REINFORCING BUMPER CROSS-MEMBER AND PRODUCTION METHOD THEREOF
The invention relates to a bumper cross-member including an elongated body having a three-dimensional configuration formed from several metal sheet elements joined together by welding and shaped. The three-dimensional configuration has a non-uniform open transversal section along the body. The method includes joining several metal sheet elements together by welding in order to produce a flat tailored blank and shaping the tailored blank to produce the body. Shaping is carried out by hot or cold stamping. The several metal sheet elements can be joined either mutually adjacent or overlaid by different welding techniques, they can be of different of identical thicknesses and of the same type or different types of steel.
The present invention relates to a steel bumper reinforcing cross-member applicable in the automotive industry. The present invention also relates to a method for manufacturing such cross-member.
STATE OF THE PRIOR ARTIn the field of metal part manufacturing the technique of joining several flat metal sheet elements together by means of welding to produce a tailored blank and subsequently shaping said tailored blank to produce a body with a three-dimensional configuration is well known. The term tailored blank is used in this specification to refer both to tailored blanks obtained from sheet elements arranged with their edges adjacent and tailored blanks obtained from overlaid sheet elements, known in the field as patchwork blanks. The benefit of these techniques is that a shaped body with different resistances in different areas therein can be achieved by strategically joining adjacent sheet elements of different thicknesses or different characteristics, or locally overlaying two or more sheet elements, when carrying out the tailored blank.
U.S. Pat. No. 5,634,255 describes a method and apparatus for forming, stacking and transporting tailored blanks obtained from different adjacent metal sheet elements with their edges slightly overlaid and joined by mash welding.
U.S. Pat. No. 5,724,712 describes a method and apparatus similar to the previous one for forming, stacking and transporting tailored blanks obtained from different adjacent metal sheet elements butt jointed by bead welding.
U.S. Pat. No. 5,961,858 describes a laser welding apparatus employing a tilting mechanism for manufacturing tailored blanks obtained from different sheet elements of different materials.
U.S. Pat. No. 6,426,153 describes a tailored blank obtained from different overlaid sheet elements. The tailored blank is suitable for being subsequently pressure shaped between two half-molds in order to make an automobile door panel, for example.
U.S. Pat. No. 6,675,620 describes a process for manufacturing vehicle body components of large surface area from a flat tailored blank. It comprises shaping the blank in two consecutive stamping steps.
Japanese patent No. 2001180398 describes a bumper cross-member formed from a tailored blank obtained from adjacent sheet elements, subsequently shaped by roll-form manufacture in order to obtain a bumper cross-member in the shape of a tubular body having an open cross-section with different resistance characteristics in a central region and in the end regions by virtue of the different characteristics of the metal sheet elements forming the cross-member.
Any of cited documents describes a bumper reinforcing cross-member made from sheet elements joined together and then shaped into an elongated body having an open cross-section. Also any of cited documents describes a method combining the techniques of using a tailored blank obtained from adjacent or overlaid sheet elements and subsequently hot or cold stamping said tailored blank to manufacture a bumper reinforcing cross-member.
DISCLOSURE OF THE INVENTIONAccording to a first aspect, the present invention provides a bumper reinforcing cross-member of the type comprising an elongated body having a three-dimensional configuration formed from several metal sheet elements joined together by means of welding, and subsequently shaped. The bumper cross-member of the present invention is characterized in that said three-dimensional configuration has a non-uniform open cross-section along said body having a three-dimensional configuration.
The several metal sheet elements can be joined adjacently or overlaid and can be of the same type of steel or of different types of steel. When they are of the same type of steel the different sheet elements are of different thicknesses whereas if they are of different types of steel they can have a different or identical thickness. Therefore, the different areas of the bumper cross-member defined by the different sheet elements have different resistance characteristics.
The bumper cross-member of the present invention can have any elongated three-dimensional configuration having a variable open cross-section suitable for being obtained by stamping. For example, an elongated three-dimensional configuration having a non-uniform open cross-section along said body and with a main groove longitudinally ended at its side edges by flanges turned outwards.
According to a second aspect, the present invention provides a method for manufacturing a bumper reinforcing cross-member, the method being of the type which comprises joining together several metal sheet elements by means of welding to produce a tailored blank and shaping said tailored blank to produce an elongated body with a three-dimensional configuration. The method of the present invention is characterized in that it comprises shaping the tailored blank by stamping, providing said three-dimensional configuration with a non-uniform open cross-section along said body.
The final shaping of the bumper cross-member by stamping has the advantage that it allows using the technique of tailoring the blank from adjacent sheet elements (tailored blank) and that of tailoring the blank from overlaid sheet elements (patchwork blank), or even a combination of both to locally reinforce the bumper cross-member. The tailored blank technique allows designing the bumper cross-member with different resistances in different areas, according to the different requirements or according to the different standard tests to which the bumper cross-member will be subjected. The patchwork blank technique provides greater design flexibility because it allows reinforcing much more locally and specifically those areas of the bumper cross-member which most need it, at the same time having technical advantages equivalent to those obtained by means of the tailored blank technique. A tailored blank made by a combination of plate elements overlaid and adjacently joined is also within the scope of the invention.
Shaping the tailored blank by stamping can be carried out by means of well known cold stamping or hot stamping techniques. Two variants are provided for the hot stamping technique. A first hot stamping variant comprises heating the blank, by way of a merely orientative example, to a temperature of approximately 750° C. to 950° C. immediately before the stamping process and stamping the blank while it is hot. A second hot stamping variant comprises, for example, making a pre-shaping, i.e. a partial shaping of the blank, by cold stamping and subsequently completing the shaping by means of a conventional hot stamping process, i.e. heating the preformed blank, by way of a merely orientative example, to a temperature of approximately 750° C. to 950° C. immediately before the final stamping process. With both variants of the hot stamping technique, the plate elements used to tailor the blank can be advantageously of one or more very high resistance boron steels, i.e. boron steels reaching an elastic limit above approximately 1000 N/mm2 at the end of the process. The cold stamping technique is conventional and comprises shaping the blank at room temperature. In this case high resistance steels reaching an elastic limit comprised approximately between 400 and 1000 N/mm2 at the end of the process can be used.
The bumper cross-member of the present invention, regardless of the stamping technique used, has a significantly high general resistance and a locally increased resistance in one or more areas of the cross-member without an increase in weight compared to the cross-members of the state of the art thanks that the method of the present invention allows for a distribution of the thicknesses and/or the characteristics of the steel as suitable to the different areas of the bumper cross-member.
The use of an either hot or cold stamping technique for obtaining the bumper cross-member of the present invention implies that the bumper cross-member will have an open profile, but it also has the advantage of easily allowing for the bumper cross-member to be given a general arched shape having a variable curvature, adapted to the interior surface of any type of rear or front plastic bumper of a vehicle. A studied design of this variable curvature also allows optimizing the results of resistance of the bumper cross-member in the different standard tests as well as complying with other requirements under demand. A bumper cross-member made of strategically designed high or very high resistance steels can obtain good results in cross-member reparability tests, pole crash tests, off-centered or centered pendulum impact tests, tow hook tests and stiffness tests with reduced weight compared to bumper cross-members with other characteristics and/or obtained by other known methods, or as is equivalent, it can obtain better results in different tests for the same weight compared to other state of the art cross-members.
For example, it is possible to increase the performance in the tow hook test even more by reinforcing the sheet corresponding to the area of the bumper cross-member closest to the tow hook support with a greater thickness. In addition, if additional resistance is desired in the central area or rather in the outermost area of the bumper cross-member to obtain good results in the pendulum impact tests, these areas can be locally reinforced by placing sheet elements that are thicker or have a higher resistance in the corresponding areas, without suffering the drawback in terms of weight increase that would be involved if the whole shaped piece was made from the thicker sheet.
The possibility of converting the open section of the bumper cross-member of the present invention into a closed section by joining a metal cover by means of welding, for example stitch laser welding, must also be pointed out, although continuous laser welding is not ruled out. This closed cross-section obtained in cooperation with said metal cover provides an advantage as for the stiffness of the bumper cross-member, given that the inertia of a closed section is generally greater that that of an open section and improves the results of the pendulum impact and pole crash tests.
The previous and other advantages and features will be more fully understood from the following detailed description of exemplary embodiments with reference to the attached drawings, in which:
Referring first to
Optionally, as is shown in the cross-section of
The exemplary embodiment shown in
The embodiment shown in
In the embodiment of
In the exemplary embodiment of
According to the method of the present invention, and in any of the exemplary embodiments described above, the stamping to confer the three-dimensional configuration of the body 10 to the tailored blank 20 can be hot stamping or conventional cold stamping, as described above. The outline of the sheet elements as well as the assembly holes 15 and the opening 16 of the tow anchor can be carried out by punching, for example, on individual plate elements or on the tailored blank.
A person skilled in the art will be able to introduce variations and modifications in the embodiments shown and described without departing from the scope of the present invention as it is defined in the following claims.
Claims
1.-32. (canceled)
33. A bumper reinforcing cross-member, of the type comprising an elongated body having a three-dimensional configuration formed from several metal sheet elements joined together by means of welding and then shaped, said three-dimensional configuration having a non-uniform open cross-section along said body, wherein said three-dimensional configuration comprises a main groove extending along the entire body substantially spanning the width thereof, the depth of said main groove decreasing towards both ends of the body.
34. A cross-member according to claim 33, wherein the several metal sheet elements are butt jointed.
35. A cross-member according to claim 33, wherein the several metal sheet elements are joined by overlaying.
36. A cross-member according to claim 33, wherein the several metal sheet elements are of the same type of steel.
37. A cross-member according to claim 33, wherein the several metal sheet elements are of different types of steel.
38. A cross-member according to claim 37, wherein the several metal sheet elements are of identical thickness.
39. A cross-member according to claim 37, wherein the several metal sheet elements are of different thicknesses.
40. A cross-member according to claim 34, wherein it comprises a larger sheet element spanning a central area and one end, and a smaller sheet element located adjacent to said larger sheet element spanning the other end.
41. A cross-member according to claim 34, wherein it comprises a central sheet element and two end sheet elements located side by side of said central sheet element.
42. A cross-member according to claim 34, wherein it comprises a central sheet element, two end sheet elements and two intermediate sheet elements, each one arranged between said central sheet element and one of said end sheet elements.
43. A cross-member according to claim 35, wherein it comprises a base sheet element and a reinforcing sheet element overlaid on a central area of said base sheet element.
44. A cross-member according to claim 35, wherein it comprises a base sheet element and a reinforcing sheet element overlaid on an end area of said base sheet element.
45. A cross-member according to claim 33, wherein said three-dimensional configuration further comprises at least one secondary groove extending along a portion of the bottom of said main groove spanning a portion of its width, said secondary groove decreasing in depth towards both ends thereof.
46. A cross-member according to claim 45, wherein said three-dimensional configuration comprises a general arched shape longitudinally along the body.
47. A cross-member according to claim 46, wherein said three-dimensional configuration comprises flanges extending outwards from side edges of said main groove and along the body.
48. A cross-member according to claim 47, wherein it comprises at least one metal cover joined by welding to the body covering at least part of the length of the main groove.
49. A cross-member according to claim 33, wherein said three-dimensional configuration is obtained by stamping said metal sheet elements once joined together.
50. A cross-member according to claim 49, wherein said three-dimensional configuration is obtained by hot stamping.
51. A cross-member according to claim 49, wherein said three-dimensional configuration is obtained by cold stamping.
52. A cross-member according to claim 49, wherein said three-dimensional configuration is obtained by first pre-shaping the blank by cold stamping and subsequently complete shaping the blank by hot stamping.
Type: Application
Filed: Apr 29, 2005
Publication Date: Mar 5, 2009
Patent Grant number: 7703820
Applicant: AUTOTECH ENGINEERING, A.I.E. (Abadiano (Bizkaia))
Inventors: Francesc Perarnau Ramos (Barcelona), Julio Peidro Aparici (Barcelona), Michel Garcia (Bizkaia), Antonio Bacares (Bizkaia)
Application Number: 11/912,951