Air cooler

An air cooling system includes an intake line, a heat exchanger, an exhaust line, and an amount of frozen carbon dioxide. The intake line connects the heat exchanger to an air source, and the exhaust line connects the heat exchanger to an air destination. The frozen carbon dioxide is disposed against at least a portion of the heat exchanger to draw heat away from the air. Optionally, a system can include dual heat exchangers connected via a bridge line, with the frozen carbon dioxide being disposed there between.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application claims priority to Provisional Application 61/067132 filed Feb. 25, 2008.

FIELD OF THE INVENTION

The present invention relates to air coolers.

BACKGROUND OF THE INVENTION

Liquid and gaseous fuels can be used in conjunction with internal combustion engines. An internal combustion engine can rely upon the combustion of fuel and an oxidizer (e.g., air), which occurs in a combustion chamber. The resulting exothermic reaction results in gases at high temperatures, which are permitted to expand. Useful work is created by this reaction. The expanding hot gases directly cause movement of solid engine parts, such as pistons or rotors, ultimately producing utilizable work.

BRIEF SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide an air cooling system. In an exemplary embodiment, the present invention can be embodied in an air cooling system that includes the following: an intake line, connected to an air source, and for carrying the air from the air source; a heat exchanger, having an exterior surface, and being connected to the intake line; an exhaust line, connected to the heat exchanger, and for carrying the air away from the heat exchanger to an air destination; and an amount of frozen carbon dioxide disposed against at least a portion of the exterior surface of the heat exchanger to transfer heat away from the air.

The following, independently or in combination (two or more thereof), are additional exemplary embodiments or optional aspects of the present invention: the system can further include a housing having a lid, an intake aperture, and an exhaust aperture; wherein the housing surrounds the heat exchanger and the amount of frozen carbon dioxide, the intake line connects to the heat exchanger via the intake aperture, the exhaust line connects to said heat exchanger via the exhaust aperture, and the lid is closely openable to receive the amount of frozen carbon dioxide; the housing can be substantially air-tight and the housing can include a valve for releasing air pressure from within the housing; the valve can release at least a portion of the air-pressure from within the housing if the air-pressure exceeds a predetermined amount; the housing can further surround at least one holding element that limits the amount of frozen carbon dioxide from moving in at least one direction; the at least one holding element can be formed, at least in part, from a foam material; the heat exchanger can include a plurality of fins, and the amount of frozen carbon dioxide can be disposed against at least one of the plurality of fins; and the air destination can be a combustion chamber.

In another exemplary embodiment, the present invention can be embodied in an air cooling system that includes an intake line, connected to an air source, and for carrying the air from the source; a first heat exchanger, having a first heat exchanger exterior surface, and being connected to the intake line; a second heat exchanger, having a second heat exchanger exterior surface, and being connected to the first heat exchanger via a bridge line; an exhaust line, connected to the second heat exchanger, and for carrying the air away from the second heat exchanger to an air destination; and an amount of frozen carbon dioxide disposed against at least a portion of the first heat exchanger exterior surface and at least a portion of the second heat exchanger exterior surface to transfer heat away from the air.

The following, independently or in combination (two or more thereof), are additional exemplary embodiments or optional aspects of the present invention: the system can further include a housing having a lid, an intake aperture, and an exhaust aperture; wherein the housing surrounds the first and second heat exchangers and the amount of frozen carbon dioxide, the intake line connects to the heat exchanger via the intake aperture, the exhaust line connects to said second heat exchanger via the exhaust aperture, and the lid is openable to receive the amount of frozen carbon dioxide; the housing can be substantially air-tight and the housing can include a valve for releasing air pressure from within the housing; the valve can release at least a portion of the air-pressure from within the housing if the air-pressure exceeds a predetermined amount; the housing can further surround at least one holding element that limits the amount of frozen carbon dioxide from moving in at least one direction; the at least one holding element can be formed, at least in part, from a foam material; the first and/or second heat exchangers can include a plurality of fins, and the amount of frozen carbon dioxide can be disposed against at least one of the plurality of fins; the air destination can be a combustion chamber; and the bridge line can be formed of a flexible material to allow a distance between said first and second heat exchanger to shorten as said amount of frozen carbon dioxide sublimates.

Further, the present invention can be embodied in complementary methods of cooling air.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not in limitation, in the figures of the accompanying drawings, in which:

FIG. 1 illustrates an exemplary embodiment of the present invention, in which an air cooling system includes an intake line, a heat exchanger, an amount of frozen carbon dioxide, and an exhaust line.

FIG. 2 illustrates an exemplary aspect of the present invention, in which an air cooling system can include a housing having an openable lid.

FIG. 3 illustrates an exemplary embodiment of the present invention, in which a housing, having an optional pressure-release valve, surrounds a heat exchanger, an amount of frozen carbon dioxide, and holding elements securing the frozen carbon dioxide.

FIG. 4 illustrates another exemplary embodiment of the present invention, in which an air cooling system includes an intake line, a first heat exchanger, a second heat exchanger, an amount of frozen dioxide against the first and second heat exchangers, and an exhaust line.

FIG. 5 illustrates another exemplary embodiment of the present invention, in which a housing, having an optional pressure-release valve, surrounds a heat exchanger, an amount of frozen carbon dioxide, and holding element securing the frozen carbon dioxide.

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described in more detail by way of example with reference to the embodiments shown in the accompanying figures. It should be kept in mind that the following described embodiments are only presented by way of example and should not be constructed as limiting the inventive concept to any particular physical configuration or order.

FIG. 1 illustrates an exemplary embodiment of the present invention, in which an air cooling system includes an intake line 110, a heat exchanger 120, an amount of frozen carbon dioxide 130, and an exhaust line 140.

As shown in FIG. 1, intake line 110 is connected to air source 150, and its function is to carry air (not shown) from the air source to heat exchanger 120.

Heat exchanger 120, which has an exterior surface 121, receives the air from air source 150 via intake line 110, and provides heat transfer from the air (as it flows through the heat exchanger) to at least a portion of the exterior surface of the heat exchanger.

An amount of frozen carbon dioxide 120 is disposed against at least a portion of the exterior surface 121, such that it absorbs heat transferred from the air. In an exemplary aspect, heat exchanger 120 can be a radiator, and can have at least one fin (not shown) to increase the surface area of exterior surface 121. Frozen carbon dioxide 130 sublimates as heat is transferred from the air to the frozen carbon dioxide. In another exemplary aspect, heat exchanger 120 can include a plurality of fins (not shown) against which frozen carbon dioxide 130 can be disposed. During the sublimation process, it has been observed that frozen carbon dioxide tends to sublimate towards the fins, resulting in frozen portions existing between fins (in other words, the fins “melting” their way into the frozen carbon dioxide). This result provides a benefit of having the frozen carbon dioxide being held in place during sublimation and the cooling of air.

Exhaust line 140 is connected to heat exchanger 120 and an air destination 160, and its function is to channel the cooled air from the heat exchanger to the air destination.

FIG. 2 illustrates another exemplary embodiment of the invention, in which an air cooling system 200 can include a housing 270 that surrounds heat exchanger 220 and frozen carbon dioxide 230. In an exemplary aspect, housing 270 can provide an insulating function, so as to reduce the transfer of heat from sources other than air via heat exchanger 220. An insulating characteristic of housing 270 can be achieved, for example, via the material (for example, the type, thickness, etc.) from which the housing is formed and/or an air-tight (or substantially air-tight) design of the housing. In one exemplary embodiment, housing 270 can be formed from plastic, such as a high-density polyethylene, for example and not in limitation. Housing 270 can be from any suitable material desired, similarly, can be shaped in any suitable manner desired.

In another exemplary aspect of the present invention, housing 270 can be at least substantially air-tight and include a valve 280 for releasing air pressure that builds up as frozen carbon dioxide 230 sublimates.

FIG. 3 illustrates an additional exemplary aspect of the present invention, in which housing 370 can include a lid 375 through which frozen carbon dioxide can be added. As illustrated, intake line 310 and exhaust line 340 can enter housing 370 through an intake aperture (not shown) and an exhaust aperture 371, respectively.

In use, lid 375 can be opened so frozen carbon dioxide can added, and subsequently closed to provide at least a substantially air-tight seal. The at least substantially air-tight seal can be achieved via physical design of housing 370 and lid 375 and/or inclusion of one or more gaskets (not shown) or other insulating material desired. Lid 375 can be attached to housing 370 in any suitable manner desired, for example and not in limitation, by way of one or more hinges and/or clasps. Notably, housing 370 and lid 375 can be any shape or size desired.

As illustrated in FIG. 4, according to another exemplary embodiment of the present invention, an air cooling system includes an intake line 410, a first heat exchanger 420, a second heat exchanger 425, an amount of frozen carbon dioxide 430, and an exhaust line 440. First and second heat exchangers 420, 425 are connected via bridge line 428.

As illustrated, frozen carbon dioxide 430 is disposed between first heat exchanger 420 and second heat exchanger 425, such that at least a portion of each exterior surface 421, 426 are in contact with the frozen carbon dioxide, and therefore, both exchangers effectuate cooling of the air. In an exemplary aspect of the invention, bridge line 428 can be formed of a flexible material so as to allow the distance between the exchangers 420, 425 to increase to allow placement of frozen carbon dioxide 430 there between, as well as to allow the distance to decrease as frozen carbon dioxide sublimates. In an exemplary aspect of the invention, with a dual exchanger 420, 425 configuration, frozen carbon dioxide 430 can be held in place by the exchangers during sublimation. And as noted above, as the frozen carbon dioxide sublimates, the distance between the exchangers decreases. A decrease in distance can be caused by one or more of the following: the sublimation process, the force of gravity, or a mechanically created force, such as one via a spring or an amount of foam, for example and not in limitation.

As illustrated in FIG. 5, a dual exchanger 520, 525 configuration can also optionally include a housing 570, and further optionally include a valve 580, similarly to the embodiment illustrated in FIG. 2. Also optionally, one or more holding elements 535 may be included to prevent the frozen carbon dioxide 530 from moving in at least one direction.

It will be apparent to one skilled in the art that the manner of making and using the claimed invention has been adequately disclosed in the above-written description of the exemplary embodiments and aspects taken together with the drawings.

It should be understood, however, that the invention is not necessarily limited to the specific embodiments, aspects, arrangement, and components shown and described above, but may be susceptible to numerous variations within the scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative and enabling, rather than a restrictive, sense.

Therefore, it will be understood that the above description of the embodiments of the present invention are susceptible to various modifications, changes, and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.

Claims

1. An air cooling system, said system comprising:

an intake line connected to an air source, said intake line for carrying the air from the air source;
a heat exchanger having an exterior surface, said heat exchanger being connected to said intake line;
an exhaust line connected to said heat exchanger, said exhaust line for carrying the air away from said heat exchanger to an air destination; and
an amount of frozen carbon dioxide disposed against at least a portion of the exterior surface of said heat exchanger to transfer heat away from the air.

2. The system of claim 1, said system further comprising:

a housing having a lid, an intake aperture, and an exhaust aperture;
wherein said housing surrounds said heat exchanger and said amount of frozen carbon dioxide, said intake line connects to said heat exchanger via the intake aperture, said exhaust line connects to said heat exchanger via the exhaust aperture, and the lid is closely openable to receive said amount of frozen carbon dioxide.

3. The system of claim 2, wherein said housing is at least substantially air-tight and said housing includes a valve for releasing air pressure from within said housing.

4. The system of claim 3, wherein the valve releases at least a portion of the air pressure from within said housing if the air pressure exceeds a predetermined amount.

5. The system of claim 2, wherein said housing further surrounds at least one holding element that limits said amount of frozen carbon dioxide from moving in at least one direction.

6. The system of claim 5, wherein the at least one holding element is formed, at least in part, from a foam material.

7. The system of claim 1, wherein said heat exchanger includes a plurality of fins, and said amount of frozen carbon dioxide is disposed against at least one of the plurality of fins.

8. The system of claim 1, wherein the destination is a combustion chamber.

9. An air cooling system, said system comprising:

an intake line connected to an air source, said intake line for carrying air from the air source;
a first heat exchanger having a first heat exchanger exterior surface, said first heat exchanger being connected to said intake line;
a second heat exchanger having a second heat exchanger exterior surface, said second heat exchanger being connected to said first heat exchanger via a bridge line;
an exhaust line connected to said second heat exchanger, said exhaust line for carrying the air away from said second heat exchanger to an air destination; and
an amount of frozen carbon dioxide disposed against at least a portion of the first heat exchanger exterior surface and at least a portion of the second heat exchanger exterior surface to transfer heat away from the air.

10. The system of claim 9, said system further comprising:

a housing having a lid, an intake aperture and an exhaust aperture;
wherein said housing surrounds said first and second heat exchangers and said amount of frozen carbon dioxide, said intake line connects to said first heat exchanger via the intake aperture, said exhaust line connects to said second heat exchanger via the exhaust aperture, and the lid is closely openable to receive said amount of frozen carbon dioxide.

11. The system of claim 10, wherein said housing is at least substantially air-tight and said housing includes a valve for releasing air pressure from within said housing.

12. The system of claim 11, wherein the valve releases at least a portion of the air pressure from within said housing if the air pressure exceeds a predetermined amount.

13. The system of claim 10, wherein said housing further surrounds at least one holding element that limits said amount of frozen carbon dioxide from moving in at least one direction.

14. The system of claim 13, wherein the at least one holding element is formed, at least in part, from a foam material.

15. The system of claim 9, wherein at least one of said first heat exchanger and said second heat exchanger includes a plurality of fins, and said amount of frozen carbon dioxide is disposed against at least one of the plurality of fins.

16. The system of claim 9, wherein the destination is a combustion chamber.

17. The system of claim 9, wherein the bridge line is formed of a flexible material to allow a distance between said first and second heat exchangers to shorten as amount of frozen carbon dioxide sublimates.

Patent History
Publication number: 20090211543
Type: Application
Filed: Feb 25, 2009
Publication Date: Aug 27, 2009
Inventor: Stephen Gardner Rasmussen (Ft. Myers, FL)
Application Number: 12/380,227
Classifications
Current U.S. Class: Air-cooled (123/41.56); External As Circulator Or Director (62/387); Enclosure Forming (62/516); With Discrete Heat Transfer Means (165/181)
International Classification: F01P 1/00 (20060101); F25D 3/12 (20060101); F25B 39/02 (20060101); F28F 1/10 (20060101);