ISOTHERMAL VAPOR CHAMBER AND SUPPORT STRUCTURE THEREOF

In an isothermal vapor chamber and its support structure, the isothermal vapor chamber includes a casing, a capillary wick, a support structure and a working fluid. The capillary wick is disposed in the casing. The support structure is contained in the capillary wick for supporting the capillary wick and the support structure includes two side panels and a plurality of wavy plates are connected between the two side panels. The wavy plate is formed by a plurality of wave peak sections and a plurality of wave valley sections, and the wave peak sections of any two adjacent wavy plates are installed alternately with each other, and any two adjacent wavy plates are partitioned to form a partition channel. The working fluid is filled into the casing and flowed through the partition channel for improving the heat conducting efficiency of the isothermal vapor chamber.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a support structure, and more particularly to a support structure of an isothermal vapor chamber and the isothermal vapor chamber.

2. Description of Prior Art

As the computing speed of CPU in a computer becomes increasingly higher, the heat generated by the CPU also increases accordingly, and thus a general heat dissipating device composed of aluminum extrusion heat sink and fan no longer satisfies the requirements for the CPU anymore, and manufacturers keep on developing heat pipes and isothermal vapor chambers with a higher heat conducting performance, and combining the heat pipes and isothermal vapor chambers with heat sinks to overcome the heat dissipation issue effectively. Since the isothermal vapor chamber provides a direct large-area contact with a heat generating component, it attracts more manufactures to put in their efforts on the research of isothermal vapor chambers.

Referring to FIG. 1 for a conventional isothermal vapor chamber, the isothermal vapor chamber is formed by a casing 10a, a capillary wick 20a, a support structure 30a and a working fluid 40a. The casing 10a includes a lower casing panel 11a and an upper casing panel 12a for sealing and connecting the lower casing panel 11a. The capillary wick 20a is disposed in the casing 10a, and the interior of the capillary wick 20a forms a containing space 21a. The support structure 30a is contained in the containing space 21a for supporting the capillary wick 20a and the casing 10a, and the support structure 30a is formed by a plate, and the plate is formed into a wavy shape with continuous bends by a stamping technology to define a plurality of partition channels 22a between the plate and the capillary wick 20a. Finally, the upper casing panel 12a is welded with four sealing sides of the lower casing panel 11a, and the interior is vacuumed to form the isothermal vapor chamber after the required working fluid 40a is filled.

In an application of the isothermal vapor chambers of this sort, a plurality of heat dissipating fins (not shown in the figure) are installed on a surface (such as the upper casing panel 12a) of the isothermal vapor chamber, and another surface (such as the lower casing panel 11a) is attached onto a surface of a heat generating component (such as a CPU, and not shown in the figure), so that the working fluid 40a in the capillary wick 20a in contact with the surface of the lower casing panel 11a is vaporized by heat and passed through the partition channels 22a and a gap (not shown in the figure) that is formed by both lateral sides of the support structure 30a and the casing 10a. The working fluid 40a flows into the capillary wick 20a that is in contact with the surface of the upper casing panel 12a to conduct the heat to the heat dissipating fins for dissipating the heat produced by the heat generating component.

However, the working fluid 40a of the isothermal vapor chamber has to go through the partition channels 22a of a long path before reaching the capillary wick 20a which is in contact with the surface of the upper casing panel 12a for dissipating heat from the heat generating component. Since the path of heat dissipating is very long, therefore the heat conducting efficiency of the isothermal vapor chamber becomes poor and adversely affects the performance of dissipating heat from the heat generating component. In addition, the path of the partition channels 22a is long, and thus the supporting force provided by the support structure 30a of the isothermal vapor chamber for supporting the upper casing panel 12a or the lower casing panel 11a is uneven. As a result, the casing 10a may be deformed or collapsed easily.

Therefore, finding a way of overcoming the foregoing shortcomings of the prior art demands immediate attentions and feasible solutions.

SUMMARY OF THE INVENTION

In view of the shortcomings of the prior art, the inventor of the present invention based on years of experience in the related industry to conduct extensive researches and experiments, and finally developed an isothermal vapor chamber and its support structure in accordance with the present invention.

It is a primary objective of the present invention to overcome the foregoing shortcomings by providing an isothermal vapor chamber and its support structure, wherein partition channels are designed among a plurality of wavy plates of the support structure for enhancing the heat conducting efficiency of the isothermal vapor chamber.

Another objective of the present invention is to provide a support structure of an isothermal vapor chamber, such that the module design of the support structure capable of fitting different models of isothermal vapor chambers is provided for lowering the manufacturing cost.

A further objective of the present invention is to provide a support structure of an isothermal vapor chamber, wherein the wave peak sections of any two adjacent wavy plates are installed alternately, such that the isothermal vapor chamber is exerted evenly by a force to prevent the isothermal vapor chamber from being collapsed or deformed.

To achieve the foregoing objectives, the present invention provides an isothermal vapor chamber, and the isothermal vapor chamber comprises a casing, a capillary wick, a support structure and a working fluid, wherein the capillary wick is disposed in the casing, and the support structure is contained in the capillary wick for supporting the capillary wick, and the support structure includes two side panels and a plurality of wavy plates connected between the two side panels, and the wavy plate is formed by a plurality of wave peak sections and a plurality of wave valley sections, and the wave peak sections of any two adjacent wavy plates are installed alternately with each other, and the working fluid is filled in the casing.

In addition, the present invention further provides a support structure of an isothermal vapor chamber, and the support structure is formed by two side panels and a plurality of wavy plates. The wavy plates are connected between the two side panels, and the wavy plates are formed by a plurality of wave peak sections and a plurality of wave valley sections, and the wave peak sections of any two adjacent wavy plates are installed alternately with each other.

Compared with the prior art, the support structure of the present invention is installed and partitioned by the wavy plates to form the partition channels and overcome the shortcoming of a poor heat conducting efficiency of the partition channels due to the long path of the isothermal vapor chamber. Therefore, the present invention can achieve the effect of enhancing the heat conducting efficiency.

In the meantime, the wave peak sections of any two adjacent wavy plates of the support structure of the invention are installed alternately with each other, such that a force is exerted evenly onto the casing to prevent the isothermal vapor chamber from being collapsed and deformed. The invention complies with the requirements of the patent application.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a cross-sectional view of a traditional isothermal vapor chamber;

FIG. 2 is an exploded view of the present invention;

FIG. 3 is an enlarged view of a portion of Area A of a support structure as depicted in FIG. 2;

FIG. 4 is a top view of a support structure in a lower casing panel as depicted in FIG. 2;

FIG. 5 is a cross-sectional view of Section 5-5 of a support structure covered with an upper casing as depicted in FIG. 4;

FIG. 6 is a schematic view of another preferred embodiment of the present invention; and

FIG. 7 is an enlarged view of a portion of Area B as depicted in FIG. 6.

DETAILED DESCRIPTION OF THE INVENTION

The technical characteristics, features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings. It is noteworthy to point out that the preferred embodiments are used for illustrating the present invention only, but not intended to limit the scope of the present invention.

Referring to FIGS. 2 to 5, the isothermal vapor chamber of the invention is formed by a casing 10, a capillary wick 20, a support structure 30, and a working fluid 40.

The casing 10 comprises a lower casing panel 11 and an upper casing panel 12 sealed and coupled to the lower casing panel 11, and the lower casing panel 11 is formed by a bottom panel 111 and a plurality of surrounding panels 112 disposed around the periphery of the bottom panel 111, wherein the surrounding panel 112 installs a filling pipe 113 connected both to the interior and exterior of the casing 10.

The capillary wick 20 is disposed in the casing 10, and the capillary wick 20 includes a lower-layer capillary wick 21 and an upper-layer capillary wick 22 connected onto the lower-layer capillary wick 21, and the upper-layer capillary wick 22 is attached onto a surface of the upper casing panel 12, and the lower-layer capillary wick 21 is attached onto a surface of the lower casing panel 11, and a containing space 23 is formed after the upper-layer capillary wick 22 is connected to the lower-layer capillary wick 21. Further, the capillary wick 20 can be a metal wire mesh.

The support structure 30 is contained in the containing space 23 of the capillary wick 20 for supporting the capillary wick 20. The support structure 30 comprises at least two side panels 31 and a plurality of wavy plates 32 connected between the two side panels 31. The wavy plate 32 is formed by a plurality of wave peak sections 321 and a plurality of wave valley sections 322, and the wave peak sections 321 of any two adjacent wavy plates 32 are installed alternately with each other, and the wave valley sections 322 are also installed alternately with each other correspondingly. Any two adjacent wavy plates 32 are partitioned and installed to form a partition channel 324, wherein the wave peak sections 321 are higher than the top surface of the side panel 31, and the wave valley sections 322 are lower than the bottom surface of the side panel 31.

The working fluid 40 is filled into the casing 10, and the working fluid 40 can be pure water. Finally, the upper casing panel 12 is welded and connected at a sealing position around the four sides of the lower casing panel 11, and the working fluid 40 is filled into the casing 10 through the filling pipe 113, and the casing 10 is vacuumed to complete the isothermal vapor chamber of the present invention.

In the application of the present invention, a plurality of heat dissipating fins (not shown in the figure) are installed on a surface of the upper casing panel 12 of the isothermal vapor chamber, and then a surface of a heat generating component (such as a CPU) (not shown in the figure) is attached onto a surface of the lower casing panel 11 of the isothermal vapor chamber, such that the working fluid 40 in the capillary wick 20 in contact with a surface of the lower casing panel 11 is vaporized by heat and passed from the partition channels 324 directly and quickly into the capillary wick 20 in contact with a surface of the upper casing panel 12 to shorten the heat conducting path. The heat is transmitted to the heat dissipating fins, and the heat of the heat generating components is conducted, so that the present invention features a short heat conducting path of enhancing the heat conducting efficiency.

The wave peak sections 321 of any two adjacent wavy plates 32 are installed alternately with each other, such that the forces of the heat dissipating fins or the heat generating component can be exerted evenly onto the isothermal vapor chamber to prevent the isothermal vapor chamber from being collapsed or deformed.

Referring to FIGS. 6 and 7, the difference of this embodiment with the previous preferred embodiment resides on that the support structure 50 is comprised of a plurality of side panels 51 and a plurality of wavy plates 52 connected between the two side panels 51. The wavy plate 52 is formed by at least one wave peak section 521 and at least one wave valley section 522, and the wave peak sections 521 of any two adjacent wavy plates 52 are installed alternately with each other. The support structure 50 can be divided longitudinally or transversally into a plurality of modularized support structures to operate together with the isothermal vapor chambers of different models and sizes. With the structural design of the support structure 50, the isothermal vapor chamber of the invention can be produced in mass production to lower the manufacturing cost, and thus the invention can achieve the effect of saving costs.

In summation of the description above, the present invention can achieve the effects of saving costs and enhancing the heat conducting efficiency, as well as preventing the isothermal vapor chamber from being collapsed or deformed. Obviously, the invention overcomes the shortcomings of the prior art and complies with the requirements of patent application, and thus is duly filed for patent application.

While the invention is described in by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, the aim is to cover all modifications, alternatives and equivalents falling within the spirit and scope of the invention as defined by the appended claims.

Claims

1. An isothermal vapor chamber, comprising:

a casing;
a working fluid, filled into the casing;
a capillary wick, disposed in the casing; and
a support structure, contained in the capillary wick, for supporting the capillary wick, and including two side panels and a plurality of wavy plates connected between the two side panels, and the wavy plate being comprised of a plurality of wave peak sections and a plurality of wave valley sections, and the wave peak sections of any two adjacent wavy plates being installed alternately with each other.

2. The isothermal vapor chamber of claim 1, wherein the casing comprises a lower casing panel and an upper casing panel sealed and coupled to the lower casing panel.

3. The isothermal vapor chamber of claim 2, wherein the lower casing panel is formed by a bottom panel and a plurality of surrounding panels disposed around the periphery of the bottom panel.

4. The isothermal vapor chamber of claim 2, wherein the capillary wick comprises a lower-layer capillary wick and an upper-layer capillary wick connected onto the lower-layer capillary wick, and the upper-layer capillary wick is attached onto a surface of the upper casing panel, and the lower-layer capillary wick is attached onto a surface of the lower casing panel.

5. The isothermal vapor chamber of claim 1, wherein the capillary wick is a metal wire mesh.

6. The isothermal vapor chamber of claim 1, wherein any two adjacent wavy plates are installed alternately with each other to form a partition channel.

7. The isothermal vapor chamber of claim 1, wherein the wave peak section is higher than the top surface of the side panel.

8. The isothermal vapor chamber of claim 1, wherein the wave valley section is lower than the bottom surface of the side panel.

9. The isothermal vapor chamber of claim 1, wherein the wave valley sections of any two adjacent wavy plates are installed alternately with each other.

10. A support structure of an isothermal vapor chamber, comprising:

two side panels; and
a plurality of wavy plates, coupled between the two side panels, and formed by a plurality of wave peak sections and a plurality of wave valley sections, and the wave peak sections of any two adjacent wavy plates being installed alternately with each other.

11. The support structure of an isothermal vapor chamber of claim 10, wherein any two adjacent wavy plates are installed alternately with each other to form a partition channel.

12. The support structure of an isothermal vapor chamber of claim 10, wherein the wave peak section is higher than the top surface of the side panel.

13. The support structure of an isothermal vapor chamber of claim 10, wherein the wave valley section is lower than the bottom surface of the side panel.

14. The support structure of an isothermal vapor chamber of claim 10, wherein the wave valley sections of any two adjacent wavy plates are installed alternately with each other.

Patent History
Publication number: 20090205812
Type: Application
Filed: Jul 10, 2008
Publication Date: Aug 20, 2009
Inventors: George Anthony Meyer, IV (San Jose, CA), Yung-Tai Lu (Zhongli City), Chien-Hung Sun (Zhongli City), Ming-Kuei Hsieh (Zhongli City), I-Ying Lee (Zhongli City)
Application Number: 12/170,590
Classifications
Current U.S. Class: Utilizing Capillary Attraction (165/104.26)
International Classification: F28D 15/00 (20060101);