Output Driver Equipped with a Sensing Resistor for Measuring the Current in the Output Driver
An electronic circuit has an output driver for providing a driving signal. The output driver has a transistor with a first main terminal, a second main terminal and a control terminal coupled to receive a control signal, a power supply terminal, an output terminal for providing the driving signal that is coupled to the second main terminal, and a sensing resistor coupled between the power supply terminal and the first main terminal. The output driver further has means for temporarily disabling the coupling between the control terminal and the control signal during a peak voltage across the sensing resistor. The means may have a circuit that has a unidirectional current behavior, such as a diode, in series with the control terminal of the transistor.
The invention relates to an electronic circuit comprising an output driver for providing a driving signal, which output driver comprises a transistor with a first main electrode, a second main electrode and a control electrode coupled to receive a control signal, a supply terminal, an output terminal to provide the driving signal, which output terminal is coupled to the second electrode, and a sensing resistor which is coupled between the supply terminal and the first main electrode.
Such an electronic circuit is known from the general state of the art, as shown in
Therefore, it is an object of the invention to provide an electronic circuit with a driver, which is provided with a sensing resistor for measuring the current through the driver, wherein the available control voltage of the output transistor is reduced hardly, if at all, by the voltage across the sensing resistor, and wherein signal processing of the measured voltage is possible in a simple manner.
To achieve this object, the output driver further comprises means for rendering ineffective said coupling between the control electrode and the control signal during a peak voltage across the sensing resistor. Most of the time substantially no current flows through the transistor. Only for a comparatively short period of time, i.e. when the driving signal changes from a high logic value to a low logic value, a current of significant value flows through the transistor, thereby causing a peak voltage across the sensing resistor. During this peak voltage, the control electrode, or the gate if a field effect transistor is used, is decoupled from the control circuit that controls this control electrode most of the time. The ever-present intrinsic capacitance between gate and source of the transistor makes sure that the voltage difference between gate and source of the transistor remains substantially constant during this peak voltage across the sensing resistor. The potential on the gate of the transistor consequently exhibits a peak that corresponds to the peak voltage across the sensing resistor.
In an embodiment of an electronic circuit comprising an output driver in accordance with the invention said means comprises a unipolar circuit that is arranged in series with the control electrode of the transistor. This unipolar circuit makes sure that the coupling between the gate of the transistor and the control circuit is automatically interrupted as soon as the potential on the gate of the transistor approximates the maximum potential that can be supplied by the control circuit as a result of the peak voltage across the sensing resistor which also affects the gate of the transistor via its gate-source capacitance.
In an embodiment of an electronic circuit comprising an output driver in accordance with the invention the unipolar circuit comprises a diode. Said diode is a very simple implementation for the unipolar circuit.
In an embodiment of an electronic circuit comprising an output driver in accordance with the invention the output driver further comprises current means which are coupled between a further supply terminal and the control electrode of the transistor. The current means can be used to compensate for the possible slow leaking away of the gate-source voltage of the transistor during the time that the gate of the transistor is decoupled from the control circuit. The value of the current to be supplied by the current means is very small. Consequently, a significant increase in power dissipation of the output driver does not take place. As the value for this small current may easily be chosen to be slightly too high, the potential on the gate of the transistor can become impermissibly high. This can be precluded by providing the output driver with limiting means for limiting the potential on the control electrode of the transistor. Said limiting means can be equipped, for example, with a zener diode that is coupled between the gate of the transistor and the supply terminal, or between the gate and the source of the transistor.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
In the drawings:
In these Figures, like reference numerals refer to like parts or elements.
The electronic circuit in accordance with the invention can be applied in an integrated circuit or implemented in a discrete manner. Although field effect transistors are applied in all embodiments, it is alternatively possible to substitute, for example, the output transistor T with a bipolar transistor. In that case, the current value to be supplied by the current source J must be much higher in general. It is also possible to substitute all P-type transistors with N-type transistors, provided also all N-type transistors are replaced by P-type transistors, the diode's polarity is reversed, and the supply voltage polarity is reversed.
Claims
1. An electronic circuit comprising an output driver for providing a driving signal, the output driver including:
- at least two transistors, each transistor having a first main electrode, a second main electrode and a control electrode, the second main electrode of each of the at least two transistors being coupled together, and the control electrode of one of the transistors being coupled to receive a control signal;
- a supply terminal;
- an output terminal to provide the driving signal, the output terminal coupled to the second main electrode;
- a sensing resistor coupled between the supply terminal and the first main electrode of the one transistor; and
- means for rendering ineffective said coupling between the control electrode and the control signal during a peak voltage across the sensing resistor, said means being a unipolar circuit arranged in series with the control electrode of the one transistor.
2. The electronic circuit of claim 1, wherein the unipolar circuit comprises a diode.
3. The electronic circuit of claim 1, wherein the output driver further includes current means coupled between a further supply terminal and the control electrode of the one transistor.
4. An electronic circuit as claimed in claim 1, wherein the output driver further includes limiting means for limiting the voltage on the control electrode of the one transistor.
5. The electronic circuit of claim 1, wherein the output driver further includes limiting means for limiting the voltage between the control electrode and the first main electrode of the one transistor.
6. The electronic circuit of claim 4, wherein the limiting means comprise a zener diode.
7. The electronic circuit of claim 1, wherein the control signal is a binary signal.
8. The electronic circuit of claim 7, wherein the output driver further includes a control circuit to supply the control signal, the control circuit including an inverter having an N-type field effect transistor and a P-type field effect transistor, the unipolar circuit being arranged in series with a drain of the P-type field effect transistor.
9. The electronic circuit of claim 8, wherein the output driver further includes a further control circuit to supply a further control signal to the control electrode of the other one of the transistors.
10. The electronic circuit of claim 1, wherein the output driver further includes a control circuit to supply a further control signal to the control electrode of the other one of the transistors.
11. An electronic circuit comprising an output driver for providing a driving signal, the output driver including:
- a supply terminal;
- a control circuit coupled to the supply terminal and configured and arranged to apply a voltage to a transistor control electrode;
- at least two transistors, each transistor having a first main electrode, a second main electrode and a control electrode, the second main electrode of each of the transistors being coupled together, the control electrode of one of the transistors being coupled to receive a control signal from the control circuit, and the first main electrode of said one transistor being coupled to the supply terminal;
- a sensing resistor coupled between the supply terminal and the first main electrode of said one transistor; and
- an output terminal to provide the driving signal, the output terminal coupled to the second main electrode;
- a unipolar circuit between the control circuit and the control electrode of said one transistor to decouple the control electrode from the control circuit during a peak voltage condition across the sensing resistor, wherein the supply terminal is coupled to the control circuit during the peak voltage condition.
12. The electronic circuit of claim 11, wherein the control signal is a binary signal.
13. The electronic circuit of claim 12, wherein the control circuit includes an inverter having an N-type field effect transistor and a P-type field effect transistor, the unipolar circuit arranged in series with a drain of the P-type field effect transistor.
14. The electronic circuit of claim 13, wherein the output driver further includes a further control circuit coupled to the control electrode of the other one of the transistors and configured to supply a further control signal to the control electrode of the other transistor.
15. The electronic circuit of claim 11, wherein the unipolar circuit is a diode.
16. The electronic circuit of claim 11, wherein the output driver further includes a further supply terminal and a current source coupled between the control electrode of said one transistor and the further supply terminal, wherein the current source supplies a current to the control electrode of said one transistor.
17. The electronic circuit of claim 11, wherein the output driver further includes a zener diode coupled between the control electrode of said one transistor and the supply terminal, wherein the zener diode limits a voltage between the control electrode of said one transistor and the first main electrode of said one transistor.
18. The electronic circuit of claim 11, wherein the output driver further includes a further control circuit coupled to the control electrode of the other one of the transistors and configured to supply a further control signal to the control electrode of the other transistor.
Type: Application
Filed: Dec 17, 2008
Publication Date: Apr 16, 2009
Inventor: Hendrikus Johannes Janssen (Nijmegen)
Application Number: 12/337,131