SYSTEMS AND METHODS FOR ANALYZING DATA
Information regarding individuals that fit a bad performance definition, such as individuals that have previously defaulted on a financial instrument or have declared bankruptcy, is used to develop a model that is usable to determine whether an individual that does not fit the bad performance definition is more likely to subsequently default on a financial instrument or to declare bankruptcy. The model may be used to generate a score for each individual, and the score may be used to segment the individual into a segment of a segmentation structure that includes individuals with related scores, where segments may include different models for generating a final risk score for the individuals assigned to the particular segments. Thus, the segment to which an individual is assigned, which may be determined based at least partly on the score assigned to the individual, may affect the final risk score that is assigned to the individual.
Latest EXPERIAN-SCOREX, LLC Patents:
This application is a division of U.S. patent application Ser. No. 11/535,907, filed on Sep. 27, 2006 and entitled “SYSTEMS AND METHODS FOR ANALYZING DATA,” which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/781,391, filed on Mar. 10, 2006, each of which is hereby expressly incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention is related to analysis of data related to a plurality of individuals in order to categorize the individuals. More particularly, the invention is related to analysis of financial and demographic information of individuals in order to categorize the individuals, assign risks for future delinquencies to the individuals, and return reasons for assignment of a particular risk to an individual.
2. Description of the Related Art
Lending institutions provide credit accounts such as mortgages, automobile loans, credit card accounts, and the like, to consumers. Prior to providing an account to an application, or applicants, however, many of these institutions review credit related data and demographic data associated with the applicant in order to determine a risk of the applicant defaulting on the account or filing for bankruptcy, for example. Such credit and demographic data may be used to categorized, or segment, individuals into one of a plurality of segments where each segment is associated with other individuals that each have certain similar attributes. Scoring models that may be particular to the assigned segment may then be applied to the individual in order to determine a risk score that is used by the lending institution to assess a risk level associated with the applicant.
SUMMARYIn one embodiment, information regarding individuals that fit a bad performance definition, such as individuals that have previously defaulted on a financial instrument or have declared bankruptcy, is used to develop a model that is usable to determine whether an individual that does not fit the bad performance definition is more likely to subsequently default on a financial instrument or to declare bankruptcy. The model may be used to generate a score for each individual, and the score may be used to segment the individual into a segment of a segmentation structure that includes individuals with related characteristics, where segments may include different models for generating a final risk score for the individuals assigned to the particular segments. Thus, the segment to which an individual is assigned, which may be determined based at least partly on the score assigned to the individual, may affect the final risk score that is assigned to the individual.
In another embodiment, a method of generating a default/bankruptcy model for assigning an individual to particular segments of a segmentation structure, wherein the default/bankruptcy model is indicative of an individual's propensity to either default on one or more financial instruments or file for bankruptcy comprises, receiving observation data comprising financial and demographic information regarding a plurality of individuals, the observation data indicating characteristics of the individuals at an observation time, receiving outcome data comprising financial and demographic information regarding the plurality of individuals fitting a bad performance definition, the outcome data indicating characteristics of the individuals fitting the bad performance definition during an outcome period, the outcome period beginning after the observation time, and comparing the observation data and the outcome data in order to generate the bankruptcy/default model usable to determine which of a plurality of segments in the segmentation structure a particular individual should be assigned.
In another embodiment, a method of assessing a risk associated with an individual comprises generating a model based on data regarding a first subgroup of a population, the subgroup comprising a first portion fitting a first failure definition and a second portion fitting a second failure definition, and applying the generated model to the individual, wherein the individual is not a member of the first subgroup.
In another embodiment, a computing system for segmenting each of a plurality of individuals into one of a plurality of segments of a segmentation structure comprises a profile module configured to generate a default/bankruptcy model for assigning each individual to one or more segments of the segmentation structure, wherein the default/bankruptcy model is indicative of an individual's propensity to either default on one or more financial instruments or to file for bankruptcy, and a segmentation module configured to segment each of the individuals using the default/bankruptcy model, wherein the individuals include individuals satisfying a bad performance definition and individuals satisfying a good performance definition.
In another embodiment, a method for selecting one or more adverse action codes to associate with a final risk score assigned to an individual, each of the adverse action codes indicating a reason that the final risk score was assigned to the individual, wherein the individual is assigned to a segmentation hierarchy comprising a plurality of segments, including a final segment, in a segmentation structure comprises determining a first penalty associated with assignment of the individual to a final segment, determining a first ratio of the first penalty to a difference between a highest possible final risk score and the final risk score for the individual, if the determined first ratio is above a first determined threshold, allotting an adverse action code related to assignment of the individual to the final segment.
In another embodiment, a method of generating a model for determining an individual's propensity to enter either a first failure mode or a second failure mode comprises defining a bad performance definition to include individuals that have characteristics of one or more of the first and second failure modes, receiving observation data regarding a plurality of individuals fitting the bad performance definitions, the observation data indicating characteristics of the individuals at an observation time, receiving outcome data regarding the plurality of individuals fitting the bad performance definition, the outcome data indicating characteristics of the individuals fitting the bad performance definition during an outcome period, the outcome period beginning after the observation time, and comparing the observation data and the outcome data in order to generate a model usable to determine a likelihood that an individual not fitting the bad performance definition will enter a first failure mode or if the individual will enter the second failure mode.
Embodiments of the invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions described herein.
In general, the word module, as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.
The computing system 100 includes, for example, a personal computer that is IBM, Macintosh, or Linux/Unix compatible. In one embodiment, the exemplary computing system 100 includes a central processing unit (“CPU”) 105, which may include a conventional microprocessor. The computing system 100 further includes a memory 130, such as random access memory (“RAM”) for temporary storage of information and a read only memory (“ROM”) for permanent storage of information, and a mass storage device 120, such as a hard drive, diskette, or optical media storage device. Typically, the modules of the computing system 100 are connected to the computer using a standards based bus system. In different embodiments, the standards based bus system could be Peripheral Component Interconnect (PCI), Microchannel, SCSI, Industrial Standard Architecture (ISA) and Extended ISA (EISA) architectures, for example.
The computing system 100 is generally controlled and coordinated by operating system software, such as the Windows 95, 98, NT, 2000, XP, Linux, SunOS, Solaris, or other compatible operating systems. In Macintosh systems, the operating system may be any available operating system, such as MAC OS X. In other embodiments, the computing system 100 may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, and I/O services, and provide a user interface, such as a graphical user interface (“GUI”), among other things.
The exemplary computing system 100 includes one or more commonly available input/output (I/O) devices and interfaces 110, such as a keyboard, mouse, touchpad, and printer. In one embodiment, the I/O devices and interfaces 110 include one or more display device, such as a monitor, that allows the visual presentation of data to a user. More particularly, a display device provides for the presentation of GUIs, application software data, and multimedia presentations, for example. The computing system 100 may also include one or more multimedia devices 140, such as speakers, video cards, graphics accelerators, and microphones, for example.
In the embodiment of
In the embodiment of
In the embodiments described herein, the computing system 100 is configured to execute the profile module 150 and/or the adverse action module 160, among others, in order to provide risk information regarding certain individuals or entities. For example, in one embodiment the computing system 100 generates risk scores for individuals, where the risk scores indicate a financial risk associated with the individual. In one embodiment, the customer 164 is a financial institution interested in the risk of default or late payments on a loan or credit card account that has been applied for by an individual. Thus, the computing system 100 may be configured to analyze data related to the individual from various data sources in order to generate a risk score and provide the risk score to the customer 164. In one embodiment, multiple financial accounts, such as bank accounts, credit card accounts, and loan accounts, are associated with each individual. Thus, the computing system 100 analyzes data regarding multiple accounts of individuals and determines scores for the individuals that are usable by one or more customers. Various other types of scores, related to other types of risks, may also be generated by the computing system 100. Although the description provided herein refers to individuals, the term individual should be interpreted to include groups of individuals, such as, for example, married couples or domestic partners, and business entities.
In one embodiment, the computing system 100 executes the profile module 150, which is configured to analyze data received from one or more data sources and generate a profile model that is usable to assign individuals to groups. The groups to which individuals may be assigned may also be referred to as segments and the process of assigning accounts to particular segments may be referred to as segmentation. A segmentation structure may include multiple segments arranged in a tree configuration, wherein certain segments are parents, or children, of other segments. A segment hierarchy includes the segment to which an individual is assigned and each of the parent segments to the assigned segment.
After assigning a score to an individual, the computing system 100 may also select and provide reasons related to why the individual was assigned a particular score. For example, many customers request information regarding the factors that had the most impact on an individual's risk score. Thus, in one embodiment the computing system 100 selects one or more adverse action codes that are indicative of reasons that a particular score was assigned to an individual. In certain embodiments, the assignment of an individual to a particular segment may be a factor that was relevant in arriving at the risk score for the individual. Thus, in one embodiment, one or more adverse action codes provided to a customer may be related to the assignment of the individual to a particular segment, or to particular segments in the segment hierarchy. In one embodiment, the adverse action module 160 is configured to determine how many, if any, of a determined number of total adverse action codes should be allotted to various segments of the individuals segment hierarchy. The adverse action module 160 may also determine which adverse action codes are returned. The operation of the profile module 150 and the adverse action module 160 are explained further below with respect to the drawings.
I. SegmentationBeginning in a block 210, financial and demographic information is received by a computing device, such as the computing device 100 of
Moving to a block 220, one or more models are developed based on a comparison of the received data. In the embodiment of
Continuing to a block 230, the developed model is applied to an individual in order to determine risks associated with the individual. For example, the model may be used to determine if an individual is more closely related to the individuals associated with the good performance definition, or with individuals associated with the bad performance definition. Thus, application of the model on an individual may predict whether the individual will have past due account statuses in the future, for example. Accordingly, the generated model may be used by customers in order to determine what types of financial services should be offered to a particular individual, if any, and rates, such as interest rates, for the individual may be proportional to the risk score developed by application of the model to the individual.
Beginning in a block 250, a snapshot of financial and demographic information regarding a plurality of individuals at a particular point in time is received. In the embodiment of
Continuing to a block 260, data related to individuals during a period subsequent and mutually exclusive to the observation point is obtained. In one embodiment, this outcome period may be defined generally as the period from T−X+1 to T, is obtained. Thus, in an exemplary embodiment where X=25, data from the individuals from 24 months previous until the date of model generation, is obtained. Behaviors measured for individuals during the outcome period may include, for example, repayment performance, bankruptcy filing, and response to a marketing offer. These behaviors may be referred to as the performance definition of the analysis.
Moving to a block 270, the observation data and the outcome data relative to the categories of the performance definition are analyzed in order to develop a model. Thus, data regarding the individuals at the snapshot date is compared to data regarding the individuals during the outcome period.
In a block 280, the model developed in block 270 may be applied to current data of an individual in order to predict future behavior or attributes of the individual over a time period. In one embodiment, the model is applied to a snapshot of the financial and demographic data related to the individual at the time of model application. Thus, the data used in applying the model may be predictive during any time after T, such as T+1, T+6, T+12, or T+24, for example. With respect to the example above, application of a model generated using X=25 may result in information that predicts an individual's behavior for a subsequent 24 month period.
As described in further detail below, generation of a model using data related to a certain subpopulation of all individuals received may advantageously be used to predict certain characteristics of even individuals outside the subpopulation used in development of the model. In particular, described below are exemplary systems and methods for generating a model for segmenting individuals based on whether the individual is more likely to default on one or more financial instruments, or whether the individual is more likely to file for bankruptcy. Thus, the model is generated by comparing individuals that are associated with default accounts and/or bankruptcy during the outcome period, which are each individuals classified in the bad performance definition. However, although the model is generated using only individuals that fit the bad performance definition, the generated model is used to segment individuals that do not fit the bad performance definition. For example, the model may be applied to individuals that are not associated with default accounts or bankruptcy observed during the outcome period. By applying a model generated from a first subgroup of a population (for example, bad performance definition individuals) to a second subgroup of the population (for example, any individuals, include good and bad performance definition individuals), certain attributes of the first subgroup are usable to predict risk characteristics of the second subgroup that may not be detectable using a traditional model.
In one embodiment, the final segment to which an individual is assigned is associated with a scoring model that is applied to the individual in order to develop a final risk score for the individual. Thus, the criteria included in each of the segments illustrated in
In the exemplary embodiment of
Once an individual is segmented to either the previous bankruptcy segment 410 or the no previous bankruptcy segment 420, further segmentation according to preliminary risk scores is performed. As noted above, in one embodiment a preliminary risk score is determined for each of the individuals in the entire population segment 310. In the embodiment of
In the embodiment of
As shown in
In the embodiment of
As will be described in further detail below, although the default/bankruptcy profile model is developed based on only account data associated with individuals categorized as either default or bankrupt, the default/bankruptcy profile model may advantageously be applied to individuals that are not categorized as either bankrupt or default in order to segment these individuals. For example, as illustrated in
For those individuals in the higher risk segment 540, the default/bankruptcy profile model is applied and the individuals are further segmented to either the default segment 660 or the bankruptcy segment 670 according to the score returned from application of the default/bankruptcy profile model. More particularly, those individuals with a default/bankruptcy profile score of less than seven are assigned to the default segment 660, while those individuals with a default/bankruptcy profile score of greater than or equal to seven are assigned to the bankruptcy segment 670. As noted above, assignment to the default segment 660 may indicate that an individual is more likely to default on an account than to file for bankruptcy, while assignment to the bankruptcy segment 670 may indicate that an individual is more likely to file for bankruptcy then you default on an account.
In the embodiment of
In a block 910, financial and demographic information from a previous point in time, referred to as an observation point, regarding a plurality of individuals is received by a computing device, such as the computing system 100. This information may be obtained from various sources and received in various manners. In one embodiment, information may be received by the computing system 100 on a network connection with one or more financial data sources 162 and/or demographic data sources 166. In another embodiment, the financial and demographic information is retrieved by the computing system 100, such as, for example, by reading data stored on a data source connected to the network 160. In other embodiments, information may be received on a printed medium, such as through the mail, or verbally. In an advantageous embodiment, any information that is not received in an electronic format is converted to electronic format and made accessible to the computing system 100.
Next, in a block 920, behaviors of a subpopulation of individuals are observed over a set time period subsequent and mutually exclusive to the observation point. Individuals in two subcategories of a bad performance definition, such as first and second failure groups, are then selected for analysis in developing a model. For example, individuals having accounts that satisfy either default or bankruptcy criteria may be selected for use in developing a default/bankruptcy model. In another example, a first failure group may include individuals that have defaulted on an installment loan and a second failure group may include individuals that have defaulted on a revolving loan. The model generated using these failure groups may be used to determine whether an individual to which the generated model is applied is more likely to default on an installment loan or a revolving load. Additionally, models may be generated based on contrasting of data regarding individuals in other groups that are not necessarily part of a bad performance definition. Thus, the term failure group should not be construed as limited to only groups of individuals that have negative credit attributes. For example, a model may be created using information related to individuals in each of two success groups that are each part of a good performance definition. This model may then be used to determine the likelihood that an individual not fitting the good performance definition will enter the first success group or the second success group.
In a block 930, a model is developed based on only account information of the individuals in the selected one or more categories. Thus, the model is developed using account information related to only a subset of individuals, such as individuals in first and second failure groups within a bad performance definition. For example, a default/bankruptcy model may be developed using data associated with only those individuals having accounts that are classified as either bankrupt or default, although the entire population includes many other individuals that do not meet these criteria.
In a block 940, the developed model is applied to individuals using current data in order to segment individuals into groups, where each group includes individuals having one or more related attributes. In one embodiment, the developed model is applied to individuals that do not meet the criteria for the selected categories that were used in developing the model, such as individuals that fit a good performance definition. Thus, a default/bankruptcy model may be applied to individuals that are classified as neither default nor having a previous bankruptcy.
Beginning in a block 1110, data related to accounts that are associated with one or more of the results is received. For example, if the model is intended to determine if an individual is more likely to default on installment loans or revolving loans, the data received by a computing device 100 may include financial and demographic information regarding individuals that have previously defaulted on either installment or revolving loans. Likewise, if the model is intended to determine if an individual is more likely to default on a bank loan or if the individual is more likely to default on an automobile loan, the data received by the computing device 100 may include financial and demographic information regarding individuals that have previously defaulted on either automobile or bank loans.
Continuing to a block 1120, a model that predicts whether a first result is more likely that a second result is developed based on at least a portion of the received data. In one embodiment, the data related to the multiple results is analyzed in order to detect similarities and differences in the data. Application of one or more statistical models may be used in order to analyze the data and generate a model that projects which of the multiple results is more likely based upon attributes of an individual that are later evaluated using the developed model.
Beginning in a block 1210, data related to individuals to be scored is received. In one embodiment, the data received in block 1210 comprises financial and demographic information regarding one or more accounts related to each individual to be segmented. In other embodiments, the data regarding the individuals may comprise any other types of data that may be useful in categorizing the individuals into groups.
Continuing to a block 1220, individuals are divided into groups based on a model developed using a process similar to the process described above with reference to
Moving to a block 1230, a score is created for each individual. In one embodiment, the scores for each individual are created based on a model that is specific to a particular segment in which the individual has been assigned. For example, if an individual is assigned to a first segment, such as through the use of a revolving/installment model score for the individual, a first scoring model may be applied to the individual in order to generate a final risk score for the individual. Likewise, if another individual is assigned to a second segment, such as through the use of the revolving/installment model score for the individual, a second scoring model may be applied to the individual in order to generate a final risk score.
Beginning in a block 1310, financial and demographic data regarding individuals with default accounts and individuals that have previously filed for bankruptcy during the outcome period are received by a computing device, such as the computing system 100. As noted above, individuals may fit a bad performance definition based on various criteria, such as a number of past due accounts and a past due period for those accounts. In the embodiment described herein, individuals fit a bad performance definition if an account associated with an individual has had a 90+ day past-due status or if the individual has filed for bankruptcy within the two year outcome period.
Moving to a block 1320, a default/bankruptcy profile model as to whether an individual is more likely to default or go bankrupt is developed. The model developed by the computing system 100 in block 1320 may be applied to individuals in order to predict whether an individual is more likely to file for bankruptcy or to have a default account. In one embodiment, the model may also predict that there is a similar likelihood that the individual either declares bankruptcy or as a default account.
In a block 1410, data regarding individuals to be segmented is received by the computing system 100. The received data may be received from one or more data sources, such as the financial data source 162 and the demographic data source 166.
Moving to a block 1420, the default/bankruptcy profile model is applied to individuals for which current data has been received in order to segment the individuals into two or more segments. For example, with reference to
Continuing to a block 1430, final risk scores are generated for the segmented individuals according to a risk score model that is particular to the segment in which each individual is assigned. For example, if an individual is assigned to the default segment 630, a risk score model that has been developed specifically for scoring those individuals that have a higher risk of defaulting, rather than going bankrupt, is applied to the individual. If an individual is assigned to the bankruptcy segment 670, a risk score model that has been developed specifically for scoring those individuals that have a higher risk of filing for bankruptcy, rather than defaulting, is applied to the individual. Thus, for each bottom segment of the segmentation structure 700, a separate risk score model may be developed and applied to individuals that are assigned to the respective segments. For example, in the embodiment of
In one embodiment, indicators of adverse action codes are provided to the customer, where the adverse action codes indicate a specific reason as to why a final risk score for an individual is less than the maximum. In certain embodiments, adverse action code may indicate that a final risk score is less than the maximum partly because of the segment, or segment hierarchy, to which the individual was assigned. However, for different individuals, the actual affect of being assigned in a particular segment or in a segment hierarchy on the final risk score may be significantly different. For example, for a first individual, assignment to lower bankruptcy risk segment 620 (
Beginning in a block 1510, a number of adverse action codes to be provided to the customer 164, for example, is determined. In one embodiment, a predetermined number of adverse action codes, such as 2, 4, 5, 6, 8, or 10 adverse action codes, are returned for each individual for which a final risk score is developed. In one embodiment, the number of adverse action codes is determined or calculated based on attributes of the particular individual being scored and/or the final risk score, and/or other characteristics related to scoring of the individual.
Continuing to a block 1520, the number of adverse action codes that should be allotted to each level of a segmentation structure in which the individual is assigned is determined. For example, one or more adverse action codes may be returned for the segment in which an individual is assigned, as well as for each of the parent segments in the segment hierarchy. The allotment of adverse action codes for various levels of a segmentation hierarchy may be determined based on several factors, such as the relative impact of assignments to each level of the segment hierarchy had on the final risk score for the individual.
Moving to a block 1530, the adverse action codes for each allotted segment are determined. In one embodiment, the adverse action code for being assigned to a particular segment comprises an indication that the individual was assigned to the particular segment. For example, an adverse action code for an individual assigned to the higher bankruptcy risk segment 610 (
Beginning in a block 1610, the total number of adverse action codes to provide to the customer is determined. As noted above, the number of adverse action codes returned may be a static number used for all individuals or, alternatively, may be a dynamic number that is determined based on attributes of the individual or results of one or more scoring models applied to the individual.
Continuing to a block 1620, the final segment to which the individual was assigned is selected for allotment analysis. More particularly, the segment in which the individual was assigned is selected in order to determine whether one or more of the available adverse action codes should indicate assignment to the segment.
Moving to a block 1630, a percentage drop of the final risk score for the individual due to a penalty for assignment to the selected segment is determined. In certain embodiments, assignment to a particular segment decreases a total possible final risk score that an individual may receive. For example, if a total possible final risk score for the entire population 310 (
Continuing to a block 1640, the selected segment is allotted one or more adverse action codes if the percentage drop of the final risk score due to a penalty for assignment to the selected segment is within a predetermined range. For example, in one embodiment a single adverse action code may be allotted to the selected segment if the percentage drop of the final risk score due to the penalty for assignment to the selected segment is greater than 25%. In other embodiments, the percentage drop required for allocating an adverse action code to a particular segment may be lower or higher than 25%, such as 10%, 12.5%, 20%, 30%, or 50%, for example.
Moving to a decision block 1650, the computing system 100 determines if there are additional parent groups in the segmentation hierarchy to which the individual has been assigned. For example, the segmentation hierarchy for an individual assigned to the higher bankruptcy risk segment 610 includes the higher risk segment 510, the previous bankruptcy segment 410, and the entire population segment 310. Accordingly, after allotment of adverse action codes to the higher bankruptcy risk segment 610, the computing device 100 determines at block 1650 that additional parent groups in the segment hierarchy are present and additional adverse action code allotment should be considered. If additional parent groups are present, the process continues to a block 1660 where the parent group of the previously selected segment is selected for allotment analysis. For example, after allotment analysis on the higher bankruptcy risk group 610, the higher risk segment 510 is selected at block 1660 for allotment analysis. Likewise, after allotment analysis on higher risk segment 510, the previous bankruptcy segment 410 is selected for allotment analysis. After selecting the parent group for allotment analysis in block 1660, the method continues to block 1630, 1640, and 1650. Thus, the process of determining a percentage drop of the final risk score due to a penalty for assignment to a particular segment and allotment of adverse action codes based on the determined percentage may be performed for each segment in the segmentation hierarchy for the individual. After each of the segments in the segmentation hierarchy are considered for allotment analysis, the method continues from block 1650 to a block 1670, where the adverse action codes allotted to various segments are generated and provided to the customer.
Although the embodiment of
In a block 1710, a total number of adverse action codes to provide to the customer is determined. In the example of
Continuing to a block 1720, an adverse action code related to being assigned to the previous bankruptcy segment is allotted if the ratio of the penalty for assignment to the previous bankruptcy segment to the difference between the highest available final risk score and the actual final risk score is larger than a predetermined ratio. In the example of
Moving to a block 1730, an adverse action code related to being assigned to a subgroup, or segment configured as a child of the previous bankruptcy segment, is allotted if the ratio of the penalty for assignment to the particular subgroup to the difference in the highest available final risk score and the actual final risk score is larger than a predetermined ratio. In the example of
Next, in a block 1740, the allotted adverse action codes are determined and returned to the customer. Using the exemplary figures introduced with respect to
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
Claims
1. A computer readable medium having stored thereon a computer program that embodies a method of generating a model for determining an individual's propensity to enter either a first failure mode or a second failure mode, wherein the computer program is configured for storage on a computing system in order to transform the computing system into a special purpose computing system configured to perform the method comprising:
- receiving information defining a bad performance definition, wherein the bad performance definition is defined to include individuals that have characteristics of one or more of the first failure mode and the second failure mode;
- receiving observation data regarding a plurality of individuals fitting the bad performance definition, the observation data indicating characteristics of the individuals at an observation time;
- receiving outcome data regarding the plurality of individuals fitting the bad performance definition, the outcome data indicating characteristics of the individuals fitting the bad performance definition during an outcome period, the outcome period beginning after the observation time; and
- storing at least some of the observation data and the outcome data in a storage device;
- transforming the observation data and the outcome data into a model configured to determine a likelihood that an individual not fitting the bad performance definition will enter the first failure mode or if the individual will enter the second failure mode.
2. The computer readable medium of claim 1, wherein the observation time is about 24 months prior to generation of the model.
3. The computer readable medium of claim 1, wherein the outcome period is a period of about 24 months prior to generation of the model, but exclusive of the observation time.
4. A computerized method of generating a model for determining an individual's propensity to enter either a first failure mode or a second failure mode, the method comprising:
- receiving information that defines characteristics of a bad performance definition so that the bad performance definition includes individuals that have characteristics of one or more of a first failure mode and a second failure mode;
- receiving observation data regarding a plurality of individuals fitting the bad performance definition, the observation data including a snapshot of financial and demographic information associated with respective individuals at a previous point in time T−X, where T is the current month and X is a number of months;
- recording outcome data regarding the financial behavior of the individuals during the time from T−X+1 to T; and
- comparing the observation data associated with the individuals at time T−X and the outcome data recorded during the period T−X to T in order to generate a model usable to determine a likelihood that an individual not fitting the bad performance definition will enter a first failure mode or if the individual will enter the second failure mode,
- wherein the computerized method is embodied in computer source code that is loaded into one or more memories of a computing systems in order to modify the content of the one or more memories to cause the computing system to perform the computerized method.
5. The method of claim 4, wherein the first failure mode comprises filing for bankruptcy and the second failure mode comprises defaulting on a financial instrument.
6. The method of claim 4, wherein the first failure mode comprises defaulting on an installment loan and the second failure mode comprises defaulting on a revolving loan.
7. The method of claim 4, wherein the first failure mode comprises defaulting on a bank loan and the second failure mode comprises defaulting on an automobile loan.
8. The method of claim 4, wherein the observation time is about 24 months prior to generation of the model.
9. The method of claim 8, wherein the outcome period is a period of about 24 months prior to generation of the model, but exclusive of the observation time.
10. A computer system configured to generate a behavioral model that is indicative of an individual's propensity to enter either a first failure mode or a second failure mode, the computer system comprising:
- one or more input devices for receiving information defining a bad performance definition so that the bad performance definition includes individuals that have characteristics of one or more of the first and second failure modes;
- one or more interfaces for receiving observation data regarding a plurality of individuals fitting the bad performance definition, the observation data indicating characteristics of the individuals at an observation time, and for receiving outcome data regarding the plurality of individuals fitting the bad performance definition, the outcome data indicating characteristics of the individuals fitting the bad performance definition during an outcome period, the outcome period beginning after the observation time; and
- a profile module configured to compare the observation data and the outcome data in order to generate a model usable to determine a likelihood that an individual not fitting the bad performance definition will enter a first failure mode or if the individual will enter the second failure mode,
11. The computer system of claim 10, wherein the observation data comprises one or more of demographic data and financial data regarding individuals
12. The computer system of claim 10, wherein the profile module is further configured to apply the generated model to information regarding a modeled individual that does not fit the bad performance definition and to determine whether the modeled individual is more likely to later enter the first failure mode or the second failure mode.
13. A computerized method of generating a model for determining an individual's propensity to enter either a first failure mode or a second failure mode, the method comprising:
- defining a bad performance definition to include individuals that have characteristics of one or more of the first and second failure modes;
- receiving observation data regarding a plurality of individuals fitting the bad performance definition, the observation data indicating characteristics of the individuals at an observation time;
- receiving outcome data regarding the plurality of individuals fitting the bad performance definition, the outcome data indicating characteristics of the individuals fitting the bad performance definition during an outcome period, the outcome period beginning after the observation time; and
- comparing the observation data and the outcome data in order to generate a model usable to determine a likelihood that an individual not fitting the bad performance definition will enter a first failure mode or if the individual will enter the second failure mode,
- wherein the method is performed by one or more computing systems.
Type: Application
Filed: Dec 18, 2008
Publication Date: Apr 16, 2009
Applicant: EXPERIAN-SCOREX, LLC (Costa Mesa, CA)
Inventors: Chuck Robida (Roswell, GA), Chien-Wei Wang (Irvine, CA)
Application Number: 12/338,871
International Classification: G06N 5/02 (20060101); G06Q 40/00 (20060101);