttaggttc
tcagtagtaagacaagtatagagattccgggggactg
agtgctcagctctgccttggggaggagggagagggct
aaagagaacaggagatggggacagggaatgctcaacc
tccaatcttaggcatttgagctatgtcttaggggtca
ggaggaggttaccaatatagtgattaagagattgagg
ttccagtcagagggatatgctggagaaggggggtgaa
aataatgtcataggtttggtgagtgcagatactttga
gttttttaatatttttattgaaatatagttgatttac
aatgctcttagtgagtacaattactttgaataagtgc
atagatgtatgccattcttccagaaatgatttattga
gctcctttgggcatcatgctaagtacaggggaaacag
ctgtgaagaggtccttcccttatgaagtcattcatcc
ccttcagtaaatgaaggtaaaggaaaaggatgagaca
gggacgccgtgttggaccagggtcagaaaggccttat
aagaccttgcctggagggcaaggaacttgcctgtgag
taaggagagcttgagaaagcgataaagcaaagaagga
acattactgcattgtgttttagaaaaaccatgtcctg
gggaagaactcctagagtcaggggggccagttgggag
actgtgcttttttccaggaggagataagtgaggctgc
tggctgagatggagcaaggatttagagaagcagatat
gagattcatttagaagttagacattttaggatctgac
acataatttatcaccaaaaccagtgcatctctggctt
tgggccaccagttttggagaagtggaatgtagggacc
taccattacctgccaatctttactacacagatgccta
tttccctcctcatatttcctttctccagatcacgtcc
tattctattgccaggactcaagattccaccttgcatg
cagtgatccatcttcacactggatggacagctctagg
gatgtcagagcacactcttgtccatactgctgactgg
gtctcctgtcagcccatctgtctatcagctgtggtat
tattagtataataagagggctgtatatgagagacaca
aaattctaggtgtagctcaaagataggctagagttat
tcctatgtacaacaaatatttatgggaccccttctgt
gtactgtcatggttgctgctttcatcatacttgtagt
ctaatggaggtgggggcagggcaggaataagcggatg
tccacaaaatcagtaagaccacttatattcaacattt
tcataatttagttatttgagcccaaagggtccacatc
cgtggtattccaacttttttttccccggacatggatc
tttatctttttttttttttcttttttgcggccagacc
tgcggcatatggaagttcccaggccaggggttgaatg
ggagttgcagctgcctggtctacaccacagccacagc
aaggtgggatctgagctgcatctgtgacatacaccgc
agctgaggtaacaccagattctgaacccactgaatga
ggccagggatggaacccgtctccttatgaacactatg
tcatgttcttcaccctctgagccacaacgggaactcc
agacttcgtctttaaatgtattctgacttggagagct
atcacactaagcaattaacaggagctgacctggttta
ggctggggtggggccctactcctcaatgttccctgag
gcacatctgtgggacccctgggcatcatctatctgag
cagccttagagctgctcatccagttgactgttgatgt
agaagtgcaaacttctgccttccttatttgttgcttt
cttttttcattgttctctcccctttgtgtctttaagC
AAGGGCATCGTAGAGCCTCCAGAAGGGACTAAGATTT
ACAAGGATTCCTGGGATTTTGGCCCATATTTGAATAT
CTTGAATGCTGCTATAGGAGATGAAATATTTCGTCAC
TCATCCTGGATAAAAGAATACTTCACTTGGGCTGGAT
TTAAGGATTATAACCTGGTGGTCAGGgtatgctatga
agttattatttgtttttgttttcttgtattacagagc
tatatgaaaacctcttagtattccagttggtttctca
ataagcattcattgagccttactgactgtcagacgga
gggcgtattggactatgtgctgaaacaatcctttgtt
gaaaatgtagggaatgttgaaaatgtagggaatgaaa
tgtagatccagctctgtttctcttttggaggattctt
tttcctccatcaccgtgtcttggttcttgtttgtttt
gggtttttgtgggtgttgtattgtgttgtgttggtta
tggcagtgacagctatttaaactgtgaaacgggggag
ttcccgtcgtggcgcagtggttaacgaatccgactgg
gaaccatgaggttgcgggttcggtccctgcccttgct
cagtgggttaacgatccggcgttgccgtgagctgtgg
tgtaggttgcagacacggctcggatcccgcgttgctg
tggctctagcgtaggccagcggctacagctccgattg
gacccctagcctgggaacctccatatgccgcaggagc
ggcccaaagaaatagcaaaaagacaaaataaataaat
aaataaataagtaagtaaaataaactgtgaaacgggg
agttcccttcatggctcagcagttaacaaacccagct
aggatccatgaggatgtaggttcgatccctggccttg
ctcagtgggttaagaatccagcgttgctgtgagctgt
gatgtaggtcgcagatgcagcccagatcctgcattgc
tgtggctgtggcgtaggctggcagctgaagctccgat
tcaacccctagcctgggaacatccatatgctgcaggt
gtggccttaagaggcaaaaaaataaaaaaataaaaaa
taaataaattgtgggacagacaggtggctccactgca
gagctggtgtcctgtagcagcctggaagcaggtaagg
taaggactgcagctgggtaaggactgaattgcaccaa
ctgggaagtaagcctagatctagaacttaagttagcc
ctgacatagacacacagagctcaccagctaagtggtt
cagcttataagctggtcactgaaactgaggatgtcca
caaaagcaaaataagtagcaacaggcagcgggatgca
agagaaagaggaggcctaaaatggtctgggaatccct
gccatacctatattttatcctacttatatttagtgcc
tgaatgtgtgcctggagagcaaagtttagggaaagca
tcgggaaatgcacagtattcatacccttaggaacaaa
gatcagttacctccagggtaaagactatttccaagtt
taaatttcaacccctgaacattagtactgggtaccag
gcaacacttgccatcctcaaaatcaatgaatcctaaa
attcaacctgggggtcagtgacagtctgtgacaaagt
ttttgctggtcagtaacgaaataagtatgagcaccat
ctgagtatggtcaccaagatgtcaactctctttcctt
tggacgaattgtcattattccaagattaggtcctttc
tatttttgaggtgtgaaaacatctttcctttcataaa
ataaaaggatagtaggtggaagaattttttttgtttt
ttggtctttttgctatttctttgggccgcttctgcag
catatggaggttcccaggccaggggtcgaatcggagc
tttagccaccggcccacgccagagccacagcaacacg
ggatccaagccgcatctgcagcctacaccacagctca
cggcaatgccggatcgttaacccactgagcaagggca
gggaccgaacccgcaacctcatggttcctagtcggat
tcgttaaccactgcgccacgacgggaactcctaatga
tactcttttatatttagctactatgtgatgatgagaa
acagtccacattttattattttttagccaatttgata
tctcattactaagataatgataattttctctataaat
tttatttaagttagtgttatgaagtggttttgctagt
gtagaaggctaggatttgaattcagttcaagaaagaa
gagagggagggagggagagggatgggtagagggatgg
ggcagtgggagagagcaaagaggagagacagtttttg
tattaattctgcttcattgctatcatttaagggcact
tgggtcttgcacattctagaattttctaaggaccttg
accgccagattgatatgcttcttccctttaccatgtt
gtcatttgaacagATGATTGAGACAGATGAGGACTTC
AGCCCTTTGCCTGGAGGATATGACTATTTGGTTGACT
TTCTGGATTTATCCTTTCCAAAAGAAAGACCAAGCCG
GGAACATCCATATGAGGAAgtaagcaggaataccagt
ggaagtgcccctttcttccttccttcctaaataaact
tttttattttggaacaactttagagttacagaaaagt
tgcaaagatattatagacagtagtgtttatatatata
tataaatttttttttgctttttatgaccacacctgtg
gcatatggaggttcccagtctaggggttgaattggag
ctacagctgccagtctgtgccataaccacagcaatgc
aggatctgggccacgtctgtgacctacaccaaagctc
acagctggattcttaacccactgagcaaggccaggga
ttgaacctgcatcctcgtggttcctagttggattcgt
ttccgctttgccgcaatgggaactccaaattattgtt
aatatcttactttactggggtacatttgttacaacca
atactctgatactgaaacattactgttaactccgtac
ttgcttctttttgagtcatttgcaaagactggcttct
tgacctgcttccttccaaacagctggcctgcctatgc
tgttctcagacctgcaagcactgatctctgcccccct
tgccttctctccagtggtgtctccttccccaaacaaa
cccagtgtggctctggaaagggagttaagtcaacata
aaccaacacatattttgttgagctccaattttgagca
aatccctcaccacggcagacaggcatgatgttaagaa
ctagggctttggacacaaggtcaagaccaagaagggt
tcctcacccctactgattcagataaccaataatgagg
ctttgaatccctgtccaaaggttgttttttttccctt
ctattgagcttcttgccaccttatcagttttttttat
gacagtcaaatgacatgatatatgtgagcatacatgg
taatttttaattctatataaatgaatcactaaataaa
ttaggaggatatatagtccacctttaagcgtattaca
cgtgtcacatgaatgtgtggcgacttaattgtagagg
tttaaatgtagcttcctataatagatgtgttcctaaa
ctacattttaatcattggacttgtatttttatgttag
cacttgctgttgaagaaaagcctatgccaaaagttca
gtgaaaccaataatccactgccagctttctgagttaa
aaaaaatccctgggttttcacacacaggaacaccctg
tgtgaaacactcatttagagcaaaatgcatctgataa
ggagttcctgttgtgcctcaactggttaaggacctga
cattctccatgagaatgtgagtttgatccccggcccc
actcgatgggttaaggatctggtgttgccacaaactg
cagctccgattcatctcctagcctagaaacttccaca
gcccagaatatgccacagaattcggctgtttaaaaaa
aaaaagaaaaaaaaaagaatcataaatgtgttggttt
gttcaccaaatacatgataacttgctcttgccaagct
cagcttcataaatattaagtcatttaatacagcagcc
accttatgaacagatattactatacttcccatttaca
gataaggaaaatgccatatttaaccaagagattaaat
aactttcccgaggtcttatagcaagtaaatcatggtg
caggggtttgaccacacgcagtctatctccagagtct
gtgtatttagccactgttttactttcaaatttaaatt
tataaaacttctaaattatctgttaaccataatcttt
ggaatttttaaaaccacgagttcctataaaatgtttc
attgaaagtaagtcacttttccatagcttttgataat
acatctgtaggataaagtaagccacagctctcttgca
gacttggtacaccctggggcaaagcatcatgcctgtc
acgtacatggtggtccttactttgactctcagtgctt
ttattgcccaggaattttgtgagatttctagttgttg
aggtttgtttaaagaggttatgccggtacttggaaga
gctcttttcttgctacctggagccttctcatatttcc
tttttgaggagggacatgaattgcctttcaaactcat
aaatatattttctagtacacaagtctccatcttcctt
agacgcatggctcctggagttctccatcctcctgctc
cactttgggtgggctcctctctgggtctgccaccaat
ctgccacccagagacatccttgacccacttccagacc
ccaccatggcttcactttcttcgctttcctcctttgt
ggaaccttctgcttaagaatctgaggaagaaaatttg
cacgtgagctaaactggaggtactttcctgcctggtc
ttgcacgatagcttggctgagcccatgatgctgggtg
gctgttactttccatggacacccgaaggcgttgctcc
tttggcttctagttgcatgcagtgttgcttatcccag
gctgatctttcttccactgtaggtgacttttaagaat
taagggattaatctatatctacaacaacaacaacaaa
gaccttttcaagctgaggtagggctttctgtatatgt
ttggagtggttatccagcagactttacttgaaggcag
gggtcatatcctcaagtgctcataaacggaccacaga
aagatctcataattgggtggagctgggtggggaccgt
gtcatgtggccaggaaatgccagatgggaagggagtg
gcccttactgagctccagctgaactctgaattttcta
gaaaactcagaaatctggatttttcatgtgtaatacc
cagatttatagatgtggaaagctaattcttttttttt
ttaagggactataggcaatgaactaagatctaggttg
tatttggacaaggggtcatcagtttaagctgtgtagt
tgagcgctcagctattgggctgagggacccctaaata
ctgagacggggaggtccttgctctggggcatcacaag
tacactccctggtctcattcaaacacttttcctacaa
aattgatcccatttcttcagtgcactgtctgaatgca
tttggcccagagccgtgctgaggcatagggaaggggt
ccacggtttcatggcatcgttttgtgctgtgtgtccc
tgctgtcgtccaggatacctacctctcctcctcctgc
atctgaatgtccccccacagactctctgggattctac
agcctctggcctgttcctcagacacctcttacctgcc
agctttccagattcacattagttagtccaaatctact
gccgtcagtgactcacttcatttcttcttctccgagg
cagttcagcccggtacagttgttttgtcaacacttca
gttgagtctggaagatgtgcatgggttatgcacgaga
gcggtccatcattttgagctagaagtcctttctcagc
ccagagacaagtcctcatctcctttacttcctgactc
ttcttcctctgcatccttccaagatatctctttctcc
agccaccacctaaatctcttcttttcccggggttccg
tgctcaacccactcttcttcttaaatctgtggctggg
tgaacgcatctgctggcaccacttctctgctaaagac
tccaaaaatccataggtcctgcccggcctttgcccac
ctctctccaacactgtccagctttagatgtagagcta
atccccccagagatatcattccctggatgtctaagtc
ctttggtatctcactttcagcgtgttcaaaatcctct
tacaactgttctttctccttttccatcttgattattg
gcaacatgccagcctttcccctacccccagcagtgag
ccaagctagaaacaagggcttaatcttcaatctttcc
ttctccatccctaaacctaatgagtctccaagccctt
cccagtttacaccctaaatgttgctcaaaacatcccc
tagttcttccacgtgctctcctctatattgaaaggtc
aagaaaggccatcttccctccactgtgaggaaataga
tcttgatactgcccctgagctgggcagtcctcgacct
gacaaactgtgcagtgtttctaaatctctactggcaa
aatgagagtgcctttgacctgtgttgcgatctcagat
cacagtggatgtaattgttttataggaatggtgaacg
aaaaagaagtaaatccctaatgccaaactcctgatca
ttctatgtcatttaatagcctgtcatttatgataaag
tttcctctactggcattagcacaatacttctcaggaa
aaaaaaatatgatgccagatactgaaaagctcctggg
taaacatgaacatgggtaccgataaaatggtgaagcc
agtccaatcttagagtgacttcccttcatgctacttc
atgctcttttttttttttttttttaagaaaaacccct
tttttttttctcacaccagtcacagaggagaccgagg
cttagcaaggttaaggtcacatgattagtaagtgctg
ggctgaaactcaaaaccatctctgcttgtctcctaac
cctgtgcacctctgactattcaacagATCCTGTGTCA
GGAGTTGGGATTCTTTGAAGgtaagggccttgaccac
cgaattaaggtaatcttgctctgtggcaggccttgtt
ttcagtattttaagtacactggctcaggtaatcctca
caacagccccaggaggaatgttctattacctccactg
tatagatgaggaacttgaggcacagaatggttgccaa
ggtcacacagctatattgggggttcatacccagccat
ccaactctgtctgtactctctgccactctgcaccccc
agctcctgatccacttcctgtttccatccctcgattt
ctgctgcactcaggggcccctctccccctcggcctgt
gagatctgcttcagtaggcttttctccctgactcctc
catccctgtccttacaggcagctgcttctctccggga
cacgaggggtccatacggacactctctactggctggg
ttgcgcctaactcgtgattcctcctctgtttcagATT
CGGAGCCGGGTTGATGTCATCAGACACGTGGTAAAGA
ATGGTCTGCTCTGGGATGACTTGTACATAGGATTCCA
AACCCGGCTTCAGCGGGATCCTGATATATACCATCAT
CTgtaagtccgaaaatgcctgtcgtgtgtgccttagg
ctgctgcggaggaggccagggctatataagcagagtc
agtgactgactgtgccctgcagtgttgatggccatgg
agattccaccgttagagcttttttctttgttaacctt
gaaggcaaatctggttaggaagataactttcaaagag
tcaccatctggacattcatgcccatgtgcttcaatcc
tgtatacaagcagtttagagtacagggaagggaagga
cattatgaaagggagagggtgtgtttggatccagcag
ctccatcctcagaatttatctgaagacactgcaaaat
tactaagaatcactatgacaagaatgaggatggggtg
atatggcaaagttgtgatcctggaagaccttcatctc
ccatgttgcccaactctgaacatgaatttggtgaact
agttggttaaggggatgatcctccaagtttctccctg
gttgagctccaaaaaccatgtaagtttctcatagcaa
aaccgtataggtccttagggctttagttggaatattt
gtgctgaaatgctggaaagccccatttgccatttttg
tatttgcaaaataatcatcaagaggggagaatgcatt
ctttcatgaccactgaccctctgaaaaggtcaggaat
ttagtctgaagtaggcaagcctcctaccccgcttctg
ccatgagcttgcacgcacaggcctglcttgacatttc
ttctttatagatttctttttgaatatcttgaaattgc
tttaaaaatatttaaagaatgtagaattatataaaat
aaaaaggaaataaccccacacctcccacaaaaccctg
tttcctgcctttctccacccactctccagggtaacac
ttggtaacagcatagttgtatcaccccaggcctattt
ttgagcatatcagcatttcaagaaatgtattttttct
caataaaacatcccttatagttgaggaggggaggtta
tcattcctgggttttgttttttttttttttttaatgt
aatcctggtacatcggtaatttgcattttttattcat
taatatctttggtatttctagtgttgggacacacagg
tcaacctcagtttttgggtttttttttttgtcttttt
gtctttctagggccacacctgcagcatatggacgttc
ccaagctaggagtctaatcagagctgtagccaccagc
ctacgtcatagccatagcaacgtcagatccaagccgt
gtctgtgacctacaagcacagctcatggcaacaccgg
atccttaaccactgaacgaggccaggggatcgaacac
acatcctcatggatcctagtcatgttcattaaccact
gagtcatgatgggaactccaacttcaactattttaat
gtctgtaaaacattccatttggaaaccatttcatttg
taaagcaaaatgaaaacattttgttcattttcaacag
agttcgtagctgacttctgttctggaaaaaaggaaat
ggagcaaatttgagtgagaaagattcaaagataactt
ttcttttaaaaaaaattatatcttggaaacttctggg
ctattgattctgaagactatttttctatatactgttt
tgatagcaaagttcataaatgtgaaaggatcctgcga
tgaatcttgggaagcagtcatagcccaatatatcttt
gttgcttttaaaatgagatttagtttactaaatattt
ttctgatcataaaaataacacagatctaccgcagaaa
atttggaaaaaaaaaaacttttaaattcaaaaaacag
ttaaaccacaaatgatcccaccatccagagagcaatt
tgtactttggtgtctagttcatctttctttttctgtt
tacaagcacatataccacaagcattttttcaaaaaat
gaaaatgggataatactatacatacgtctgtacacct
gcatagttactgaacagtctttgatctaccctgtaag
tttctaacttttcattatttgaaatgatgttttggca
aagaaatatgtaggtgtgtctcgcacactttcataat
gatttcttaggataaatttcttaggataaattcataa
tgatttcttataataatccatactctgccaactgatc
ttcagggaagccaactcgccttctcagaaataacata
taacccatttacttgccctctcaccaatactaggtcc
taatgtttttgtgtacagattctatatttttacatac
aagaattccttaaagcaaggcatgtcacagaaaaata
gaaggaagacacaattgtcatgtttaaggactgcatt
ctgtaccaaaaatgctaagttaaatgaacatctgaaa
cagtacagaaacgctatctttcagggaaagctgagta
ccaggtactgaacagattttggcaaatacagcaggca
tggatgtttccaaaacatgtttttctactttatctct
tacagGTTTTGGAATCATTTTCAAATAAAACTCCCCC
TCACACCACCTGACTGGAAGTCCTTCCTGATGTGCTC
TGGGTAGAGAGGACCTGAGCTGTCCCAGgtaaagcat
cctgcaggtctgggagacactcttattctccagccca
tcacactgtgtttggcatcagaattaagcaggcacta
tgcctatcagaaaacctgacttttgggggaatgaaag
aagctaacattacaagaatgtctgtgtttaaaaataa
gtcaataagggagttcccatcgtggctcagtggtaac
gaaccctactagtatccattgaggacacaggttcaat
atctggcctcactcagtcggctaaggatccagtgatg
ccgtgagctgcagtgtaggccacagacgtggctcaga
tctggtgctgctgtggctatggtgtaggccggccccc
tgtaactccaattcgacccctaggctgggaacctaaa
aagaccccaaaaaagtcgctatgaatagtgaatacat
ccagcccaaagtccacagactctttggtctggttgtg
gcaaacatacagccagttaacaaacaagacaaaaatt
atcctaggtggtcagtgggggttcagagctgaatcct
gaacactggaaggaaaacagcaaccaaatccaaatac
tgtatggttttgcttatatgtagaatctaaattcaaa
gcaaatgagcaaaccaattgaaacagttatggaagac
aagcaggtggttgtcaggggggagataaggggaggca
ggaaagacctgggcgagggagattaagaggtaccaac
tttcagttgcaaaacaaatgagtcaccagtatgaaat
gtgcaatgtgggaaatacaggccataactttataatc
tcttttttttttttgtcttttttgccttttctaaggc
tgctcccgtggcatatggaggttcccaggctaggagt
ccaaacagagctgtagctgccagcctacaccagagcc
acagcaacacgggaaccttaacccgctgagcaaggcc
agggatcgaacccgagtcctcacagatgccagtaggg
ttcattaaccactgagccacgacaggaattccagggt
ctgttgtgttcttaaaacacttccaggagagtgagtg
gtatgtcataagtaaacaataaatgttaaccacaaca
agcttatgaaataaacaggaaagccatatgacctaca
atcagtcattgggagaatccacaaaaggttgagcaga
ggatcaattccagctcacactccagttttagattctc
ccctgccttaaagcatcacagactacataatctgagc
tgaagaataaaaattaaaactcaccccagtgcaaaac
agaaatgaaaaagtattaaaacgaggttcatactgtt
gttcattagcaatatcttttattcacagGGGTGCCCA
ACAACATGAAAAAATCAAGAATTTATTGCTGCTACGT
CAAAGCTTATACCAGAGATTATGCCTTATAGACATTA
GCAATGGATAATTATATGTTGCACTTGTGAAATGTGC
ACATATCCTGTTTATGAATCACCACATAGCCAGATTA
TCAATATTTTACTTATTTCGTAAAAAATCCACAATTT
TCCATAACAGAATCAACGTGTGCAATAGGAACAAGAT
TGCTATGGAAAACGAGGGTAACAGGAGGAGATATTAA
TCCAAGCATAGAAGAAATAGACAAATGAGGGGCCATA
AGGGGAATATAGGG
TABLE 13
SEQ ID NO. 49
TCTAATGCCTTGTGGAAGCAAATGAGCCACAGAAGCT SEQ ID NO 49
GAAGGAAAAACCACCATTCTTTCTTAATACCTGGAGA
GAGGCAACGACAGACTATGAGCAG
gcaagtgagagggggctttagctgtcagggaaggcgg
agataaacccttgatgggtaggatggccattgaaagg
aggggagaaatttgccccagcaggtagccaccaagct
tggggacttggagggagggctttcaaacgtattttca
taaaaaagacctgtggagctgtcaatgctcagggatt
ctctcttaaaatctaacagtattaatctgctaaaaca
tttgccttttcatag
CATCGAACAAACGACGGAGATCCTGTGTGCCTCTCAC
CTGCCGAAGCTGCCAATCTCAAGGAAGGAATCAATTT
TGTTCGAAATAAGAGCACTGGCAAGGATTACATCTTA
TTTAAGAATAAGAGCCGCCTGAAGGCATGTAAGAACA
TGTGCAAGCACCAAGGAGGCCTCTTCATTAAAGACAT
TGAGGATCTAAATGGAAG
gtactgagaatcctttgctttctccctggcgatcctt
tctcccaattaggtttggcaggaaatgtgctcattga
gaaattttaaatgatccaatcaacatgctatttcccc
cagcacatgcctaactttttcttaagctcctttacgg
cagctctctgattttgatttatgaccttgacttaatt
tcccatcctctctgaagaactattgtttaaaatgtat
tcctagttgataaacagtgaaacttctaaggcacatg
tgtgtgtgtgtgtgtgtgtgtgtgtgtttaccagctt
ttatattcaaagactcaagcctcttttggatttcctt
tcctgctctctcagaagtgtgtgtgtgaggtgagtgc
ttgtccaaacactgccctagaacagagagactttccc
tgatgaaaacccgaaaaatggcagagctctagctgca
cctggcctcaacagcggctcttctgatcatttcttgg
aagaacgagtgctggtaccccttttccccagcccctt
gattaaacctgcatatcgcttgcctccccatctcagg
agcaattctaggagggagggtgggctttcttttcagg
attgacaaagctacccagcttgcaaaccagggggatc
tggggggggggtttgcacctgatgctcccccactgat
aatgaatgagggattgaccccatcttttcaagctttg
cttcagcctaacttgactctcgtagtgtttcagccgt
ttccatattaggcttgtcttccaccgtgtcgtgtcgt
caatcttatttctcaggtcatctgtgggcagtttagt
gcgaatggactcagaggtaactggtagctgtccaaga
gctccctgctctaactgtatagaagatcaccacccaa
gtctggaatcttcttacactggcccacagacttgcat
cactgcatacttagcttcagggcccagctcccaggtt
aagtgctgtcatacctgtagcttgcttggctctgcag
atagggttgctagattaggcaaatagagggtgcccag
tcaaatttgcatttcagataaacaacgaatatatttt
tagttagatatgtttcaggcactgcatgggacatact
tttggtaggcagcctactctggaagaacctcttggtt
gtttgctgacagactgcttttgagtcccttgcatctt
ctgggtggtttcaagttagggagacctcagccatagg
ttgttctgtcaccaagaagcttctgcaagcacgtgca
ggccttgaggtcttccgacttgtggcccggggactct
gctttttctctgtccttttttctccttagtgggccat
gtcctgtggtgttgtcttagccagttgtttaagggag
tgttgcagctttatgattaagagcatggtctttcctt
gcaaactgcttggtttagaagcctggctccaccactt
agcggctctgtgacctcggacacatttcttagccttt
ctgggcctcgctcttcttcctcataaagtgaaaatga
aagtagacaaagccttctctgtctggctactgagagg
atggagtgatttcatacacataaagcacttaaaataa
tgtctggcatatgatacatgctcaataaatgtcactt
acatttgctattattattactctgccatgatcttgtg
tagcttaagaacagaggtctttacaggaattcaggct
gttcttgaatctggcttgctcagcttaatatggtaat
tgctttgccacagactggtcttcctctccttcaccca
aagccttagggggtgaacgatcccagtttcaacctat
tctgttggcaggctaacatggagatggcaccatctta
gctctgctgcaggtggggagccagattcacccagctt
tgctcccagatacagctccccaagcatttatatgctg
aaactccatcccaagagcagtctacatggtacactcc
cccatccatctctccaaatttggctgcttctacttag
gctctctgtgcagcaattcacctgaaatatctcttcc
acgatacagtcaagggcagtgacctacctgttccacc
ttcccttcctcagccatttttcttctttgtacataat
caagatcaggaactctcataagctgtggtcctcattt
tgtcaatctaatttcacagcctcttggcacatgaagc
tgtcctctctctcctttctgcctactgcccatgagca
gttgtgacactgccacatttctcctttaacgacccag
cctgctgaatagctgcatttggaatgttttcaatttt
tgttaatttatttatttcatctttttttttttttttt
tttttttttttttttagggccgcacccatgggatatg
gaggttcccaggctagggatccaatgggagctgtagc
tgctggcctacaccacagccacagcaatgcacaattc
gagccaatctttgacctacaccagagctcacggcaac
actggattcttaacccactgattgaggccagggatca
aactctcgtcctcatagatacgagtcagattcgttaa
cctctgagccatgatagttgttagttactcattgatg
agaaaggaagtgtcacaaaatatcctccataagtcga
agtttgaatatgttttctgccttgttactagaaaaga
gcattaaaaattcttgattggaatgaagcttggaaaa
aatcagcatagtttactgatatataagtgaaaataga
ccttgttagtttaaaccatctgatatttctggtggaa
gacatatttgtctgtaaaaaaaaaaaatcttgaacct
gtttaaaaaaaaaacttgactggaaacactaccaaaa
tatgggagttcctactgggacacagcagaaatgaatc
taactagtatccatgaggacacaggtttgatgcctgg
cctcgctaagtgggttaaggatatggtgttgctgcag
ctccaattcaacccctatcctgggaacccccatatgc
caccctaaaaagcaaaaagaaaggtgctgccctaaaa
agcaaaaagaaagaaagaaagacagccagacagacta
ccaaatatggagaggaaatggaacttttaggccctat
ctccaactatcacatccctatcaccgtctggtaagaa
atggaaaaaatattactaagcctcctttgttgctaca
attaatctgattctcattctgaagcagtgttgccaga
gttaacaaataaaaatgcaaagctgggtagttaaatt
tgaattacagataaacaaattttcagtatatgttcaa
tatcgtgtaagacgttttaaaataattttttatttat
ctgaaatttatatttttcctgtattttatctggcaac
catgatcagaaatctttaaacaatcaggaagtctttt
ttcttagacaaatgaaaatttgagttgatcttaggtt
tagtacactatactaggggccaagggttatagtgtga
ctattaaatcacagataatctttattactacattatt
tccttatactggccccacttggatcttacccagctta
gctttgtatgagagtcatccttaaagatgactttatt
ctttaaaaaaaaaaacaaattttaagggctgcaccca
tagcatatagaagttcctaggctagcggtcaaattag
agctgcagctgccagcctatgccacagccacagcaat
gccagatctgagctgcatctgtgacctacactgcagc
ttgcagcaatgctggatccttaacccattgaacaatg
ccagggattgaacacacatcctcatggatactgctca
ggttcctaacctgctgagccacagttggaactccaaa
gcagactttattctgatggctctgctgatctctaaca
cgttattttgtgccatggtgtttatcttcactttact
caagtcagggaaacacgaagagtctcatacaggataa
acccaaggagaaatgtgcaaagtcacatacaaatcaa
actgacaaaaatcaaatacaaggaaaaaatatcttca
ctttcaaaatcacctactgatgatgagtttatatttc
cttggatatttgaatattagctatttttttcctttca
tgagttttgtgttcaaccaactacagtcgtttacttt
gatcacagaataatgcatttaagccttaaatagatta
atatttattttcaccatttcataaacctaagtacaat
ttccatccag
GTCTGTTAAATGCACAAAACACAACTGGAAGTTAGAT
GTAAGCAGCATGAAGTATATCAATCCTCCTGGAAGCT
TCTGTCAAGACGAACTGG
gtaaataccatcaatactgatcaatgttttctgctgt
tactgtcattggggtccctcttgtcaacttgtttcca
atctcattagaagccttggatgcattctgattttaaa
ctgaggtattttaaaagtaaccatcactgaaaattct
aggcaagttttctctaaaaaatcccttcattcattca
tttgttcagtaagtatttgatgagaccttaccatgtg
taaacattgcactaggtattaagaaatacaaagatgg
ataagatagagtcggcgtaaatgagatgatataatga
gacgttataatgaaactcacaattccagttgggaaat
aaagtccttcaaattccatgactctttctggcacacg
ttagaggctacagcttctgtgtgattctcatgctggc
tccacttccactttttccttcttcctactcaagaaag
cctatagaaatatgagtaagaagggcttaatcatagg
aataaatttgtctctgttctaagtgattaaaaatgtc
tttatcagtataaaaagttacttgggaagattcttaa
aactgcttttacacactgttctagaatgactgttata
taaataaaaaagtagatttgatctaacacaattaaat
gacctttggaaatattgactaattctcaccttgcccc
tcaaagggatgcctgaaccatttccttcttttgccag
aaagcccccaccctttgtctgttgacctagcctagga
aatcttcagatcacgttgttagcacgaactggttaca
tgtgctgtacaaatactatttaattcatctgattaaa
aaaaaagagataagaagcaaaagtttgactatcttaa
actgtttgcgtaggtgagaggacaattgaccatctac
tttatgagtatgtaacccagaaacttaaagctcctta
agggagctaagtcttttggataagacctatagtgaga
ccttttagcaaaatggttaagactgaatggagctcac
tagcgtgggttcatatcctgatgctcaaacacgcaat
taaatgactttaggtgggttagtctctgttccttagt
ttcctcaatgggagataatattggtagtagcgatttt
actgggttgttgaaagaacatctgttaaatgttcaga
acgtgttacgacagagtacagagtaatgatttgcttg
tatatgtatgactcaaatagtctgccatatgccttgt
gactgggtcctgtggagcaggaaggagggatttccca
cccagcagaaagttgggtaaactggaaaatagactga
ggccaggaaatgatgcaaagcgttgatgttcactgcc
acggcaggtgaagggcagggccagagttgtcagtagg
gtcaggggaggactggaaataaccaagacccactgca
cttttcagcctttgctccagtaaggtaatgttgtgag
agtagaaaattttgttaacagaacccacttttcagta
cagtgctaccaaactgtagtgatttcataccacatcc
caagaaagaaaaagatggctcaatcccatgtgagctg
agattatttggttttattgttaaataaatagcattgt
gtggtcatcattaaaaaaggtagatgttaggaaagta
gaaggaagaagactctcacctacattttcatcactgt
tttggtatctgccagttgtcaccttggtccccttccc
cgcctctcccctgcctcctcttcctccttctcctttt
tttggaatacaattcaggtaccataaaatttaccctt
ttagagtgtttgactcaatggtttttagtattttcac
atgttgtgctattactatcactatataattccaggtc
attcacatcaccccccaaagaaaccttctaactatta
gcagtccattcccttcttccctcagcccctggcaacc
actaatctacttactgtctccatggatgttcctatat
tgaatcaagctagcataaaccccacttgctcatggtc
ataattcttttttatagtgctaaattacatttgctaa
tattcaattaaggatttctatgtccatattcataagg
aatattggtgtgtagttttctctttgtgtgatatctt
tgtctggttgggggatcagagtaataattactgctct
catagaatgaattgagaagtgttccctccttttctat
ttattggaagagtttgtgaagtatattggtattgatt
cttctttaaacatttggtcagattcaccagtgaagcc
atctgggccatggctaatctttgtgaaaagttttttg
attactaattaaatctctttaatttgttatgggtctg
ctcctcagacgttctagttcttcttgagtcagttttg
ttcatttgtttcttcctaggactttctccctttcatt
tggattatttagattgatagtaatatcccccttttaa
ttcctggctgtagtaatttgggtcttttctctttttt
cttggtcagtttagctaaaggtttgtaattgtattaa
tcttttcaaataactaacttttttgttttgtttgttt
tttgttttttgttttttgttttttgtttttttttgct
ttttaaggctgcacctgaggcatatggaagttctcag
gctagaggtctaatcggagctacagctgctggcctat
accacaaccatagcaatgccagattcaagctgcatct
gcgacctacaccacaactcggccagggatcacacccg
caacctcatggttcctagtcggatttgttaaccactg
tgccacgacgggaactcccgcccattttttttaacac
ctcatactttaacataaagatgggcttcacatggact
gatagctcaaatgaggaaggtaagactatgaaagtaa
tggaagaaatgtagactatttttgtgacctagagatt
actgatacttcttgacttttcaaacaatacttcaaaa
gtacagcccaaagggaaaaaagaaagaaaaaagaaac
acacatatacacaaacctagtgaataagatatcatcg
atacactacagatttctatgaactggaagaccccatg
gacaaagttaaagaacatatgatagtttgagtgatta
ttttgcaatatttacaaccaatgagggaatattatcc
agcttataggaggaagtaatgcaaatcgacaagaaaa
agataggaaacccaatataaaaattaagaaaatacaa
aaattaagaaaggatatgaactagcattttacaaaag
aaaaatctccaaaagtcaatcagcacatgaaaatatg
ctcaaacctattaattattagaaaactacagactgaa
gcaatgaggtgctttactttacatctttttgactgat
aaaaagttagaaacaaaggtgatatcaaatgtcaggg
ataaaaggatatagaaatcgtcatgcctgtggtggga
gtatggccggtgcagtcatgtgggaaggtaatctgac
agtggttaggcagagcaggtttatgaatacactgtgg
cccatcaatcccacgcctgtttatgtaccaaagaaat
cctgttgtggcagaatctatgggtccacccctgggag
catgaattaataaaatgtggcaccagggtgtgtgaaa
ctccagctagagatgagatgtccacatggcaacatga
atgcatcttagaaacatagatttgagtgaaaaagagt
aagaaacagccgggaaacccaataccatttataaaaa
ttaaagatgcacacatacaatgtagtaaatattttgc
atgaactttcaaatggttgcctacagggggggagagt
aaagaagagtagaaaacaaagataaagggagtaagta
agtagctctgcctggactgaatataatgtgtcatgaa
ctgagaaatatggttaacataatcctctaacttgagg
tcctaaatgaatgaatgagtccactattcatttaccc
attctttaatgtgtattgcattataatccattttttt
agaaccaacgaattttgttcccataactactaatcag
cctgccttttctccctcattcccttatcagctcaggg
gcattcctagtttttcaaacgttcctcatttgaacca
aaaatagcatcattgtttaaattatacttgttttcaa
atacgatgcttatatattccaagtgtgtttgcccatt
ttcttaggtggtagaaatttttcattctacttttcta
tctactcagattttcccgttggaattatttccattgc
tattaaacttagaagtcccccctgtgatatgccattt
ttttcatactttttaagcacttggttgcttttctttg
tgtctttaagcacctagaatacttataaccattgcac
agcactgtgtatcaggcagcccttcctcttccactaa
tttatggtccttctcttagactatattaaactgttat
ttaattaggatcctctcttcgtccttatgatttaatt
attatagttttctaatatgtttttattataattcctc
ttcattattcctccctattaaaaattttaatgaattc
catttgtttgttcttctagttaaatattaagtcataa
tccaaataacttagatgtcattagtttatgtggtcaa
agtaaggataccacatctttatagatgcaggcagttg
gcagatgtcatgattttcttcagtgcataaatgcaat
ttatctttgagcaaggggcataaaaacttttatggta
ttggctttgaaataatagttaagaactgcagactcag
tttttcctgcttttcttgaaaaagaacacttctaaag
aaggaaaatccttaagcatggatatcgatgtaatttt
ctgaaagtctcctgtaattccttgggatttttgttgt
tgtttgttggtcggtttttttgggtttttgtttgttt
gttttgttttgttttgttttgcttttagggctgcacc
tgtggcatatggaagttcccaggctaggggtccaact
ggagctacagctgccagcctactccacagccacagca
acatgggatcctagctgcatctgtgacctaaccacag
ctcttggtaatgccagattgttaacccactgagcaat
gccagagatcgaatctgcctcctcatggacactagtc
agattagtttctgctgagccacaatgggaattcccaa
ttccttgtatttttgaactggttatgtgctagcatat
aattttgtttcttgaatctttgtgggttttttttttt
ttttttttttgtctcttgtctttttaaggctgcaccc
acagcatatggaggttcccaggctagaggtcaaattg
gagctacagctgccagcctacacaacaactgcagcaa
agtggggcccaacttatatgacagttcgtggcaatgc
cggattcctaacccactgagcagggccagggatcgaa
cctgagtttccagtcagtttcgttaaccactgagcca
tgatagtaactcctgtttgttcagtcttgaacctcct
ttttaattctttattccttgagggtgaaataattgcc
ataataatactatcatttattacatgccttctctgtg
ctaggcatagtgacactttaggatttattatatcact
taatccctacaacaactctgcaaagtatgtatcataa
tcctatttgacagatcaggaaattgcagcccaggatg
cagataatatgcatccatcacaagtgactagatatag
tccctctgctattcagcagggtctcattgcctttcca
ttccaaatgcaatagtttgcatctattgtatatgtgt
tttggggtttttttgtctttttttttttttttgtctt
ttctggggcctcacccttggcataggtaggttcccag
gctaggggtcaaattgaagctgcagctgccagcctac
accacagccacagcaactcgggatctgagcctcatct
gcaacctacaccaaagctcacggcaacaccggatcct
taacccactgagtgaggccagagatcaaaccggcaac
ctcatggttcctagtcggattcattaaccactgagcc
acgatgggaactccctaaatgcaatagtttgctctat
taaccccaaactcccagtccatcccactccctcctcc
tccctcttggcaaccacaagtctgttctccatgtcca
tgattttcttttctggggaaagtttcatttgtgccat
ttttcattttacgggtaatttttacttcagtttcttc
cactagcagttgtcttaaagtgagtataattaatatt
catttggaaaatgtaagcaaaacattttttaaagggc
catgcccacagcatatgaaagtttctgggccaggggt
tgaatccaggctccaagttgcagctgtgccctacact
gcagctgggcaatgctggatcctttaacccactgtgc
ccggctagggatcaaacctgcatttccacagctaccc
gagccattgcagttggattcttaacccactgcactac
agtgggaactcccacaaaacattttttaatgtccttt
gaataaagtaggaaagtgctcgtctttgagggcaggg
cggcaatgccatttccacaaggtgctttggcttggga
cctcatctgctgtcatttagtaatgaataaaattgct
gacagtaataggattaactgtgtgtggagatagccag
ggttagagataaaaacactggagaagtcaaataagtt
gctcgaggtcctctagctaataagctattaagtggga
gagtgagggctagaaacaggccatctgtctcccaagc
acatgtccattagtggtttgctgatagccttccagaa
caacagagaggactctcaaacatggtcttgcctccct
ccaattgatcccctccatgtgcctcacagcgggtctt
tctaaaattaagttctgattttaattctcccttgcta
tagcacttaggtatggctttcagccgtgcaataaaaa
gcaggcaagagtggctcaatcatataggaggttgttt
ttcttagatcccaagcaggtaatcctgggcattatgg
ttgttctgcgtttatcaaggagccaaattctctatca
cctcctgttctatcctcctcagtatctggctctattc
ttcagcatctcaagatggcttgtgctcctccaagcat
ggcagtcaaattccacacaagagggggaaaatgaagg
gcagacagtgctggtctcctgagctgtccctctttgt
cggggaaataaatgtattccttcaagtcccgtgagac
ttctgaagtagacgtctgcttacgtctcacccaccag
aactatgtaaactgcacatagtgctaggtctacatag
ccactcataactgccagggggtgggaaatctttaaat
aggtgtaccaccacacaattaggatgctaatagtaag
ggagaaggagagaataggttttgcgcaagccaccagc
atgcctgccacaattgcttaaaattcttcattgaccc
ctcattgccacaggatgaaatccaaacgccttcttag
ttgggaatctgacctacctgtctctcccacctggttc
agacaccattctccttggtcataaaattccagtcatt
tgtgaacatccagctcccccatgcctccatgcctttg
cacatgctgttcttttatcttttatgttgtcctttta
tcttttatccaaaagagatatcccatcatcacatctc
ttcagcccccaaatactttgtctttcaagttcagctg
gaggattacctcctatttgaaatcagctttgtctctt
acaaccaaacaaggttttccttccgagacactcccac
agcaccttgaactcatctctatcaatcattcatttga
tgtaatgaagttgttggtggtatgcctgtgtctctga
cacatctgcgatctcatgagttccttaagtggaatgt
gaatagcgggatgaacagtattggtcttcagccctca
tctctgcagatgttgcttgacccaaatgagcgttgcc
ttttattttgattttgctttgatttgtctactccatg
tacttgagccatgcatttctgtcttagcgatgctttt
taaaagtcattttttggttgattatccagatttgtcc
acctttgcttctag
TTGTAGAAAAGGATGAAGAAAATGGAGTTTTGCTTCT
AGAACTAAATCCTCCTAACCCGTGGGATTCAGAACCC
AGATCTCCTGAAGATTTGGCATTTGGGGAAGTGCAG
gtaaggaaatgttaaattgcaatattcttaaaaacac
aaataaagctaacatatcaatttatatatatatatat
atatatatttttttttttttttacatcttatattacc
ttgagtattcttggaagtggctagttaggacatataa
taaagttattctgaagtctttttttttctttttccat
ggtgagcagtggcttgatgtggatctcagctcccaga
cgaggcactgaacctgagccgcagtggtgaaagcacc
aagttctagccactagaccaccagggaactccctatt
ctaaattcttgagcacattatttaggaacctcaggaa
cttggcaggattacaggaaatatatctagatttaaaa
aaaaatcttttaacagaggtcccaaaggagagtcatg
cacagctatgggaggaagttcagaaactgcccttgct
accagatcactgtcagataaaatggccagctacatgt
ttctgcacattgccctaagatctttacaaacttttct
gtgcatttttccacttttaaaagaaaatttcggggtt
cctgttgttgctcagtggttaacgaacccaactagta
tccatggggacaggggttcgagccctggcctcactca
gtgggttaagaatctggcattgctgtggctgtggcgt
aggctggcggctacagctcagattggacccctagcct
gagaacctccatatgccgcaggtatggccctaaaaaa
aaaaaaaaagagagagagagaatttcctccagaaaaa
acactttggtagtttgggagaagtaaacaaccaaaaa
ttaatttttctggagtattcgggaagcttgtaaaaat
gggctcttacttttttgaggagacaaatgggaaccta
cccagaagaggcacaatcacctgcatttgatttcttg
acctctccctaccttctttgctggctttccacatttg
gatttctgtgaccttatctctgctccttggtgttttc
atttttcctgtggacgtgccagactatgggaagggag
taaggcgttgatttagaatcctgtagtctctgcctgt
ctctagtcattgttttcacccttctcaaaggaccttg
acatcctgagtgagtccgcaagtaatttaggggagaa
gccttagaagccagtgcagccaggctacatgactgtg
tccacccactggaaccagtcatttttatacctattca
cagcccccctaccatttaaatccccagaggtctgcca
taacatctgtaactccctttcctggtaaattgtgttc
taaaagactggtaacaaaagatattctgtggtacaga
gcataattaaatacctgggagctgatttgagtggggt
aaatcaactggtttgacccctaaaacccaccatgagc
atttctgttctaataaagtaatgcccgtgctgggaat
tgtgttctacggaaatgctcctgctgtgtctttcttg
agtcctgtgtcattgaacatgcttaggagcaaaggtc
ccccatgtggcttgtctgctaaccagcccagttcctt
gttctggctggtaatgatccgatcatctgaatctcac
tgtcttccaacag
ATCACGTACCTTACTCACGCCTGCATGGACCTCAAGC
TGGGGGACAAGAGAATGGTGTTCGACCCTTGGTTAAT
CGGTCCTGCTTTTGCGCGAGGATGGTGGTTACTACAC
GAGCCTCCATCTGATTGGCTGGAGAGGCTGAGCCGCG
CAGACTTAATTTACATCAGTCACATGCACTCAGACCA
CCTGAG
SEQ ID NO. 49 represents contiguous genomic sequences containing Intronic sequence 5′ to Exon 4, Exon 4, Intron 4, Exon 5, Intron 5, Exon 6, Intron 6, Exon 7, Intron 7 and Exon 8 (Table 13). Further, nucleotide sequences that contain at least 1750, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, or 20000 contiguous nucleotides of SEQ ID NO. 49 are provided, as well as nucleotide sequences at least 80, 85, 90, 95, 98, or 99% homologous to SEQ ID NO. 49.
TABLE 14
SEQ ID NO. 50
AGGAATGGAAAGCCCAATTCATTAAAACAGAAAGGAA SEQ ID NO. 50
GAAACTCCTGAACTACAAGGCTCGGCTGGTGAAGGAC
CTACAACCCAGAATTTACTGCCCCTTTCCTGGGTATT
TCGTGGAATCCCACCCAGCAGACAAGTATGGCTGGAT
ATTTTATATAACGTGTTTACGCATAAGTTAATATATG
CTGAATGAGTGATTTAGCTGTGAAACAACATGAAATG
AGAAAGAATGATTAGTAGGGGTCTGGAGCTTATTTTA
ACAAGCAGCCTGAAAACAGAGAGTATGAATAAAAAAA
ATTAAATAC
gtatggctggatattttatataacgtgtttacgcata
agttaatatatgctgaatgagtgatttagctgtgaaa
caacatgaaatgagaaagaatgattagtaggggtctg
gagcttattttaacaagcagcctgaaaacagagagta
tgaataaaaaaaattaaatacaagagtgtgctattac
caattatgtataatagtcttgtacatctaacttcaat
tccaatcactatatgcttatactaaaaaacgaagtat
agagtcaaccttctttgactaacagctcttccctagt
cagggacattagctcaagtatagtctttatttttcct
ggggtaagaaaagaaggattgggaagtaggaatgcaa
agaaataaaaaataattctgtcattgttcaaataaga
atgtcatctgaaaataaactgccttacatgggaatgc
tcttatttgtcag
GTATATTAAGGAAACAAACATCAAAAATGACCCAAAT
GAACTCAACAATCTTATCAAGAAGAATTCTGAGGTGG
TAACCTGGACCCCAAGACCTGGAGCCACTCTTGATCT
GGGTAGGATGCTAAAGGACCCAACAGACAG
gtttgacttgaatatttacagggaacaaaaatgattt
ctgaattttttcatgtttatgagaaaataaagggcat
acctatggcctcttggcaggtccctgtttgtaggaat
attaagtttttcttgactagcatcctgagcttgtcat
gcattaagatctacacaccaccctttaaagtgggagt
cttactgtataaaataaactattaaataagtatcttt
caactctggggtggggggggagactgagttttttcac
agtcctatataataattttcttatcctataaaataat
taggagttcccgtagtggctcagcaatagcaaacccg
actagtatcgatgaggatgcgggttcgattcctggcc
cccctcagtgggttaaggatctggcattgccgtgagc
tgtggtgtaggtggcagacacggctcagatcccacgt
tactgtggctgtggcataggccagcagctccagctct
gattagacccttagcctgggaacttccatatgctgtg
ggtgtggccttgaaaaaaaataaataaataagataat
tactcaaatgttttccttgtctcagaaccttacttca
ggataaagagtgagaaagttttttttatgaagggcca
ttattacagctcaaaaataagttgtcttcagcaagta
gaaagcaataagcctgagagttagtgttcctatcagt
gtaaatattacctcctcgccaatccccagacagtcca
tttgaacaattaacggtgccctgggagtacagttcag
aaacattaatgtggatgttccagacctgtatttttat
aagtaccttgagccggatggaaccatcattcctcacc
attatttagaagtggactgtgactctgttggagatca
gggcacacggttaccaaaagcacacccttctcctggc
cttacctttgcaaagctggggtctgggacacagtcag
ctgattatacccttttactaacttcccacagctcaaa
tctggtcaattctccttcacaaatctcttaaaaatcc
atcactcacctccagcctcttctgctgtggccttgat
tcagcctctcacaatttttttttaaccagaattctgg
cagtggcccctgacttgcctctgtgctcccagccccg
ctgtcctctgatccatcctccatgccagcctttttca
atctgctggtcacgattcattgatgggttaggaaatc
aatggcatcacaactagcatttagaaaaaggaaatag
gcgttcccgccgtggcacagcagaaataaatccgact
aggaaccataaggttgcgggttcaacccctggccttg
ttcagtgggttaaggatccggcattgccgtgggctgt
tttgtaagtcacagacatggctctgatccggcattgc
tgtggctctggcgtaggcctgcagcatcagctccaat
tagacccctatcctgggagcctccatatgctgcaagt
gcagccctaaaaaaaataaaaaaataaaaaaaaataa
ataaaagaagtagacaaattgtatagaacaaccctga
gtatgttgcctgagcacatataacaagggtaagtatt
atttcaggaaactctggtttcacagatactcttggca
tatggacccctagagtcctgatgtaaaatatattctt
cctgggatcttaggcaagaagtttgaaagctccaact
ctgcactgctgccaaagaaatgatttttaagtgcaaa
actcttcccgttcccttccctgtataaaattccatag
gatctctccagtgcctctaggataaaggcagttttca
ttctctagttcaaggtgagagaagattttaattattt
cacgttttagtggggaattcaagagtctggcacctga
catttgctgaactctctccattatccctctctagttc
cccagacgcatcctatggtagaaattcgcaaactaga
gtgagcgtcagagtaacccaaggaaactgggtaaatg
cagctccctgggctctaccccctgagattctgattca
gtagatctgaagcagagccctggaatatgcatatgca
tcattgtgtcacaccaagcattctgggtaatgagagt
tgatgttaggttctcagtagtaagacaagtatagaga
ttccgggggactgagtgctcagctctgccttggggag
gagggagagggctaaagagaacaggagatggggacag
ggaatgctcaacctccaatcttaggcatttgagctat
gtcttaggggtcaggaggaggttaccaatatagtgat
taagagattgaggttccagtcagagggatatgctgga
gaaggggggtgaaaataatgtcataggtttggtgagt
gcagatactttgagttttttaatatttttattgaaat
atagttgatttacaatgctcttagtgagtacaattac
tttgaataagtgcatagatgtatgccattcttccaga
aatgatttattgagctcctttgggcatcatgctaagt
acaggggaaacagctgtgaagaggtccttcccttatg
aagtcattcatccccttcagtaaatgaaggtaaagga
aaaggatgagacagggacgccgtgttggaccagggtc
agaaaggccttataagaccttgcctggagggcaagga
acttgcctgtgagtaaggagagcttgagaaagcgata
aagcaaagaaggaacattactgcattgtgttttagaa
aaaccatgtcctggggaagaactcctagagtcagggg
ggccagttgggagactgtgcttttttccaggaggaga
taagtgaggctgctggctgagatggagcaaggattta
gagaagcagatatgagattcatttagaagttagacat
tttaggatctgacacataatttatcaccaaaaccagt
gcatctctggctttgggccaccagttttggagaagtg
gaatgtagggacctaccattacctgccaatctttact
acacagatgcctatttccctcctcatatttcctttct
ccagatcacgtcctattctattgccaggactcaagat
tccaccttgcatgcagtgatccatcttcacactggat
ggacagctctagggatgtcagagcacactcttgtcca
tactgctgactgggtctcctgtcagcccatctgtcta
tcagctgtggtattattagtataataagagggctgta
tatgagagacacaaaattctaggtgtagctcaaagat
aggctagagttattcctatgtacaacaaatatttatg
ggaccccttctgactgtcatggttgctgctttcatca
tacttgtagtctaatggaggtgggggcagggcaggaa
taagcggatgtccacaaaatcagtaagaccacttata
ttcaacattttcataatttagttatttgagcccaaag
ggtccacatccgtggtattccaacttttttttccccg
gacatggatctttatctttttttttttttcttttttg
cggccagacctgcggcatatggaagttcccaggccag
gggttgaatgggagttgcagctgcctggtctacacca
cagccacagcaaggtgggatctgagctgcatctgtga
catacaccgcagctgaggtaacaccagattctgaacc
cactgaatgaggccagggatggaacccgtctccttat
gaacactatgtcatgttcttcaccctctgagccacaa
cgggaactccagacttcgtctttaaatgtattctgac
ttggagagctatcacactaagcaattaacaggagctg
acctggtttaggctggggtggggccctactcctcaat
gttccctgaggcacatctgtgggacccctgggcatca
tctatctgagcagccttagagctgctcatccagttga
ctgttgatgtagaagtgcaaacttctgccttccttat
ttgttgctttcttttttcattgttctctcccctttgt
gtctttaag
CAAGGGCATCGTAGAGCCTCCAGAAGGGACTAAGATT
TACAAGGATTCCTGGGATTTTGGCCCATATTTGAATA
TCTTGAATGCTGCTATAGGAGATGAAATATTTCGTCA
CTCATCCTGGATAAAAGAATACTTCACTTGGGCTGGA
TTTAAGGATTATAACCTGGTGGTCAGG
gtatgctatgaagttattatttgtttttgttttcttg
tattacagagctatatgaaaacctcttagtattccag
ttggtttctcaaaagcattcattgagccttactgact
gtcagacggagggcgtattggactatgtgctgaaaca
atcctttgttgaaaatgtagggaatgttgaaaatgta
gggaatgaaatgtagatccagctctgtttctcttttg
gaggattctttttcctccatcaccgtgtcttggttct
tgtttgttttgggtttttgtgggtgttgtattgtgtt
gtgttggttatggcagtgacagctatttaaactgtga
aacgggggagttcccgtcgtggcgcagtggttaacga
atccgactgggaaccatgaggttgcgggttcggtccc
tgcccttgctcagtgggttaacgatccggcgttgccg
tgagctgtggtgtaggttgcagacacggctcggatcc
cgcgttgctgtggctctagcgtaggccagcggctaca
gctccgattggacccctagcctgggaacctccatatg
ccgcaggagcggcccaaagaaatagcaaaaagacaaa
ataaataaataaataaataagtaagtaaaataaactg
tgaaacggggagttcccttcatggctcagcagttaac
aaacccagctaggatccatgaggatgtaggttcgatc
cctggccttgctcagtgggttaagaatccagcgttgc
tgtgagctgtgatgtaggtcgcagatgcagcccagat
cctgcattgctgtggctgtggcgtaggctggcagctg
aagctccgattcaacccctagcctgggaacatccata
tgctgcaggtgtggccttaagaggcaaaaaaataaaa
aaataaaaaataaataaattgtgggacagacaggtgg
ctccactgcagagctggtgtcctgtagcagcctggaa
gcaggtaaggtaaggactgcagctgggtaaggactga
attgcaccaactgggaagtaagcctagatctagaact
taagttagccctgacatagacacacagagctcaccag
ctaagtggttcagcttataagctggtcactgaaactg
aggatgtccacaaaagcaaaataagtagcaacaggca
gcgggatgcaagagaaagaggaggcctaaaatggtct
gggaatccctgccatacctatattttatcctacttat
atttagtgcctgaatgtgtgcctggagagcaaagttt
agggaaagcatcgggaaatgcacagtattcataccct
taggaacaaagatcagttacctccagggtaaagacta
tttccaagtttaaatttcaacccctgaacattagtac
tgggtaccaggcaacacttgccatcctcaaaatcaat
gaatcctaaaattcaacctgggggtcagtgacagtct
gtgacaaagtttttgctggtcagtaacgaaataagta
tgagcaccatctgagtatggtcaccaagatgtcaact
ctctttcctttggacgaattgtcaltattccaagatt
aggtcctttctatttttgaggtgtgaaaacatctttc
ctttcataaaataaaaggatagtaggtggaagaattt
tttttgttttttggtctttttgctatttctttgggcc
gcttctgcagcatatggaggttcccaggccaggggtc
gaatcggagctttagccaccggcccacgccagagcca
cagcaacacgggatccaagccgcatctgcagcctaca
ccacagctcacggcaatgccggatcgttaacccactg
agcaagggcagggaccgaacccgcaacctcatggttc
ctagtcggattcgttaaccactgcgccacgacgggaa
ctcctaatgatactcttttatatttagctactatgtg
atgatgagaaacagtccacattttattattttttagc
caatttgatatctcattactaagataatgataatttt
ctctataaattttatttaagttagtgttatgaagtgg
ttttgctagtgtagaaggctaggatttgaattcagtt
caagaaagaagagagggagggagggagagggatgggt
agagggatggggcagtgggagagagcaaagaggagag
acagtttttgtattaattctgcttcattgctatcatt
taagggcacttgggtcttgcacattctagaattttct
aaggaccttgaccgccagattgatatgcttcttccct
ttaccatgttgtcatttgaacag
ATGATTGAGACAGATGAGGACTTCAGCCCTTTGCCTG
GAGGATATGACTATTTGGTTGACTTTCTGGATTTATC
CTTTCCAAAAGAAAGACCAAGCCGGGAACATCCATAT
GAGGAA
gtaagcaggaataccagtggaagtgcccctttcttcc
ttccttcctaaataaacttttttattttggaacaact
ttagagttacagaaaagttgcaaagatattatagaca
gtagtgtttatatatatatataaatttttttttgctt
tttatgaccacacctgtggcatatggaggttcccagt
ctaggggttgaattggagctacagctgccagtctgtg
ccataaccacagcaatgcaggatctgggccacgtctg
tgacctacaccaaagctcacagctggattcttaaccc
actgagcaaggccagggattgaacctgcatcctcgtg
gttcctagttggattcgtttccgctttgccgcaatgg
gaactccaaattattgttaatatcttactttactggg
gtacatttgttacaaccaatactctgatactgaaaca
ttactgttaactccgtacttgcttctttttgagtcat
ttgcaaagactggcttcttgacctgcttccttccaaa
cagctggcctgcctatgctgttctcagacctgcaagc
actgatctctgccccccttgccttctctccagtggtg
tctccttccccaaacaaacccagtgtggctctggaaa
gggagttaagtcaacataaaccaacacatattttgtt
gagctccaattttgagcaaatccctcaccacggcaga
caggcatgatgttaagaactagggctttggacacaag
gtcaagaccaagaagggttcctcacccctactgattc
agataaccaataatgaggctttgaatccctgtccaaa
ggttgttttttttcccttctattgagcttcttgccac
cttatcagttttttttatgacagtcaaatgacatgat
atatgtgagcatacatggtaatttttaattctatata
aatgaatcactaaataaattaggaggatatatagtcc
acctttaagcgtattacacgtgtcacatgaatgtgtg
gcgacttaattgtagaggtttaaatgtagcttcctat
aatagatgtgttcctaaactacattttaatcattgga
cttgtatttttatgttagcacttgctgttgaagaaaa
gcctatgccaaaagttcagtgaaaccaataatccact
gccagctttctgagttaaaaaaaatccctgggttttc
acacacaggaacaccctgtgtgaaacactcatttaga
gcaaaatgcatctgataaggagttcctgttgtgcctc
aactggttaaggacctgacattctccatgagaatgtg
agtttgatccccggccccactcgatgggttaaggatc
tggtgttgccacaaactgcagctccgattcatctcct
agcctagaaacttccacagcccagaatatgccacaga
attcggctgtttaaaaaaaaaaagaaaaaaaaaagaa
tcataaatgtgttggtttgttcaccaaatacatgata
acttgctcttgccaagctcagcttcataaatattaag
tcatttaatacagcagccaccttatgaacagatatta
ctatacttcccatttacagataaggaaaatgccatat
ttaaccaagagattaaataactttcccgaggtcttat
agcaagtaaatcatggtgcaggggtttgaccacacgc
agtctatctccagagtctgtgtatttagccactgttt
tactttcaaatttaaatttataaaacttctaaattat
ctgttaaccataatctttggaatttttaaaaccacga
gttcctataaaatgtttcattgaaagtaagtcacttt
tccatagcttttgataatacatctgtaggataaagta
agccacagctctcttgcagacttggtacaccctgggg
caaagcatcatgcctgtcacgtacatggtggtcctta
ctttgactctcagtgcttttattgcccaggaattttg
tgagatttctagttgttgaggtttgtttaaagaggtt
atgccggtacttggaagagctcttttcttgctacctg
gagccttctcatatttcctttttgaggagggacatga
attgcctttcaaactcataaatatattttctagtaca
caagtctccatcttccttagacgcatggctcctggag
ttctccatcctcctgctccactttgggtgggctcctc
tctgggtctgccaccaatctgccacccagagacatcc
ttgacccacttccagaccccaccatggcttcactttc
ttcgctttcctcctttgtggaaccttctgcttaagaa
tctgaggaagaaaatttgcacgtgagctaaactggag
gtactttcctgcctggtcttgcacgatagcttggctg
agcccatgatgctgggtggctgttactttccatggac
acccgaaggcgttgctcctttggcttctagttgcatg
cagtgttgcttatcccaggctgatctttcttccactg
taggtgacttttaagaattaagggattaatctatatc
tacaacaacaacaacaaagaccttttcaagctgaggt
agggctttctgtatatgtttggagtggttatccagca
gactttacttgaaggcaggggtcatatcctcaagtgc
tcataaacggaccacagaaagatctcataattgggtg
gagctgggtggggaccgtgtcatgtggccaggaaatg
ccagatgggaagggagtggcccttactgagctccagc
tgaactctgaattttctagaaaactcagaaatctgga
tttttcatgtgtaatacccagatttatagatgtggaa
agctaattctttttttttttaagggactataggcaat
gaactaagatctaggttgtatttggacaaggggtcat
cagtttaagctgtgtagttgagcgctcagctattggg
ctgagggacccctaaatactgagacggggaggtcctt
gctctggggcatcacaagtacactccctggtctcatt
caaacacttttcctacaaaattgatcccatttcttca
gtgcactgtctgaatgcatttggcccagagccgtgct
gaggcatagggaaggggtccacggtttcatggcatcg
ttttgtgctgtgtgtccctgctgtcgtccaggatacc
tacctctcctcctcctgcatctgaatgtccccccaca
gactctctgggattctacagcctctggcctgttcctc
agacacctcttacctgccagctttccagattcacatt
agttagtccaaatctactgccgtcagtgactcacttc
atttcttcttctccgaggcagttcagcccggtacagt
tgttttgtcaacacttcagttgagtctggaagatgtg
catgggttatgcacgagagcggtccatcattttgagc
tagaagtcctttctcagcccagagacaagtcctcatc
tcctttacttcctgactcttcttcctctgcatccttc
caagatatctctttctccagccaccacctaaatctct
tcttttcccggggttccgtgctcaacccactcttctt
cttaaatctgtggctgggtgaacgcatctgctggcac
cacttctctgctaaagactccaaaatccataggtcct
gcccggcctttgcccacctctctccaacactgtccag
ctttagatgtagagctaatccccccagagatatcatt
ccctggatgtctaagtcctttggtatctcactttcag
cgtgttcaaaatcctcttacaactgttctttctcctt
ttccatcttgattattggcaacatgccagcctttccc
ctacccccagcagtgagccaagctagaaacaagggct
taatcttcaatctttccttctccatccctaaacctaa
tgagtctccaagcccttcccagtttacaccctaaatg
ttgctcaaaacatcccctagttcttccacgtgctctc
ctctatattgaaaggtcaagaaaggccatcttccctc
cactgtgaggaaatagatcttgatactgcccctgagc
tgggcagtcctcgacctgacaaactgtgcagtgtttc
taaatctctactggcaaaatgagagtgcctttgacct
gtgttgcgatctcagatcacagtggatgtaattgttt
tataggaatggtgaacgaaaaagaagtaaatccctaa
tgccaaactcctgatcattctatgtcatttaatagcc
tgtcatttatgataaagtttcctctactggcattagc
acaatacttctcaggaaaaaaaaatatgatgccagat
actgaaaagctcctgggtaaacatgaacatgggtacc
gataaaatggtgaagccagtccaatcttagagtgact
tcccttcatgctacttcatgctctttttttttttttt
ttttaagaaaaaccccttttttttttctcacaccagt
cacagaggagaccgaggcttagcaaggttaaggtcac
atgattagtaagtgctgggctgaaactcaaaaccatc
tctgcttgtctcctaaccctgtgcacctctgactatt
caacag
ATCCTGTGTCAGGAGTTGGGATTCTTTGAAG
gtaagggccttgaccaccgaattaaggtaatcttgct
ctgtggcaggccttgttttcagtattttaagtacact
ggctcaggtaatcctcacaacagccccaggaggaatg
ttctattacctccactgtatagatgaggaacttgagg
cacagaatggttgccaaggtcacacagctatattggg
ggttcatacccagccatccaactctgtctgtactctc
tgccactctgcacccccagctcctgatccacttcctg
tttccatccctcgatttctgctgcactcaggggcccc
tctccccctcggcctgtgagatctgcttcagtaggct
tttctccctgactcctccatccctgtccttacaggca
gctgcttctctccgggacacgaggggtccatacggac
actctctactggctgggttgcgcctaactcgtgattc
ctcctctgtttcag
ATTCGGAGCCGGGTTGATGTCATCAGACACGTGGTAA
AGAATGGTCTGCTCTGGGATGACTTGTACATAGGATT
CCAAACCCGGCTTCAGCGGGATCCTGATATATACCAT
CATCT
gtaagtccgaaaatgcctgtcgtgtgtgccttaggct
gctgcggaggaggccagggctatataagcagagtcag
tgactgactgtgccctgcagtgttgatggccatggag
attccaccgttagagcttttttctttgttaaccttga
aggcaaatctggttaggaagataactttcaaagagtc
accatctggacattcatgcccatgtgcttcaatcctg
tatacaagcagtttagagtacagggaagggaaggaca
ttatgaaagggagagggtgtgtttggatccagcagct
ccatcctcagaatttatctgaagacactgcaaaatta
ctaagaatcactatgacaagaatgaggatggggtgat
atggcaaagttgtgatcctggaagaccttcatctccc
atgttgcccaactctgaacatgaatttggtgaactag
ttggttaaggggatgatcctccaagtttctccctggt
tgagctccaaaaaccatgtaagtttctcatagcaaaa
ccgtataggtccttagggctttagttggaatatttgt
gctgaaatgctggaaagccccatttgccatttttgta
tttgcaaaataatcatcaagaggggagaatgcattct
ttcatgaccactgaccctctgaaaaggtcaggaattt
agtctgaagtaggcaagcctcctaccccgcttctgcc
atgagcttgcacgcacaggcctgtcttgacatttctt
ctttatagatttctttttgaatatcttgaaattgctt
taaaaatatttaaagaatgtagaattatataaaataa
aaaggaaataaccccacacctcccacaaaaccctgtt
tcctgcctttctccaCccactctccagggtaacactt
ggtaacagcatagttgtatcaccccaggcctattttt
gagcatatcagcatttcaagaaatgtattttttctca
ataaaacatcccttatagttgaggaggggaggttatc
attcctgggttttgttttttttttttttttaatgtaa
tcctggtacatcggtaatttgcattttttattcatta
atatctttggtatttctagtgttgggacacacaggtc
aacctcagtttttgggtttttttttttgtctttttgt
ctttctagggccacacctgcagcatatggacgttccc
aagctaggagtctaatcagagctgtagccaccagcct
acgtcatagccatagcaacgtcagatccaagccgtgt
ctgtgacctacaagcacagctcatggcaacaccggat
ccttaaccactgaacgaggccaggggatcgaacacac
atcctcatggatcctagtcatgttcattaaccactga
gtcatgatgggaactccaacttcaactattttaatgt
ctgtaaaacattccatttggaaaccatttcatttgta
aagcaaaatgaaaacattttgttcattttcaacagag
ttcgtagctgacttctgttctggaaaaaaggaaatgg
agcaaatttgagtgagaaagattcaaagataactttt
cttttaaaaaaaattatatcttggaaacttctgggct
attgattctgaagactatttttctatatactgttttg
atagcaaagttcataaatgtgaaaggatcctgcgatg
aatcttgggaagcagtcatagcccaatatatctttgt
tgcttttaaaatgagatttagtttactaaatattttt
ctgatcataaaaataacacagatctaccgcagaaaat
ttggaaaaaaaaaaacttttaaattcaaaaaacagtt
aaaccacaaatgatcccaccatccagagagcaatttg
tactttggtgtctagttcatctttctttttctgttta
caagcacatataccacaagcattttttcaaaaaatga
aaatgggataatactatacatacgtctgtacacctgc
atagttactgaacagtctttgatctaccctgtaagtt
tctaacttttcattatttgaaatgatgttttggcaaa
gaaatatgtaggtgtgtctcgcacactttcataatga
tttcttaggataaatttcttaggataaattcataatg
atttcttataataatccatactctgccaactgatctt
cagggaagccaactcgccttctcagaaataacatata
acccatttacttgccctctcaccaatactaggtccta
atgtttttgtgtacagattctatatttttacatacaa
gaattccttaaagcaaggcatgtcacagaaaaataga
aggaagacacaattgtcatgtttaaggactgcattct
gtaccaaaaatgctaagttaaatgaacatctgaaaca
gtacagaaacgctatctttcagggaaagctgagtacc
aggtactgaacagattttggcaaatacagcaggcatg
gatgtttccaaaacatgtttttctactttatctctta
cag
GTTTTGGAATCATTTTCAAATAAAACTCCCCCTCACA
CCACCTGACTGGAAGTCCTTCCTGATGTGCTCTGGGT
AGAGAGGACCTGAGCTGTCCCAG
gtaaagcatcctgcaggtctgggagacactcttattc
tccagcccatcacactgtgtttggcatcagaattaag
caggcactatgcctatcagaaaacctgacttttgggg
gaatgaaagaagctaacattacaagaatgtctgtgtt
taaaaataagtcaataagggagttcccatcgtggctc
agtggtaacgaaccctactagtatccattgaggacac
aggttcaatatctggcctcactcagtcggctaaggat
ccagtgatgccgtgagctgcagtgtaggccacagacg
tggctcagatctggtgctgctgtggctatggtgtagg
ccggccccctgtaactccaattcgacccctaggctgg
gaacctaaaaagaccccaaaaaagtcgctttaatgaa
tagtgaatacatccagcccaaagtccacagactcttt
ggtctggttgtggcaaacatacagccagttaacaaac
aagacaaaaattatcctaggtggtcagtgggggttca
gagctgaatcctgaacactggaaggaaaacagcaacc
aaatccaaatactgtatggttttgcttatatgtagaa
tctaaattcaaagcaaatgagcaaaccaattgaaaca
gttatggaagacaagcaggtggttgtcaggggggaga
taaggggaggcaggaaagacctgggcgagggagatta
agaggtaccaactttcagttgcaaaacaaatgagtca
ccagtatgaaatgtgcaatgtgggaaatacaggccat
aactttataatctcttttttttttttgtcttttttgc
cttttctaaggctgctcccgtggcatatggaggttcc
caggctaggagtccaaacagagctgtagctgccagcc
tacaccagagccacagcaacacgggaaccttaacccg
ctgagcaaggccagggatcgaacccgagtcctcacag
atgccagtagggttcattaaccactgagccacgacag
gaattccagggtctgttgtgttcttaaaacacttcca
ggagagtgagtggtatgtcataagtaaacaataaatg
ttaaccacaacaagcttatgaaataaacaggaaagcc
atatgacctacaatcagtcattgggagaatccacaaa
aggttgagcagaggatcaattccagctcacactccag
ttttagattctcccctgccttaaagcatcacagacta
cataatctgagctgaagaataaaaattaaaactcacc
ccagtgcaaaacagaaatgaaaaagtattaaaacgag
gttcatactgttgttcattagcaatatcttttattca
cag
GGGTGCCCAACAACATGAAAAAATCAAGAATTTATTG
CTGCTACGTCAAAGCTTATACCAGAGATTATGCCTTA
TAGACATTAGCAATGGATAATTATATGTTGCACTTGT
GAAATGTGCACATATCCTGTTTATGAATCACCACATA
GCCAGATTATCAATATTTTACTTATTTCGTAAAAAAT
CCACAATTTTCCATAACAGAATCAACGTGTGCAATAG
GAACAAGATTGCTATGGAAAACGAGGGTAACAGGAGG
AGATATTAATCCAAGCATAGAAGAAATAGACAAATGA
GGGGCCATAAGGGGAATATAGGGAAGAGAAAAAAATT
AAGATGGAATTTTAAAAGGAGAATGTAAAAAATAGAT
ATTTGTTCCTTAATAGGTTGATTCCTCAAATAGAGCC
CATGAATATAATCAAATAGGAAGGGTTCATGACTGTT
TTCAATTTTTCAAAAAGCTTTGTTGAAATCATAGACT
TGCAAAACAAGGCTGTAGAGGCCACCCTAAAATGGAA
AATTTCACTGGGACTGAAATTATTTTGATTCAATGAC
AAAATTTGTTATTACTGCGGATTATAAACTCTAACAA
ATAGCGATCTCTTTGCTTCATAAAAACATAAACACTA
GCTAGTAATAAAATGAGTTCTGCAG
SEQ ID NO. 50 represents contiguous genomic sequences containing Exon 12, Intron 12, Exon 13, Intron 13, Exon 14, Intron 14, Exon 15, Intron 15, Exon 16, Intron 16, Exon 17, Intron 17, and Exon 18. Nucleotide sequences that contain at least 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000 or 20,000 contiguous nucleotides of SEQ ID NO. 50 are provided, as well as nucleotide sequences at least 80, 85, 90, 95, 98, or 99% homologous to SEQ ID NO. 50.
VIII. Oligonucleotide Probes and Primers The present invention further provides oligonucleotide probes and primers which hybridize to the hereinabove-described sequences (SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 and 50). Oligonucleotides are provided that can be homologous to SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 and 50, and fragments thereof. Oligonucleotides that hybridize under stringent conditions to SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 and 50 and fragments thereof, are also provided. Stringent conditions describe conditions under which hybridization will occur only if there is at least about 85%, about 90%, about 95%, or at least about 98% homology between the sequences. Alternatively, the oligonucleotide can have at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 75 or 100 bases which hybridize to SEQ ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 and 50, and fragments thereof. Such oligonucleotides can be used as primers and probes to detect the sequences provided herein. The probe or primer can be at least 14 nucleotides in length, and in a preferred embodiment, are at least 15, 20, 25, 28, 30, or 35 nucleotides in length.
Given the above sequences, one of ordinary skill in the art using standard algorithms can construct oligonucleotide probes and primes that are complementary to sequences contained in Seq ID Nos. 1, 3, 5, 7, 9-45, 46, 47, 48, 49 and 50, and fragments thereof. The rules for complementary pairing are well known: cytosine (“C”) always pairs with guanine (“G”) and thymine (“T”) or uracil (“U”) always pairs with adenine (“A”). It is recognized that it is not necessary for the primer or probe to be 100% complementary to the target nucleic acid sequence, as long as the primer or probe sufficiently hybridizes and can recognize the corresponding complementary sequence. A certain degree of pair mismatch can generally be tolerated.
Oligonucleotide sequences used as the hybridizing region of a primer can also be used as the hybridizing region of a probe. Suitability of a primer sequence for use as a probe depends on the hybridization characteristics of the primer. Similarly, an oligonucleotide used as a probe can be used as a primer.
It will be apparent to those skilled in the art that, provided with these specific embodiments, specific primers and probes can be prepared by, for example, the addition of nucleotides to either the 5′ or 3′ ends, which nucleotides are complementary to the target sequence or are not complimentary to the target sequence. So long as primer compositions serve as a point of initiation for extension on the target sequences, and so long as the primers and probes comprise at least 14 consecutive nucleotides contained within the above mentioned SEQ ID Nos. such compositions are within the scope of the invention.
The probes and primers herein can be selected by the following criteria, which are factors to be considered, but are not exclusive or determinative. The probes and primers are selected from the region of the CMP-Neu5Ac hydroxylase nucleic acid sequence identified in SEQ ID Nos. 1, 3, 5, 7, 945, 46, 47, 48, 49, 50, and fragments thereof. The probes and primers lack homology with sequences of other genes that would be expected to compromise the test. The probes or primers lack secondary structure formation in the amplified nucleic acid which can interfere with extension by the amplification enzyme such as E. coli DNA polymerase, preferably that portion of the DNA polymerase referred to as the Klenow fragment. This can be accomplished by employing up to about 15% by weight, preferably 5-10% by weight, dimethyl sulfoxide (DMSO) in the amplification medium and/or increasing the amplification temperatures to 30°-40° C.
Preferably, the probes or primers should contain approximately 50% guanine and cytosine nucleotides, as measured by the formula adenine (A)+thymine (T)+cytosine (C)+guanine (G)/cytosine (C)+guanine (G). Preferably, the probe or primer does not contain multiple consecutive adenine and thymine residues at the 3′ end of the primer which can result in less stable hybrids.
The probes and primers of the invention can be about 10 to 30 nucleotides long, preferably at least 10, 11, 12, 13, 14, 15, 20, 25, or 28 nucleotides in length, including specifically 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides. The nucleotides as used in the present invention can be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridization characteristics. Probe and primer sequences are represented throughout the specification as single stranded DNA oligonucleotides from the 5′ to the 3′ end. Any of the probes can be used as such, or in their complementary form, or in their RNA form (wherein T is replaced by U).
The probes and primers according to the invention can be prepared by cloning of recombinant plasmids containing inserts including the corresponding nucleotide sequences, optionally by cleaving the latter out from the cloned plasmids upon using the adequate nucleases and recovering them, e.g. by fractionation according to molecular weight. The probes and primers according to the present invention can also be synthesized chemically, for instance by the conventional phosphotriester or phosphodiester methods or automated embodiments thereof. In one such automated embodiment diethylphosphoramidites are used as starting materials and can be synthesized as described by Beaucage, et al., Tetrahedron Letters 22:1859-1862 (1981). One method of synthesizing oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066. It is also possible to use a probe or primer which has been isolated from a biological source (such as a restriction endonuclease digest).
The oligonucleotides used as primers or probes can also comprise nucleotide analogues such as phosphorothioates (Matsukura S., Naibunpi Gakkai Zasshi. 43(6):527-32 (1967)), alkylphosphorothiates (Miller P., et al., Biochemistry 18(23):5134-43 (1979), peptide nucleic acids (Nielsen P., et al., Science 254(5037):1497-500 (1991); Nielsen P., et al., Nucleic-Acids-Res. 21(2):197-200 (1993)), morpholino nucleic acids, locked nucleic acids, pseudocyclic oligonucleobases, 2′-O,4′-C-ethylene bridged nucleic acids or can contain intercalating agents (Asseline J., et al., Proc. Natl. Acad. Sci. USA 81(11):3297-301 (1984)).
For designing probes and primers with desired characteristics, the following useful guidelines known to the person skilled in the art can be applied. Because the extent and specificity of hybridization reactions are affected by a number of factors, manipulation of one or more of those factors will determine the exact sensitivity and specificity of a particular probe, whether perfectly complementary to its target or not. The importance and effect of various assay conditions, explained further herein, are known to those skilled in the art.
The stability of the probe and primer to target nucleic acid hybrid should be chosen to be compatible with the assay conditions. This can be accomplished by avoiding long AT-rich sequences, by terminating the hybrids with GC base pairs, and/or by designing the probe with an appropriate Tm. The beginning and end points of the probe should be chosen so that the length and % GC result in a Tm about 2-10° C. higher than the temperature at which the final assay will be performed. The base composition of the probe is significant because G-C base pairs exhibit greater thermal stability compared to A-T base pairs due to additional hydrogen bonding. Thus, hybridization involving complementary nucleic acids of higher G-C content will be stable at higher temperatures. Conditions such as ionic strength and incubation temperature under which probe will be used should also be taken into account when designing a probe. It is known that hybridization will increase as the ionic strength of the reaction mixture increases, and that the thermal stability of the hybrids will increase with increasing ionic strength. Chemical reagents, such as formamide, urea, DIVISO and alcohols, which disrupt hydrogen bonds, will increase the stringency of hybridization. Destabilization of the hydrogen bonds by such reagents can greatly reduce the Tm. In general, optimal hybridization for synthetic oligonucleotide probes of about 10-50 bases in length occurs approximately 5° C. below the melting temperature for a given duplex. Incubation at temperatures below the optimum can allow mismatched base sequences to hybridize and can therefore result in reduced specificity. It is desirable to have probes which hybridize only under conditions of high stringency. Under high stringency conditions only highly complementary nucleic acid hybrids will form; hybrids without a sufficient degree of complementarity will not form. Accordingly, the stringency of the assay conditions determines the amount of complementarity needed between two nucleic acid strands forming a hybrid. The degree of stringency is chosen such as to maximize the difference in stability between the hybrid formed with the target and the non-target nucleic acid. In the present case, single base pair changes need to be detected, which requires conditions of very high stringency.
The length of the target nucleic acid sequence and, accordingly, the length of the probe sequence can also be important. In some cases, there can be several sequences from a particular region, varying in location and length, which will yield probes and primers with the desired hybridization characteristics. In other cases, one sequence can be significantly better than another which differs merely by a single base.
While it is possible for nucleic acids that are not perfectly complementary to hybridize, the longest stretch of perfectly complementary base sequence will normally primarily determine hybrid stability. While oligonucleotide probes and primers of different lengths and base composition can be used, preferred oligonucleotide probes and primers of this invention are between about 14 and 30 bases in length and have a sufficient stretch in the sequence which is perfectly complementary to the target nucleic acid sequence.
Regions in the target DNA or RNA which are known to form strong internal structures inhibitory to hybridization are less preferred. Likewise, probes with extensive self-complementarity should be avoided. As explained above, hybridization is the association of two single strands of complementary nucleic acids to form a hydrogen bonded double strand. It is implicit that if one of the two strands is wholly or partially involved in a hybrid, it will be less able to participate in formation of a new hybrid. There can be intramolecular and intermolecular hybrids formed within the molecules of one type of probe if there is sufficient self complementarity. Such structures can be avoided through careful probe design. By designing a probe so that a substantial portion of the sequence of interest is single stranded, the rate and extent of hybridization can be greatly increased. Computer programs are available to search for this type of interaction. However, in certain instances, it may not be possible to avoid this type of interaction.
Specific primers and sequence specific oligonucleotide probes can be used in a polymerase chain reaction that enables amplification and detection of CMP-Neu5Ac hydroxylase nucleic acid sequences.
IV. Genetic Targeting of the CMP-Neu5Ac Hydroxylase Gene Gene targeting allows for the selective manipulation of animal cell genomes. Using this technique, a particular DNA sequence can be targeted and modified in a site-specific and precise manner. Different types of DNA sequences can be targeted for modification, including regulatory regions, coding regions and regions of DNA between genes. Examples of regulatory regions include: promoter regions, enhancer regions, terminator regions and introns. By modifying these regulatory regions, the timing and level of expression of a gene can be altered. Coding regions can be modified to alter, enhance or eliminate the protein within a cell. Introns and exons, as well as inter-genic regions, are suitable targets for modification.
Modifications of DNA sequences can be of several types, including insertions, deletions, substitutions, or any combination thereof. A specific example of a modification is the inactivation of a gene by site-specific integration of a nucleotide sequence that disrupts expression of the gene product, i.e. a “knock out”. For example, one approach to disrupting the CMP-Neu5Ac hydroxylase gene is to insert a selectable marker into the targeting DNA such that homologous recombination between the targeting DNA and the target DNA can result in insertion of the selectable marker into the coding region of the target gene. For example, see FIGS. 3, 12, and 13. In this way, for example, the CMP-Neu5Ac hydroxylase gene sequence is disrupted, rendering the encoded enzyme nonfunctional.
Homologous Recombination Homologous recombination permits site-specific modifications in endogenous genes and thus novel alterations can be engineered into the genome. A primary step in homologous recombination is DNA strand exchange, which involves a pairing of a DNA duplex with at least one DNA strand containing a complementary sequence to form an intermediate recombination structure containing heteroduplex DNA (see, for example Radding, C. M. (1982) Ann. Rev. Genet. 16: 405; U.S. Pat. No. 4,888,274). The heteroduplex DNA can take several forms, including a three DNA strand containing triplex form wherein a single complementary strand invades the DNA duplex (Hsieh, et al., Genes and Development 4: 1951 (1990); Rao, et al., (1991) PNAS 88:2984)) and, when two complementary DNA strands pair with a DNA duplex, a classical Holliday recombination joint or chi structure (Holliday, R., Genet. Res. 5: 282 (1964)) can form, or a double-D loop (“Diagnostic Applications of Double-D Loop Formation” U.S. Ser. No. 07/755,462, filed Sep. 4, 1991). Once formed, a heteroduplex structure can be resolved by strand breakage and exchange, so that all or a portion of an invading DNA strand is spliced into a recipient DNA duplex, adding or replacing a segment of the recipient DNA duplex. Alternatively, a heteroduplex structure can result in gene conversion, wherein a sequence of an invading strand is transferred to a recipient DNA duplex by repair of mismatched bases using the invading strand as a template (Genes, 3rd Ed. (1987) Lewin, B., John Wiley, New York, N.Y.; Lopez, et al., Nucleic Acids Res. 15: 5643 (1987)). Whether by the mechanism of breakage and rejoining or by the mechanism(s) of gene conversion, formation of heteroduplex DNA at homologously paired joints can serve to transfer genetic sequence information from one DNA molecule to another.
The ability of homologous recombination (gene conversion and classical strand breakage/rejoining) to transfer, genetic sequence information between DNA molecules renders targeted homologous recombination a powerful method in genetic engineering and gene manipulation.
In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous (“random” or “illicit”) integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).
A number of papers describe the use of homologous recombination in mammalian cells. Illustrative of these papers are Kucherlapati, et al., Proc. Natl. Acad. Sci. (USA) 81:3153-3157, 1984; Kucherlapati, et al., Mol. Cell. Bio. 5:714-720, 1985; Smithies, et al, Nature 317:230-234, 1985; Wake, et al., Mol. Cell. Bio. 8:2080-2089, 1985; Ayares, et al., Genetics 111:375-388, 1985; Ayares, et al., Mol. Cell. Bio. 7:1656-1662, 1986; Song, et al., Proc. Natl. Acad. Sci. USA 84:6820-6824, 1987; Thomas, et al. Cell 44:419-428, 1986; Thomas and Capecchi, Cell 51: 503-512, 1987; Nandi, et al., Proc. Natl. Acad. Sci. USA 85:3845-3849, 1988; and Mansour, et al., Nature 336:348-352, 1988; Evans and Kaufman, Nature 294:146-154, 1981; Doetschman, et al., Nature 330:576-578, 1987; Thoma and Capecchi, Cell 51:503-512, 4987; Thompson, et al., Cell 56:316-321, 1989.
The present invention uses homologous recombination to inactivate the porcine CMP-Neu5Ac hydroxylase gene in cells, such as fibroblasts. The DNA can comprise at least a portion of the gene(s) at the particular locus with introduction of an alteration into at least one, optionally both copies, of the native gene(s), so as to prevent expression of a functional enzyme and production of a Hanganutziu-Deicher antigen molecule. The alteration can be an insertion, deletion, replacement or combination thereof. When the alteration is introduce into only one copy of the gene being inactivated, the cells having a single unmutated copy of the target gene are amplified and can be subjected to a second targeting step, where the alteration can be the same or different from the first alteration, usually different, and where a deletion, or replacement is involved, can be overlapping at least a portion of the alteration originally introduced. In this second targeting step, a targeting vector with the same arms of homology, but containing a different mammalian selectable markers can be used. The resulting transformants are screened for the absence of a functional target antigen and the DNA of the cell can be further screened to ensure the absence of a wild-type target gene. Alternatively, homozygosity as to a phenotype can be achieved by breeding hosts heterozygous for the mutation.
Porcine cells that can be genetically modified can be obtained from a variety of different organs and tissues such as, but not limited to, brain, heart, lungs, glands, brain, eye, stomach, spleen, pancreas, kidneys, liver, intestines, uterus, bladder, skin, hair, nails, ears, nose, mouth, lips, gums, teeth, tongue, salivary glands, tonsils, pharynx, esophagus, large intestine, small intestine, rectum, anus, pylorus, thyroid gland, thymus gland, suprarenal capsule, bones, cartilage, tendons, ligaments, skeletal muscles, smooth muscles, blood vessels, blood, spinal cord, trachea, ureters, urethra, hypothalamus, pituitary, adrenal glands, ovaries, oviducts, uterus, vagina, mammary glands, testes, seminal vesicles, penis, lymph, lymph nodes and lymph vessels. In one embodiment of the invention, porcine cells can be selected from the group consisting of, but not limited to, epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, □hosphate cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, squamous epithelial cells, osteocytes, osteoblasts, and osteoclasts.
In one alternative embodiment, embryonic stem cells can be used. An embryonic stem cell line can be employed or embryonic stem cells can be obtained freshly from a host, such as a porcine animal. The cells can be grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). In a preferred embodiment, the porcine cells can be fibroblasts; in one specific embodiment, the porcine cells can be fetal fibroblasts. Fibroblast cells are a preferred somatic cell type because they can be obtained from developing fetuses and adult animals in large quantities.
These cells can be easily propagated in vitro with a rapid doubling time and can be clonally propagated for use in gene targeting procedures.
Targeting Vectors Cells homozygous at a targeted locus can be produced by introducing DNA into the cells, where the DNA has homology to the target locus and includes a marker gene, allowing for selection of cells comprising the integrated construct. The homologous DNA in the target vector will recombine with the chromosomal DNA at the target locus (see, for example, FIGS. 3, 12, and 13). The marker gene can be flanked on both sides by homologous DNA sequences, a 3′ recombination arm and a 5′ recombination arm (See, for example, FIG. 11). Methods for the construction of targeting vectors have been described in the art, see, for example, Dai et al., Nature Biotechnology 20: 251-255, 2002; WO 00/51424.
Various constructs can be prepared for homologous recombination at a target locus. Usually, the construct can include at least 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous with the target locus. The sequence can include any contiguous sequence of the porcine CMP-Neu5Ac hydroxylase gene, including at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90.95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 700, 750, 800, 850, 900, 1000, 5000 or 10, 000 contiguous nucleotides of Seq ID Nos 9-45, 46, 47, 48, 49, and 50, or any combination or fragment thereof. Fragments of Seq ID Nos. 9-45, 46, 47, 48, 49 and 50 can include any contiguous nucleic acid or peptide sequence that includes at least about 10 bp, 15 bp, 17 bp, 20 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 5 kbp or 10 kbp.
Various considerations can be involved in determining the extent of homology of target DNA sequences, such as, for example, the size of the target locus, availability of sequences, relative efficiency of double cross-over events at the target locus and the similarity of the target sequence with other sequences.
The targeting DNA can include a sequence in which DNA substantially isogenic flanks the desired sequence modifications with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence can be at least about 95%, 97-98%, 99.0-99.5%, 99.6-99.9%, or 100% identical to the corresponding target sequence (except for the desired sequence modifications). The targeting DNA and the target DNA preferably can share stretches of DNA at least about 75, 150 or 500 base pairs that are 100% identical. Accordingly, targeting DNA can be derived from cells closely related to the cell line being targeted; or the targeting DNA can be derived from cells of the same cell line or animal as the cells being targeted.
The DNA constructs can be designed to modify the endogenous, target CMP-Neu5Ac hydroxylase. The homologous sequence for targeting the construct can have one or more deletions, insertions, substitutions or combinations thereof designed to disrupt the function of the resultant gene product. In one embodiment, the alteration can be the insertion of a selectable marker gene fused in reading frame with the upstream sequence of the target gene.
Suitable selectable marker genes include, but are not limited to: genes conferring the ability to grow on certain media substrates, such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See, for example, Song, K-Y., et al. Proc. Nat'l Acad. Sci. U.S.A. 84:6820-6824 (1987); Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Chapter 16. Other examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP). A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo) (Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982)); and the hygromycin resistance gene (hyg) (Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990)). Other selectable marker genes include: acetohydroxy acid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline.
Methods for the incorporation of antibiotic resistance genes and negative selection factors will be familiar to those of ordinary skill in the art (see, e.g., WO 99/15650; U.S. Pat. No. 6,080,576; U.S. Pat. No. 6,136,566; Niwa, et al., J. Biochem. 113:343-349 (1993); and Yoshida, et al., Transgenic Research, 4:277-287 (1995)).
Additional selectable marker genes useful in this invention, for example, are described in U.S. Pat. Nos. 6,319,669; 6,316,181; 6,303,373; 6,291,177; 6,284,519; 6,284,496; 6,280,934; 6,274,354; 6,270,958; 6,268,201; 6,265,548; 6,261,760; 6,255,558; 6,255,071; 6,251,677; 6,251,602; 6,251,582; 6,251,384; 6,248,558; 6,248,550; 6,248,543; 6,232,107; 6,228,639; 6,225,082; 6,221,612; 6,218,185; 6,214,567; 6,214,563; 6,210,922; 6,210,910; 6,203,986; 6,197,928; 6,180,343; 6,172,188; 6,153,409; 6,150,176; 6,146,826; 6,140,132; 6,136,539; 6,136,538; 6,133,429; 6,130,313; 6,124,128; 6,110,711; 6,096,865; 6,096,717; 6,093,808; 6,090,919; 6,083,690; 6,077,707; 6,066,476; 6,060,247; 6,054,321; 6,037,133; 6,027,881; 6,025,192; 6,020,192; 6,013,447; 6,001,557; 5,994,077; 5,994,071; 5,993,778; 5,989,808; 5,985,577; 5,968,773; 5,968,738; 5,958,713; 5,952,236; 5,948,889; 5,948,681; 5,942,387; 5,932,435; 5,922,576; 5,919,445; and 5,914,233.
Combinations of selectable markers can also be used. For example, to target CMP-Neu5Ac hydroxylase, a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is homologous to the CMP-Neu5Ac hydroxylase gene. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into the CMP-Neu5Ac hydroxylase gene but the tk gene has been lost because it was located outside the region of the double crossover.
Deletions can be at least about 50 bp, more usually at least about 100 bp, and generally not more than about 20 kbp, where the deletion can normally include at least a portion of the coding region including a portion of or one or more exons, a portion of or one or more introns, and can or can not include a portion of the flanking non-coding regions, particularly the 5′-non-coding region (transcriptional regulatory region). Thus, the homologous region can extend beyond the coding region into the 5′-non-coding region or alternatively into the 3′-non-coding region. Insertions can generally not exceed 10 kbp, usually not exceed 5 kbp, generally being at least 50 bp, more usually at least 200 bp.
The region(s) of homology can include mutations, where mutations can further inactivate the target gene, in providing for a frame shift, or changing a key amino acid, or the mutation can correct a dysfunctional allele, etc. Usually, the mutation can be a subtle change, not exceeding about 5% of the homologous flanking sequences.
The construct can be prepared in accordance with methods known in the art, various fragments can be brought together, introduced into appropriate vectors, cloned, analyzed and then manipulated further until the desired construct has been achieved (see, for example FIGS. 5-11). Various modifications can be made to the sequence, to allow for restriction analysis, excision, identification of probes, etc. Silent mutations can be introduced, as desired. At various stages, restriction analysis, sequencing, amplification with the polymerase chain reaction, primer repair, in vitro mutagenesis, etc. can be employed.
The construct can be prepared using a bacterial vector, including a prokaryotic replication system, e.g. an origin recognizable by E. coli, at each stage the construct can be cloned and analyzed. A marker, the same as or different from the marker to be used for insertion, can be employed, which can be removed prior to introduction into the target cell. Once the vector containing the construct has been completed, it can be further manipulated, such as by deletion of the bacterial sequences, linearization, introducing a short deletion in the homologous sequence. After final manipulation, the construct can be introduced into the cell.
Techniques which can be used to allow the DNA construct entry into the host cell include calcium phosphate/DNA co-precipitation, microinjection of DNA into the nucleus, electroporation, bacterial protoplast fusion with intact cells, transfection, or any other technique known by one skilled in the art. The DNA can be single or double stranded, linear or circular, relaxed or supercoiled DNA. For various techniques for transfecting mammalian cells, see, for example, Keown et al., Methods in Enzymology Vol. 185, pp. 527-537 (1990).
The present invention further includes recombinant constructs comprising one or more of the sequences as broadly described above (for example in Tables 9-12). The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. The construct can also include regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example: pBs, pQE-9 (Qiagen), phagescript, PsiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSv2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPv, pMSG, pSVL (Pharmacia). Also, any other plasmids and vectors can be used as long as they are replicable and viable in the host. Vectors known in the art and those commercially available (and variants or derivatives thereof) can in accordance with the invention be engineered to include one or more recombination sites for use in the methods of the invention. Such vectors can be obtained from, for example, Vector Laboratories Inc., Invitrogen, Promega, Novagen, NEB, Clontech, Boehringer Mannheim, Pharmacia, EpiCenter, OriGenes Technologies Inc., Stratagene, PerkinElmer, Pharmingen, and Research Genetics. Other vectors of interest include eukaryotic expression vectors such as pFastBac, pFastBacHT, pFastBacDUAL, pSFV, and pTet-Splice (Invitrogen), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3′SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A, B, and C, pVL1392, pBlueBacIII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Corp.) and variants or derivatives thereof.
Other vectors suitable for use in the invention include pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YAC's (yeast artificial chromosomes), BAC's (bacterial artificial chromosomes), PI (Escherichia coli phage), pQE70, pQE60, pQE9 (quagan), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (Invitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Invitrogen) and variants or derivatives thereof. Viral vectors can also be used, such as lentiviral vectors (see, for example, WO 03/059923; Tiscomia et al. PNAS 100:1844-1848 (2003)).
Additional vectors of interest include pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(−)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZA, pPICZB, pPICZC, pGAPZA, pGAPZB, pGAPZC, pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1, pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA 1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP 10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; λ ExCell, λ gt11, pTrc99A, pKK223-3, pGEX-1λ T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3X, pGEX-5X-1, pGEX-5X-2, pGEX-5X-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4abc(+), pOCUS-2, pTAg, pET-32LIC, pET-30LIC, pBAC-2 cp LIC, pBACgus-2 cp LIC, pT7Blue-2 LIC, pT7Blue-2, λ SCREEN-1, λ BlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21 abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25b(+), pET-26b(+), pET-27b(+), pET-28abc(+), pET-29abc(+), pET-30abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3 cp, pBACgus-2 cp, pBACsurf-1, pig, Signal pig, pYX, Selecta Vecta-Neo, Selecta Vecta-Hyg, and Selecta Vecta-Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1, pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP, pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic, pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, pβgal-Basic, pβgal-Control, pβgal-Promoter, pβgal-Enhancer, pCMV, pTet-Off, pTet-On, pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX, pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo, pYEX4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6, pTriplEx, λgt10, λgt11, pWE15, and λTriplEx from Clontech; Lambda ZAP II, pBK-CMV, pBK-RSV, pBluescript II KS +/−, pBluescript II SK +/−, pAD-GAL4, pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3, Lambda EMBL4, SuperCos, pCR-Script Amp, pCR-Script Cam, pCR-Script Direct, pBS +/−, pBC KS +/−, pBC SK +/−, Phagescript, pCAL-n-EK, pCAL-n, pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLacI, pOPRSVI/MCS, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo Poly A, pOG44, pOG45, pFRTβGAL, pNEOβGAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene.
Additional vectors include, for example, pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGAD1-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof.
Also, any other plasmids and vectors known in the art can be used as long as they are replicable and viable in the host.
Selection of Homologously Recombined Cells Cells that have been homologously recombined to knock-out expression of the porcine CMP-Neu5Ac hydroxylase gene can then be grown in appropriately-selected medium to identify cells providing the appropriate integration. Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, or another technique known in the art. By identifying fragments which show the appropriate insertion at the target gene site, cells can be identified in which homologous recombination has occurred to inactivate or otherwise modify the target gene.
The presence of the selectable marker gene inserted into the CMP-Neu5Ac hydroxylase gene establishes the integration of the target construct into the host genome. Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, monoclonal antibody assays, Fluorescent Activated Cell Sorter (FACS), or any other techniques or methods known in the art to analyze the DNA in order to establish whether homologous or non-homologous recombination occurred. This can be determined by employing probes for the insert and then sequencing the 5′ and 3′ regions flanking the insert for the presence of the CMP-Neu5Ac hydroxylase gene extending beyond the flanking regions of the construct or identifying the presence of a deletion, when such deletion is introduced. Primers can also be used which are complementary to a sequence within the construct and complementary to a sequence outside the construct and at the target locus. In this way, one can only obtain DNA duplexes having both of the primers present in the complementary chains if homologous recombination has occurred. By demonstrating the presence of the primer sequences or the expected size sequence, the occurrence of homologous recombination is supported.
The polymerase chain reaction used for screening homologous recombination events is described, for example, in Kim and Smithies, Nucleic Acids Res. 16:8887-8903, 1988; and Joyner, et al., Nature 338:153-156, 1989.
An alternative method for screening homologous recombination events includes utilizing monoclonal or polyclonal antibodies specific for porcine CMP-Neu5Ac Hydroxylase and/or Neu5Gc, as described in, for example, Malykh, et al., European Journal of Cell Biology 80, 48-58 (2001), Malykh, et al., Glycoconjugate J. 15, 885-893 (1998).
Further characterization of porcine cells lacking expression of functional CMP-Neu5Ac Hydroxylase due to homologous recombination events include, but are not limited to, Southern Blot analysis, Northern Blot analysis, specific lectin binding assays, and/or sequence analysis, or by using anti-Neu5Gc or anti-CMP-Neu5Ac hydroxylase antibody assays as described, for example, in Y. Malykh, et. al. Biochem J. 370: 601-607 (2003); Y. Malykh, et al. European Journal of Cell Biology 80: 48-58 (2001); Y. Malykh et al. Glycoconjugate J. 15: 885-893 (1998). See generally, for example, A. Sharma, et al. Transplantation 75(4): 430-436 (2003).
The cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting of the remaining porcine CMP-Neu5Ac hydroxylase allele using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it can be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.
VIII. Genetic Manipulation of Additional Genes to Overcome Immunologic Barriers of Xenotransplantation In one aspect of the invention, cells homozygous for the nonfunctional CMP-Neu5Ac hydroxylase gene can be subject to further genetic modification. For example, one can introduce additional genetic capability into the homozygotic hosts, where the endogenous CMP Neu5Ac hydroxylase alleles have been made nonfunctional, to substitute, replace or provide different genetic capability to the host. One can remove the marker gene after homogenization. By introducing a construct comprising substantially the same homologous DNA, possibly with extended sequences, having the marker gene portion of the original construct deleted, one can be able to obtain homologous recombination with the target locus. By using a combination of marker genes for integration, one providing positive selection and the other negative selection, in the removal step, one can select against the cells retaining the marker genes.
In one embodiment, porcine cells are provided that lack the CMP-Neu5Ac hydroxylase gene and the α(1,3)GT gene. Animals lacking functional CMP-Neu5Ac hydroxylase can be produced according to the present invention, and then cells from this animal can be used to knockout the α(1,3)GT gene. Homozygous α(1,3)GT negative porcine have recently been reported (Phelps et. al. Science 2003; WO 04/028243). Alternatively, cells from these a(1,3)GT knockout animals can be used and further modified to inactivate the CMP-Neu5Ac hydroxylase gene.
In another embodiment, porcine cells are also provided that lack the porcine CMP-Neu5Ac hydroxylase gene and produce human complement inhibiting proteins. Animals lacking functional porcine CMP-Neu5Ac hydroxylase gene can be produced according to the present invention, and then cells from this animal can be further modified to express human complement inhibiting proteins, such as, but not limited to, CD59 (cDNA reported by Philbrick, W. M., et al. (1990) Eur. J. Immunol. 20:87-92), human decay accelerating factor (DAF) (cDNA reported by Medof, et al. (1987) Proc. Natl. Acad. Sci. USA 84: 2007), and human membrane cofactor protein (MCP) (cDNA reported by Lublin, D., et al. (1988) J. Exp. Med. 168: 181-194).
In an alternative embodiment, cells from transgenic pigs producing human complement inhibiting proteins can be used and further modified to inactivate the porcine CMP-Neu5Ac hydroxylase gene. Transgenic pigs producing human complement inhibiting proteins are known in the art (see, for example, U.S. Pat. No. 6,166,288).
In a further embodiment, porcine cells are provided that lack the porcine CMP-Neu5Ac hydroxylase gene and the porcine Forssman synthetase (FSM) gene. Animals lacking functional porcine CMP-Neu5Ac hydroxylase gene can be produced according to the present invention, and then cells from this animal can be further modified to knockout the porcine FSM synthetase gene, which is involved in the production of gal-α-gal epitopes, and plays a role in xenotransplant rejection. The porcine FSM synthetase gene has recently been identified (see U.S. Application 60/568,922). Alternatively, cells from these FSM synthetase gene knockout animals can be used and further modified to inactivate the porcine CMP-Neu5Ac hydroxylase gene.
In a still further embodiment, porcine cells are provided that lack the porcine CMP-Neu5Ac hydroxylase gene and the porcine isogloboside 3 synthase gene. Animals lacking functional porcine CMP-Neu5Ac hydroxylase gene can be produced according to the present invention, and then cells from this animal can be used to knockout the porcine iGb3 synthase gene. The porcine iGb3 synthase gene has recently been reported (U.S. Application No. 60/517,524). Alternatively, cells from these porcine iGb3 synthase gene knockout animals can be used and further modified to inactivate the porcine CMP-Neu5Ac hydroxylase gene.
In another embodiment, porcine cells are provided that lack the porcine CMP-Neu5Ac hydroxylase gene, the α(1,3)GT gene, the FSM synthetase gene, and the porcine iGb3 synthase gene. Animals lacking functional CMP-Neu5Ac hydroxylase gene can be produced according to the present invention, and then cells from this animal can be used to knockout the α(1,3)GT gene, the FSM synthetase gene, and the porcine iGb3 synthase gene. Homozygous α(1,3)GT-negative porcine have recently been reported (Phelps et al. supra, Science 2003; WO 04/028243) Alternatively, cells from these a(1,3)GT knockout animals can be used and further modified to inactivate the porcine iGb3 synthase gene, the porcine FSM synthetase gene, and the CMP-Neu5Ac hydroxylase gene, and, in addition, express human complement inhibiting proteins, such as, but not limited to, CD59, human decay accelerating factor (DAF), and human membrane cofactor protein (MCP).
VIII. Production of Genetically Modified Animals The present invention provides methods of producing a transgenic pig that lacks expression of CMP-Neu5Ac hydroxylase through the genetic modification of porcine totipotent embryonic cells. In one embodiment, the animals can be produced by: (a) identifying one or more target CMP-Neu5Ac hydroxylase nucleic acid genomic sequences in an animal; (b) preparing one or more homologous recombination vectors targeting the CMP-Neu5Ac hydroxylase nucleic acid genomic sequences; (c) inserting the one or more targeting vectors into the genomes of a plurality of totipotent cells of the animal, thereby producing a plurality of transgenic totipotent cells; (d) obtaining a tetraploid blastocyst of the animal; (e) inserting the plurality of totipotent cells into the tetraploid blastocyst, thereby producing a transgenic embryo; (f) transferring the embryo to a recipient female animal; and (g) allowing the embryo to develop to term in the female animal. The method of transgenic animal production described here by which to generate a transgenic pig is further generally described in U.S. Pat. No. 6,492,575.
In another embodiment, the totipotent cells can be embryonic stem (ES) cells. The isolation of ES cells from blastocysts, the establishing of ES cell lines and their subsequent cultivation are carried out by conventional methods as described, for example, by Doetchmann et al., J. Embryol. Exp. Morph. 87:27-45 (1985); Li et al., Cell 69:915-926 (1992); Robertson, E. J. “Tetracarcinomas and Embryonic Stem Cells: A Practical Approach,” ed. E. J. Robertson, IRL Press, Oxford, England (1987); Wurst and Joyner, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); Hogen et al., “Manipulating the Mouse Embryo: A Laboratory Manual,” eds. Hogan, Beddington, Costantini and Lacy, Cold Spring Harbor Laboratory Press, New York (1994); and Wang, et al., Nature 336:741-744 (1992). For example, after transforming embryonic stem cells with the targeting vector to alter the CMP-Neu5Ac hydroxylase gene, the cells can be plated onto a feeder layer in an appropriate medium, for example, such as fetal bovine serum enhanced DMEM. Cells containing the construct can be detected by employing a selective medium, and after sufficient time for colonies to grow, colonies can be picked and analyzed for the occurrence of homologous recombination. Polymerase chain reaction can be used, with primers within and without the construct sequence but at the target locus. Those colonies which show homologous recombination can then be used for embryo manipulating and blastocyst injection. Blastocysts can be obtained from superovulated females. The embryonic stem cells can then be trypsinized and the modified cells added to a droplet containing the blastocysts. At least one of the modified embryonic stem cells can be injected into the blastocoel of the blastocyst. After injection, at least one of the blastocysts can be returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. The blastocysts are selected for different parentage from the transformed ES cells. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected, and then genotyping can be conducted to probe for the presence of the modified CMP-Neu5Ac hydroxylase gene.
In a further embodiment of the invention, the totipotent cells can be embryonic germ (EG) cells. Embryonic Germ cells are undifferentiated cells functionally equivalent to ES cells, that is they can be cultured and transfected in vitro, then contribute to somatic and germ cell lineages of a chimera (Stewart et al., Dev. Biol. 161:626-628 (1994)). EG cells are derived by culture of primordial germ cells, the progenitors of the gametes, with a combination of growth factors: leukemia inhibitory factor, steel factor and basic fibroblast growth factor (Matsui, et al., Cell 70:841-847 (1992); Resnick, et al., Nature 359:550-551 (1992)). The cultivation of EG cells can be carried out using methods known to one skilled in the art, such as described in Donovan et al., “Transgenic Animals, Generation and Use,” Ed. L. M. Houdebine, Harwood Academic Publishers (1997).
Tetraploid blastocysts for use in the invention can be obtained by natural zygote production and development, or by known methods by electrofusion of two-cell embryos and subsequently cultured as described, for example, by James, et al., Genet. Res. Camb. 60:185-194 (1992); Nagy and Rossant, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); or by Kubiak and Tarkowski, Exp. Cell Res. 157:561-566 (1985).
The introduction of the ES cells or EG cells into the blastocysts can be carried out by any method known in the art, for example, as described by Wang, et al., EMBO J. 10:2437-2450 (1991).
A “plurality” of totipotent cells can encompass any number of cells greater than one. For example, the number of totipotent cells for use in the present invention can be about 2 to about 30 cells, about 5 to about 20 cells, or about 5 to about 10 cells. In one embodiment, about 5-10 ES cells taken from a single cell suspension are injected into a blastocyst immobilized by a holding pipette in a micromanipulation apparatus. Then the embryos are incubated for at least 3 hours, possibly overnight, prior to introduction into a female recipient animal via methods known in the art (see for example Robertson, E. J. “Teratocarcinomas and Embryonic Stem Cells: A Practical Approach” IRL Press, Oxford, England (1987)). The embryo can then be allowed to develop to term in the female animal.
Somatic Cell Nuclear Transfer to Produce Cloned, Transgenic Offspring The present invention provides a method for cloning a pig lacking a functional CMP-Neu5Ac hydroxylase gene via somatic cell nuclear transfer. In general, a wide variety of methods to accomplish mammalian cloning are currently being rapidly developed and reported, any method that accomplishes the desired result can be used in the present invention. Nonlimiting examples of such methods are described below. For example, the pig can be produced by a nuclear transfer process comprising the following steps: obtaining desired differentiated pig cells to be used as a source of donor nuclei; obtaining oocytes from a pig; enucleating the oocytes; transferring the desired differentiated cell or cell nucleus into the enucleated oocyte, e.g., by fusion or injection, to form NT units; activating the resultant NT unit; and transferring said cultured NT unit to a host pig such that the NT unit develops into a fetus.
Nuclear transfer techniques or nuclear transplantation techniques are known in the art (Campbell et al, Theriogenology, 43:181 (1995); Collas, et al, Mol. Report. Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims, et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, and WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420). In one nonlimiting example, methods are provided such as those described in U.S. Patent Publication No. 2003/0046722 to Collas, et al., which describes methods for cloning mammals that allow the donor chromosomes or donor cells to be reprogrammed prior to insertion into an enucleated oocyte. The invention also describes methods of inserting or fusing chromosomes, nuclei or cells with oocytes.
A donor cell nucleus, which has been modified to alter the CMP-Neu5Ac hydroxylase gene, is transferred to a recipient porcine oocyte. The use of this method is not restricted to a particular donor cell type. The donor cell can be as described in Wilmut, et al., Nature 385 810 (1997); Campbell, et al., Nature 380 64-66 (1996); or Cibelli, et al., Science 280 1256-1258 (1998). All cells of normal karyotype, including embryonic, fetal and adult somatic cells which can be used successfully in nuclear transfer can in principle be employed. Fetal fibroblasts are a particularly useful class of donor cells. Generally suitable methods of nuclear transfer are described in Campbell, et al., Theriogenology 43 181 (1995), Collas, et al., Mol. Reprod. Dev. 38 264-267 (1994), Keefer, et al., Biol. Reprod. 50 935-939 (1994), Sims, et al., Proc. Nat'l. Acad. Sci. USA 90 6143-6147 (1993), WO-A-9426884, WO-A-9424274, WO-A-9807841, WO-A-9003432, U.S. Pat. No. 4,994,384 and U.S. Pat. No. 5,057,420. Differentiated or at least partially differentiated donor cells can also be used. Donor cells can also be, but do not have to be, in culture and can be quiescent. Nuclear donor cells which are quiescent are cells which can be induced to enter quiescence or exist in a quiescent state in vivo. Prior art methods have also used embryonic cell types in cloning procedures (Campbell, et al. (Nature, 380:64-68, 1996) and Stice, et al (Biol. Reprod., 20 54:100-110, 1996).
Somatic nuclear donor cells may be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus or adult animal. In a suitable embodiment of the invention, nuclear donor cells are selected from the group consisting of epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulose cells, cumulus cells, epidermal cells or endothelial cells. In another embodiment, the nuclear cell is an embryonic stem cell. In a preferred embodiment, fibroblast cells can be used as donor cells.
In another embodiment of the invention, the nuclear donor cells of the invention are germ cells of an animal. Any germ cell of an animal species in the embryonic, fetal, or adult stage may be used as a nuclear donor cell. In a suitable embodiment, the nuclear donor cell is an embryonic germ cell.
Nuclear donor cells may be arrested in any phase of the cell cycle (GO, GI, G2, S, M) so as to ensure coordination with the acceptor cell. Any method known in the art may be used to manipulate the cell cycle phase. Methods to control the cell cycle phase include, but are not limited to, GO quiescence induced by contact inhibition of cultured cells, GO quiescence induced by removal of serum or other essential nutrient, GO quiescence induced by senescence, GO quiescence induced by addition of a specific growth factor; GO or GI quiescence induced by physical or chemical means such as heat shock, hyperbaric pressure or other treatment with a chemical, hormone, growth factor or other substance; S-phase control via treatment with a chemical agent which interferes with any. Point of the replication procedure; M-phase control via selection using fluorescence activated cell sorting, mitotic shake off, treatment with microtubule disrupting agents or any chemical which disrupts progression in mitosis (see also Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique,” Alan R. Liss, Inc, New York (1983).
Methods for isolation of oocytes are well known in the art. Essentially, this can comprise isolating oocytes from the ovaries or reproductive tract of a pig. A readily available source of pig oocytes is slaughterhouse materials. For the combination of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells can be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. This process generally requires collecting immature (prophase I) oocytes from mammalian ovaries, e.g., bovine ovaries obtained at a slaughterhouse, and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. This period of time is known as the “maturation period”.
A metaphase II stage oocyte can be the recipient oocyte, at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it does a fertilizing sperm. Metaphase II stage oocytes, which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes can be collected surgically from either non-superovulated or superovulated porcine 35 to 48, or 39-41, hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.
After a fixed time maturation period, which ranges from about 10 to 40 hours, and preferably about 16-18 hours, the oocytes can be enucleated. Prior to enucleation the oocytes can be removed and placed in appropriate medium, such as HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. The stripped oocytes can then be screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
Enucleation can be performed by known methods, such as described in U.S. Pat. No. 4,994,384. For example, metaphase II oocytes can be placed in either HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or can be placed in a suitable medium, for example an embryo culture medium such as CR1aa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16-18 hours later.
Enucleation can be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm. The oocytes can then be screened to identify those of which have been successfully enucleated. One way to screen the oocytes is to stain the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then view the oocytes under ultraviolet irradiation for less than 10 seconds. The oocytes that have been successfully enucleated can then be placed in a suitable culture medium, for example, CR1 aa plus 10% serum.
A single mammalian cell of the same species as the enucleated oocyte can then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit. The mammalian cell and the enucleated oocyte can be used to produce NT units according to methods known in the art. For example, the cells can be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Thus, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels can open between the two cells. Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. See, for example, U.S. Pat. No. 4,997,384 by Prather et al. A variety of electrofusion media can be used including, for example, sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inot. Symp. Monogr., 9, 19, 1969). Also, the nucleus can be injected directly into the oocyte rather than using electroporation fusion. See, for example, Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994). After fusion, the resultant fused NT units are then placed in a suitable medium until activation, for example, CR1aa medium. Typically activation can be effected shortly thereafter, for example less than 24 hours later, or about 4-9 hours later.
The NT unit can be activated by any method that accomplishes the desired result. Such methods include, for example, culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This can be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed. Alternatively, activation can be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical pigs after nuclear transfer. Also, treatments such as electrical and chemical shock can be used to activate NT embryos after fusion. See, for example, U.S. Pat. No. 5,496,720, to Susko-Parrish, et al. Additionally, activation can be effected by simultaneously or sequentially by increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins in the oocyte. This can generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore. Other methods of increasing divalent cation levels include the use of electric shock, treatment with ethanol and treatment with caged chelators. Phosphorylation can be reduced by known methods, for example, by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine. Alternatively, phosphorylation of cellular proteins can be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.
The activated NT units can then be cultured in a suitable in vitro culture medium until the generation of cell colonies. Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which can be used for embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media.
Afterward, the cultured NT unit or units can be washed and then placed in a suitable media contained in well plates which preferably contain a suitable confluent feeder layer. Suitable feeder layers include, by way of example, fibroblasts and epithelial cells. The NT units are cultured on the feeder layer until the NT units reach a size suitable for transferring to a recipient female, or for obtaining cells which can be used to produce cell colonies. Preferably, these NT units can be cultured until at least about 2 to 400 cells, more preferably about 4 to 128 cells, and most preferably at least about 50 cells.
Activated NT units can then be transferred (embryo transfers) to the oviduct of an female pigs. In one embodiment, the female pigs can be an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/Landrace) (280-400 lbs) can be used. The gilts can be synchronized as recipient animals by oral administration of 18-20 mg ReguMate (Altrenogest, Hoechst, Warren, N.J.) mixed into the feed. Regu-Mate can be fed for 14 consecutive days. One thousand units of Human Chorionic Gonadotropin (hCG, Intervet America, Millsboro, Del.) can then be administered i.m. about 105 h after the last Regu-Mate treatment. Embryo transfers of the can then be performed about 22-26 h after the hCG injection. In one embodiment, the pregnancy can be brought to term and result in the birth of live offspring. In another embodiment, the pregnancy can be 5 terminated early and embryonic cells can be harvested.
The methods for embryo transfer and recipient animal management in the present invention are standard procedures used in the embryo transfer industry. Synchronous transfers are important for success of the present invention, i.e., the stage of the NT embryo is in synchrony with the estrus cycle of the recipient female. See, for example, Siedel, G. E., Jr. “Critical review of embryo transfer procedures with cattle” in Fertilization and Embryonic Development in Vitro (1981) L. Mastroianni, Jr. and J. D. Biggers, ed., Plenum Press, New York, N.Y., page 323.
VIII. Porcine Animals, Organs, Tissues, Cells and Cell Lines The present invention provides viable porcine in which both alleles of the CMP-Neu5Ac hydroxylase gene have been inactivated. The invention also provides organs, tissues, and cells derived from such porcine, which are useful for xenotransplantation.
In one embodiment, the invention provides porcine organs, tissues and/or purified or substantially pure cells or cell lines obtained from pigs that lack any expression of functional CMP-Neu5Ac hydroxylase.
In one embodiment, the invention provides organs that are useful for xenotransplantation. Any porcine organ can be used, including, but not limited to: brain, heart, lungs, glands, brain, eye, stomach, spleen, pancreas, kidneys, liver, intestines, uterus, bladder, skin, hair, nails, ears, nose, mouth, lips, gums, teeth, tongue, salivary glands, tonsils, pharynx, esophagus, large intestine, small intestine, rectum, anus, pylorus, thyroid gland, thymus gland, suprarenal capsule, bones, cartilage, tendons, ligaments, skeletal muscles, smooth muscles, blood vessels, blood, spinal cord, trachea, ureters, urethra, hypothalamus, pituitary, adrenal glands, ovaries, oviducts, uterus, vagina, mammary glands, testes, seminal vesicles, penis, lymph, lymph nodes and lymph vessels.
In another embodiment, the invention provides tissues that are useful for xenotransplantation. Any porcine tissue can be used, including, but not limited to: epithelium, connective tissue, blood, bone, cartilage, muscle, nerve, adenoid, adipose, areolar, bone, brown adipose, cancellous, muscle, cartaginous, cavernous, chondroid, chromaffin, dartoic, elastic, epithelial, fatty, fibrohyaline, fibrous, Gaingee, gelatinous, granulation, gut-associated lymphoid, Haller's vascular, hard hemopoietic, indifferent, interstitial, investing, islet, lymphatic, lymphoid, mesenchymal, mesonephric, mucous connective, multilocular adipose, myeloid, nasion soft, nephrogenic, nodal, osseous, osteogenic, osteoid, periapical, reticular, retiform, rubber, skeletal muscle, smooth muscle, and subcutaneous tissue.
In a further embodiment, the invention provides cells and cell lines from porcine animals that lack expression of functional alpha1,3GT. In one embodiment, these cells or cell lines can be used for xenotransplantation. Cells from any porcine tissue or organ can be used, including, but not limited to: epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, □hosphate cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, pancreatic insulin secreting cells, pancreatic alpha-2 cells, pancreatic beta cells, pancreatic alpha-1 cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, dopaminergic cells, squamous epithelial cells, osteocytes, osteoblasts, osteoclasts, embryonic stem cells, fibroblasts and fetal fibroblasts. In a specific embodiment, pancreatic cells, including, but not limited to, Islets of Langerhans cells, insulin secreting cells, 48 alpha-2 cells, beta cells, alpha-1 cells from pigs that lack expression of functional alpha-1,3-GT are provided.
Nonviable derivatives include tissues stripped of viable cells by enzymatic or chemical treatment these tissue derivatives can be further processed via crosslinking or other chemical treatments prior to use in transplantation. In a preferred embodiment, the derivatives include extracellular matrix derived from a variety of tissues, including skin, urinary, bladder or organ submucosal tissues. Also, tendons, joints and bones stripped of viable tissue to include heart valves and other nonviable tissues as medical devices are provided.
Therapeutic Uses The cells can be administered into a host in order in a wide variety of ways. Preferred modes of administration are parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrasternal, intra-articular, intra-synovial, intrathecal, intra-arterial, intracardiac, intramuscular, intranasal, subcutaneous, intraorbital, intracapsular, topical, transdermal patch, via rectal, vaginal or urethral administration including via suppository, percutaneous, nasal spray, surgical implant, internal surgical paint, infusion pump, or via catheter. In one embodiment, the agent and carrier are administered in a slow release formulation such as a direct tissue injection or bolus, implant, microparticle, microsphere, nanoparticle or nanosphere.
Disorders that can be treated by infusion of the disclosed cells include, but are not limited to, diseases resulting from a failure of a dysfunction of normal blood cell production and maturation (i.e., aplastic anemia and hypoproliferative stem cell disorders); neoplastic, malignant diseases in the hematopoietic organs (e.g., leukemia and lymphomas); broad spectrum malignant solid tumors of non-hematopoietic origin; autoimmune conditions; and genetic disorders. Such disorders include, but are not limited to diseases resulting from a failure or dysfunction of normal blood cell production and maturation hyperproliferative stem cell disorders, including aplastic anemia, pancytopenia, agranulocytosis, thrombocytopenia, red cell aplasia, Blackfan Diamond syndrome, due to drugs, radiation, or infection, idiopathic; hematopoietic malignancies including acute lymphoblastic (lymphocytic) leukemia, chronic lymphocytic leukemia, acute myclogenous leukemia, chronic myelogenous, leukemia, acute malignant myelosclerosis, multiple myeloma, polycythemia vera, agnogenic myelometaplasia, Waldenstrom's macroglobulinemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma; immunosuppression in patients with malignant, solid tumors including malignant melanoma, carcinoma of the stomach, ovarian carcinoma, breast carcinoma, small cell lung carcinoma, retinoblastoma, testicular carcinoma, glioblastoma, rhabdomyosarcoma, neuroblastoma, Ewing's sarcoma, lymphoma; autoimmune diseases including rheumatoid arthritis, diabetes type 1, chronic hepatitis, multiple sclerosis, systemic lupus erythematosus; genetic (congenital) disorders including anemias, familial aplastic, Fanconi's syndrome, dihydrofolate reductase deficiencies, formamino transferase deficiency, Lesch-Nyhan syndrome, congenital dyserythropoietic syndrome IIV, Chwachmann-Diamond syndrome, dihydrofolate reductase deficiencies, forinamino transferase deficiency, Lesch-Nyhan syndrome, congenital spherocytosis, congenital elliptocytosis, congenital stomatocytosis, congenital Rh null disease, paroxysmal nocturnal hemoglobinuria, G6PD (glucose □hosphate dehydrogenase) variants 1, 2, 3, pyruvate kinase deficiency, congenital erythropoietin sensitivity, deficiency, sickle cell disease and trait, thalassemia alpha, beta, gamma, met-hemoglobinemia, congenital disorders of immunity, severe combined immunodeficiency disease (SCID), bare lymphocyte syndrome, ionophore-responsive combined immunodeficiency, combined immunodeficiency with a capping abnormality, nucleoside phosphorylase deficiency, granulocyte actin deficiency, infantile agranulocytosis, Gaucher's disease, adenosine deaminase deficiency, Kostmann's syndrome, reticular dysgenesis, congenital Leukocyte dysfunction syndromes; and others such as osteoporosis, myelosclerosis, acquired hemolytic anemias, acquired immunodeficiencies, infectious disorders causing primary or secondary immunodeficiencies, bacterial infections (e.g., Brucellosis, Listerosis, tuberculosis, leprosy), parasitic infections (e.g., malaria, Leishmaniasis), fungal infections, disorders involving disproportionsin lymphoid cell sets and impaired immune functions due to aging, phagocyte disorders, Kostmann's agranulocytosis, chronic granulomatous disease, Chediak-Higachi syndrome, neutrophil actin deficiency, neutrophil membrane GP-180 deficiency, metabolic storage diseases, mucopolysaccharidoses, mucolipidoses, miscellaneous disorders involving immune mechanisms, Wiskott-Aldrich Syndrome, alpha lantirypsin deficiency, etc.
Diseases or pathologies include neurodegenerative diseases, hepatodegenerative diseases, nephrodegenerative disease, spinal cord injury, head trauma or surgery, viral infections that result in tissue, organ, or gland degeneration, and the like. Such neurodegenerative diseases include but are 10 not limited to, AIDS dementia complex; demyeliriating diseases, such as multiple sclerosis and acute transferase myelitis; extrapyramidal and cerebellar disorders, such as lesions of the ecorticospinal system; disorders of the basal ganglia or cerebellar disorders; hyperkinetic movement disorders, such as Huntington's Chorea and senile chorea; drug-induced movement disorders, such as those induced by drugs that block CNS dopamine receptors; hypokinetic movement disorders, such as Parkinson's disease; progressive supra-nucleo palsy; structural lesions of the cerebellum; spinocerebellar degenerations, such as spinal ataxia, Friedreich's ataxia, cerebellar cortical degenerations, multiple systems degenerations (Mencel, Dejerine Thomas, Shi-Drager, and Machado-Joseph), systermioc disorders, such as Rufsum's disease, abetalipoprotemia, ataxia, telangiectasia; and mitochondrial multisystem disorder; demyelinating core disorders, such as multiple sclerosis, acute transverse myelitis; and disorders of the motor unit, such as neurogenic muscular atrophies (anterior horn cell degeneration, such as amyotrophic lateral sclerosis, infantile spinal muscular atrophy and juvenile spinal muscular atrophy); Alzheimer's disease; Down's Syndrome in middle age; Diffuse Lewy body disease; Senile Dementia of Lewy body type; Parkinson's Disease, Wernicke-Korsakoff syndrome; chronic alcoholism; Creutzfeldt-Jakob disease; Subacute sclerosing panencephalitis hallefforden-Spatz disease; and Dementia pugilistica. See, e.g., Berkow et. al., (eds.) (1987), The Merck Manual, (15′) ed.), Merck and Co., Rahway, N.J.
Industrial Farming Uses The present invention provides viable porcine for purposes of farming applications in which one or both alleles of the CMP-Neu5Ac hydroxylase gene have been inactivated. Inactivation of one or both alleles of the CMP-Neu5Ac hydroxylase gene can reduce the susceptibility of porcine animals to zoonotic diseases and infections in pigs such as, for example, E. coli, pig rotavirus, and pig transmissible gastroenteritis coronavirus, and any other zoonotic or enterotoxigenic organism that utilizes Neu5Gc in a host animal. The reduction in disease susceptibility allows greater economic realization of farming operations due to the ability to harvest more healthy animals, and the reduction of animal death due to enterotoxigenic organisms.
The following examples are offered by way of illustration and not by way of limitation.
EXAMPLES Isolation of Nucleic Acids Combination strategy of PCR-based methods was employed to identify the porcine CMP-Neu5Ac hydroxylase gene. Such PCR methods are well known in the art and described, for example, in PCR Technology, H. A. Erlich, ed., Stockton Press, London, 1989; PCR Protocols: A Guide to Methods and Applications, M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds., Academic Press, Inc., New York, 1990.
Total RNA was extracted from an adult porcine (Great Yorkshire) spleen using Trizol reagent (Gibco, Grand Island, N.Y.). After treatment with Dnase I (Ambion, Inc., Austin, Tex.), poly A+ RNA was separated using the Dynabeads mRNA Purification Kit (Dynal, Oslo, Norway). To identify the 5′- or 3′-end of porcine CMP-Neu5Ac Hydroxylase gene, 5′- or 3′-RACE (rapid amplification of cDNA ends) procedures were performed using Marathon™ cDNA Amplification kit (Clontech). To identify exon-intron boundaries, or 5′- or 3′-flanking region of the transcripts, porcine GenomeWalker™ libraries were constructed using Universal GenomeWalker™ Library kit (Clontech). Gene-specific and nested primer pairs were designed from the partial cDNA sequence provided by GenBank Accession #A59058.
Determination of cDNA and Genomic CMP-Neu5Ac Hydroxylase Sequence
5′- or 3′-RACE analysis: To identify the 5′ and 3′ ends of porcine CMP-Neu5Ac hydroxylase gene transcripts, 5′- and 3′-RACE procedures were performed using the Marathon cDNA Amplification Kit (Clontech) with poly A+ RNA isolated from adult porcine spleen as a template. First strand cDNA synthesis from 1 ug of poly A+ RNA was accomplished using 20 U of AMV-RT and 1 pmol of the supplied cDNA Synthesis Primer by incubating at 48° C. for 2 hours. Second strand cDNA synthesis involved incubating the entire first strand reaction with a supplied enzyme cocktail composed of Rnase H, E. coli DNA polymerase I, and E. coli DNA polymerase I, and E. coli DNA ligase at 16° C. for 1.5 hr. After blunting of the double stranded cDNA ends by T4 DNA polymerase, the supplied Marathon cDNA Adapters were ligated to an aliquot of purified, double-stranded cDNA. Dilution of the adapter-ligated product in 10 mM ticme-KOH/0.1 mM EDTA buffer provided with the kit readied the cDNA for PCR amplification.
To obtain the 5′- and 3′-most sequences of the porcine CMP-Neu5Ac hydroxylase gene transcripts, provided Marathon cDNA Amplification primer sets were paired with gene-specific and nested gene-specific primers based on the sequence provided by GenBank accession number A59058. These primer sets are provided for in Table 13. By this method, oligonucleotide primers based on the sequence contained in Genbank accession number A59058 are oriented in the 3′ and 5′ directions and are used to generate overlapping PCR fragments. These overlapping 3′ and 5′ products are combined to produce an intact full-length cDNA. This method is described, for example, in Innis, et al., supra; and Frohman et al., Proc. Natl. Acad. Sci., 85:8998, 1988, and further described, for example, in U.S. Pat. No. 4,683,195.
Genome Walking analysis: To identify exon-intron boundaries, or 5′- or 3′-flanking region of the porcine CMP-Neu5Ac hydroxylase transcripts, porcine GenomeWalker™ libraries were constructed using the Universal GenomeWalker™ Library Kit (Clontech, Palo Alto, Calif.).
Briefly, five aliquots of porcine genomic DNA were separately digested with a single blunt-cutting restriction endonuclease (DraI, EcoRV, PvuII, ScaI, or StuI). After phenol-chloroform extraction, ethanol precipitation, and resuspension of the restricted fragments, a portion of each digested aliquot was used in separate ligation reaction with the GenomeWalker adapters provided with the kit. This process created five libraries for use in the PCR based cloning strategy. Primer pairs identified in Table 13 were used in a genome walking strategy. Either eLON-Gase or TaKaRa LA Taq (Takara Shuzo Co., Ltd., Shiga, Japan) enzyme was used for PCR in all GenomeWalker experiments as well as for direct long PCR of genomic DNA. The thermal cycling conditions recommended by the manufacturer were employed in all GenomeWalker-PCR experiments on a Perkin Elmer Gene Amp System 9600 or 9700 thermocycler.
TABLE 13
Primers Used in PCR Strategies
Primer PCR
Set Strategy Sequence
XA 3′-RACE/ 5′-CATGGACCTCAAGCTGGGGGACAAGA-3′
Genome
Walking
XB 3′-RACE/ 5′-GTGTTCGACCCTTGGTTAATCGGTCCTG-3′
Genome
Walking
XM 5′-RACE/ 5′-CAGGACCGATTAACCAAGGGTCGAACAC-3′
Genome
Walking
XN 5′-RACE/ 5′-TCTTGTCCCCCAGCTTGAGGTCCATG-3′
Genome
Walking
Subcloning and sequencing of amplified products: PCR products amplified from genomic DNA, GeneWalker-PCR (Clontech), and 5′-3′-RACE wre gel-purified using the Qiagen Gel Extraction Kit (Qiagen, Valencia, Calif.), if necessary, then subcloned into the pCR11 vector provided with the Original TA Cloning Kit (Invitrogen, Carlsbad, Calif.). Plasmid DNA minipreps of pCR11-ligated inserts were prepared with the QIAprep Spin Miniprep Kit (Qiagen) as directed. Automated fluorescent sequencing of cloned inserts was performed using an ABI 377 Automated Sequence Analyzer (Applied Biosystems, Inc., Foster City, Calif.) with either the dRhodamine or BigDye Terminator Cycle Sequencing Kits (Applied Biosystems) primed with T7 and SP6 promoter primers or primers designed from internal insert sequences.
Primer Synthesis: All oligonucleotides used as primers in the various PCR-based methods were synthesized on an ABI 394 DNA Synthesizer (Applied Biosystems, Inc., Foster City Calif.) using solid phase synthesis and phosphoramidite nucleoside chemistry, unless otherwise stated.
Analysis of Transcription Factor Binding Sites Analysis of possible transcription factors binding sites were performed using 228 bp of exon 1 sequence and 601 bp upstream of exon 1. The sequences were screened using “MatInspector” software available in www.genomatix.de. The sequences contain binding sites for the following transcription factors: MZF1, ETSF, SF1, CMYB, MEF2, NMP4, BRN2, AP1, GAT1, SATB1, ATF, USF, WHN, ZF5, NFκB, MOK2, NFY, MYCMAX, ZF5. See FIG. 4.
Construction of Porcine CMP-Neu5Ac Hydroxylase Homologous Recombination Targeting Vectors CMP-Neu5Ac hydroxylase knock-out target vector: A vector targeting Exon 6 of the porcine CMP-Neu5Ac Hydroxylase gene for knockout can be constructed. In a first step, a portion of Intron 6 is amplified by PCR for use as a 3′-arm of the targeting vector utilizing primers such as pDH3 (5′-CTCCTGGAAGCTTCTGTCAAGACGAAC-3′) and pDH4 (5′-GCCTGATACACAGTGCTGTGCAATGGT-3′) (see FIG. 5). The amplified PCR product of approximately 3.7 kb can be inserted into the pCRII vector after restriction enzyme digestion utilizing EcoRI and ApaI. See FIG. 6.
Following the insertion of the 3′-arm, a portion of Intron 5 can be amplified by PCR for use as a 5′-arm in the targeting vector utilizing primers such as pDH1 (5′-ACCACCCAAGTCTGGAATCTTCTTACACT-3′) and pDH2 (5′-GACTCTCATACAAAAGCTAAGCTGGGTAAG-3′) (see FIG. 5). Following this initial amplification, successive PCR amplifications can be performed to introduce an EcoNI restriction site into the 3′ portion of the 5′-arm utilizing primers such as pDH1 in conjunction with primers such as pDH2a (5′-GACTCTCATACAAAACCTAAGCTGGGTAAG-3′), pDH2b (5′-GACTCTCATACAAAACCTAGGCTGGGTAAG-3′), and pDH2c (5′-GACTCTCATACAAAACCTAGGCTAGGTAAG-3′), respectively (see FIG. 5). The amplified PCR product of approximately 2.6 kb containing the engineered EcoNI site can be restriction enzyme digested using ApaI and EcoNI, and inserted into the pCRII vector containing the previously inserted 3′-arm (See FIG. 7), generating a targeting vector (pDHΔex6) containing an approximate 6.3 kb porcine CMP-Neu5Ac hydroxylase targeting sequence (see FIG. 8).
EGFP knock-in target vector: pDHΔex6 can be further modified by an in-frame insertion of an enhanced green fluorescent protein sequence at the terminal 3′ end of Exon 6 of the porcine CMP-Neu5Ac hydroxylase gene. In a first step, a portion of Intron 5 and a portion of Exon 6 of the porcine CMP-Neu5Ac hydroxylase gene can be amplified by PCR utilizing primers such as pDH5 (5′-CCTTATACTGGCCCCAATTGGATCTTAC-3′) and pDH6 (5′-CCTTATACTGGCCCCAATTGGATCTTAC-3′) (see FIG. 9), and inserted into a vector (pIRES-EGFP) containing the EGFP and a poly A tail following restriction enzyme digestion with MunI and EcoRv. Following insertion, PCR amplification can be performed on the pIRES-EGFP vector containing the insertion utilizing primer such as pDH7 (5′-CTTACCTAGCCTAGGTTTTGTATGAGAGTC-3′) and pDH8 (5′-GACAAACCACAATTGGAATGCACTCGAG-3′) (see FIG. 9). The PCR amplified product can be restriction enzyme digested using EcoNI and MunI and inserted into the previously constructed pDHΔex6 targeting vector (see FIG. 10). The resultant targeting vector (pDHΔex6-EGFP) is illustrated in FIG. 11.
Production of Porcine CMP-Neu5Ac Hydroxylase Deficient Fetal Fibroblast Cells Fetal fibroblast cells are isolated from 10 fetuses of the same pregnancy at day 33 of gestation. After removing the head and viscera, fetuses are washed with Hanks' balanced salt solution (HBSS; Gibco-BRL, 1 5 Rockville, Md.), placed in 20 ml of HBSS, and diced with small surgical scissors. The tissue is pelleted and resuspended in 50-ml tubes with 40 ml of DMEM and 100 U/ml collagenase (Gibco-BRL) per fetus. Tubes are incubated for 40 min in a shaking water bath at 37 C. The digested tissue is allowed to settle for 3-4 min and the cell-rich supernatant is transferred to a new 50-ml tube and pelleted. The cells are then resuspended in 40 ml of DMEM containing 10% fetal calf serum (FCS), 1X nonessential amino acids, 1 mM sodium pyruvate and 2 ng/ml bFGF, and seeded into 10 cm. dishes. For transfections, 10 μg of linearized pDHΔex6EGFP vector is introduced into 2 million cells using lipofectamine 2000 (Carlsbad, Calif.) following manufacturer's guidelines. Forty-eight hours after transfection, the transfected cells are seeded into 48-well plates at a density of 2,000 cells per well and grown to confluence. Following confluence, cells are sorted via Fluorescent Activated Cell Sorting (FACS) (FACSCalibur, Becton Dickenson, San Jose, Calif.), wherein only cells having undergone homologous recombination and expressing the EGFP are selected (see, for example, FIG. 13).
Selected cells are then reseeded, and grown to confluency. Once confluency is reached, several small aliquots are frozen back for future use, and the remainder are utilized for PCR and Southern Blot verification of homologous recombination. The putative targeted clones can be screened by PCR across the Exon 6/EGFP insert utilizing a primer complimentary to the EGFP sequence and a primer complimentary to a sequence outside the vector as the antisense primer. The PCR products can be analyzed by Southern Blotting using an EGFP probe to identify the positive clones by the presence of the expected band from the targeted allele.
Generation of Cloned Pigs Using Heterologous CMP-Neu5Ac Hydroxylase Deficient Fetal Fibroblasts as Nuclear Donors Preparation of cells for Nuclear Transfer: Donor cells are genetically manipulated to produce cells heterozygous for porcine CMP-Neu5Ac hydroxylase as described generally above. Nuclear transfer can be performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251255, 2002; and Polejaeva et al., Nature 407:86-90, 2000), using EGFP selected porcine fibroblasts as nuclear donors that are produced as described in detail hereinabove.
Oocytes can be isolated from synchronized super ovulated sexually mature Large-White X Landacre outcross gilts as described, for example, in 1. Polejaeva et al. Nature 407: 505 (2000). Donor cells are synchronized in presumptive G0/G1 by serum starvation (0.5%) between 24 to 120 hours. Oocytes enucleation, nuclear transfer, electrofusion, and electroactivation can be performed as essentially described in, for example, A. C. Boquest et al., Biol. Reproduction 68: 1283 (2002). Reconstructed embryos can be cultured overnight and can be transferred to the oviducts of asynchronous (−1 day) recipients. Pregnancies can be confirmed and monitored by real-time ultrasound.
Breeding of heterozygous CMP-Neu5Ac hydroxylase single knockout (SKO) male and female pigs can be performed to establish a miniherd of double knockout (DKO) pigs.
Verification of CMP-Neu5Ac Hydroxylase Deficient Pigs Following breeding of the single knockout male and female pigs, verification of double knockout pigs is performed. Fibroblasts from the offspring are incubated with 1 μg of anti-N-glycolyl GM2 monoclonal antibody MK2-34 (Seikagaku Kogyo, JP) on ice for 30 minutes. FITC conjugated goat-anti-mouse IgG is added to the cells and antibody binding indicating the presence or absence of Neu5GC, and thus, an indication of the presence or absence of active CMP-Neu5Ac hydroxylase, is detected by flow cytometry (FACSCalibur, Becton Dickenson, San Jose, Calif.).