Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
Electromagnetic transponders as markers are used to localize and guide orthopedic procedures including: knee replacement, hip replacement, shoulder replacement, damaged bone reconstruction, and spine surgery, and more particularly, to guide orthopedic surgical navigation and alignment techniques and instruments. For example, the marker could further be used in any number of guides or templates that attach to the bony anatomy, such as a surgical guide, cutting guide, cutting jig, resection block and/or resurfacing guide. Further, the marker could be incorporated into an existing intramedullary guide rod for a femur and an extramedullary guide rod for a tibia in a knee replacement surgery; or into an external surgical guide system, or the marker could eliminate the need for an external template altogether. According to yet another anticipated use of the tracking system, the marker could be used in conjunction with or replace an optical alignment system.
The present application claims the benefit of U.S. Patent Application No. 60/737,907 filed on Nov. 17, 2005, which is incorporated herein in its entirety.
TECHNICAL FIELDApparatus and methods for using one or more electromagnetic transponders as markers to localize and guide orthopedic procedures including: knee replacement, hip replacement, shoulder replacement, damaged bone reconstruction, and spine surgery, and more particularly, to methods and apparatus for orthopedic surgical navigation and alignment techniques and instruments.
BACKGROUNDOne of the main problems in orthopedics today is the lack of accurate position and orientation information during surgery that could be used for registration of implanted devices to bone as well as registering bone structures after diseased or damaged tissue, bone and/or marrow has been removed during a surgical procedure (e.g. knee replacement surgery). For example, the stem of a hip or knee replacement implant should fit within the intramedullary canal of a bone in a manner that approximates the bone structure of the patient. This can be difficult because the bone structure of each patient is slightly different (e.g., different curvature, size, radial orientation, etc.). Although X-rays are typically used to assess the bone structure of a patient, these images do not provide real-time, accurate information during surgery for positioning implants or registering bones in an orientation suited for a specific patient. Therefore, there is a need to provide accurate information to surgeons during a procedure.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
The following disclosure is directed toward surgical guides, prosthesis, implants, and/or instruments including localization markers that (a) are energized by a wirelessly transmitted excitation energy and (b) wirelessly transmit a location signal in response to the excitation energy. Additional aspects of the following description are directed toward methods of using and tracking such instruments implanted or affixed to bony anatomy of a patient, an implant or prosthesis, an intramedullary device, an extramedullary device or a guide, using non-ionizing energy.
One embodiment of a surgical guide, prosthesis, implant and/or instrument in accordance with the invention comprises an elongated member having a distal section configured to be passed through an intramedullary canal of a femur or other passageway in a human. The instrument further includes a magnetic marker having a transponder at the distal section. The transponder includes a circuit configured to be energized by a wirelessly transmitted magnetic excitation energy and to wirelessly transmit a magnetic location signal in response to the excitation energy. The magnetic transponder of the marker includes a circuit configured to (a) be energized by a wirelessly transmitted pulsed magnetic field and (b) wirelessly transmit a pulsed magnetic location signal in response to the pulsed magnetic field. The magnetic marker, for example, can be attached to or otherwise integral with the elongated member.
Another aspect of the following disclosure is directed toward systems for tracking an implant in a patient or guide associated with the bony anatomy of the patient. One embodiment of such a system includes an elongate member having an elongated rod with a distal section configured to be passed through an intramedullary canal in a human and a magnetic marker having a transponder at the distal section of the member. Another embodiment of such a system includes an orthopedic implant having a magnetic marker in, affixed to or in a substantially fixed relationship to the implant. Another embodiment of such a system includes a guide for use during orthopedic surgery, the marker in a substantially fixed relationship to the guide. The transponder has a circuit configured to (a) be energized by a wirelessly transmitted pulsed magnetic field and (b) wirelessly transmit a pulsed magnetic location signal in response to the pulsed magnetic field. The system further includes an excitation source comprising an energy storage device, a source coil, and a switching network coupled to the energy storage device and the source coil. The source coil is configured to wirelessly transmit the pulsed magnetic field to energize a transponder. The switching network is configured to alternately transfer (a) stored energy from the energy storage device to the source coil and (b) energy in the source coil back to the energy storage device.
Another aspect for tracking an implant in a patient or guide associated with the bony anatomy of the patient includes an implant or guide as set forth above and a sensor assembly comprising a support member and a plurality of field sensors carried by the support member. The field sensors are at least substantially locally planar relative to one another to sense the pulsed magnetic location signal from the transponder. The field sensors can be responsive only to field components of the pulsed magnetic location signal normal to individual field sensors. In other embodiments, the field sensors are arranged in an array occupying an area having a maximum dimension of approximately 100% to 300% of a predetermined sensing distance between the marker and the sensing array.
Additional aspects of the invention are directed toward methods for guiding the prosthesis, implant, guide or other instrument. One embodiment of such a method comprises implanting the prosthetic in a patient and tracking the implant as it is implanted. According to further aspects, the implant can include one or a plurality of markers. Alternatively, the implant may be implanted in a collapsed or unexpanded state and may be expanded after positioning the implant in the patient. According to aspects of this embodiment, the implant may be initially tracked for purposes of placement and may be further tracked to confirm appropriate expansion of the implant. The implant is tracked as is placed in the patient by (a) wirelessly delivering a pulsed magnetic field to energize the marker, (b) wirelessly transmitting a pulsed location signal from the marker, (c) sensing the pulsed location signal at a sensor located outside the patient, and (d) periodically calculating a three-dimensional location of the marker in a reference frame. The method can further include providing an output of the location of the marker in the reference frame at least every tf second and within tl second from sensing the pulsed location signal. In many embodiments, tf and tl are not greater than one second.
According to other aspects of the invention, the radiographic center of a marker coincide with the magnetic center of a transponder of the marker. If the radiographic center coincides with the magnetic center of the transponder, the transponders can be localized on X-ray or CT prior to surgery. After X-ray or CT, the surgery can be planned using the preoperative X-rays. Next, the markers may be localized intraoperatively with electromagnetic tracking. Finally, the markers can be localized during physical therapy to monitor recovery as well as longer term follow-up activities.
According to further aspects of the invention, a plurality of electromagnetic markers are used to provide three dimensional position information (X, Y and Z position) as location fiducials for implants, guides, prosthesis and the like. As additional markers are used, the dimensionality of localization, alignment and registration solutions increases. For example, a single marker defines a single position in localization space; two markers can be used to register the distance between two points. Furthermore, two independent sets of two rigidly mounted markers can be used to register and align two vectors relative to each other. And, three markers rigidly mounted relative to each other can be used to define a plane including rotational angles of the plane (i.e. pitch, yaw and roll). Suitable markers include, for example, the markers shown and described in U.S. Pat. Nos. 6,918,919 and 6,822,570; and U.S. application Ser. Nos. 10/334,700; 09/954,700; 10/679,801; 10/382,123; 10/745,097; 10/746,888; and 11/166,801, all of which are incorporated herein by reference.
B. Tracking Systems and Methods for Spinal Stabilization DevicesA system of the present invention includes a cannula device 70 having an outer sheath 72, a proximal hub 78 and preferably at least two interior lumens 74, 76 for the percutaneous delivery the device and other tools as are know in the art for implanting the spinal device.
As shown in
The marker 40 illustrated in
Spinal spacers can be made of an inflatable non-porous material, i.e., balloon type spacers are inflated with an inflation or expansion medium, such as air, saline, another biologically compatible fluid, or a flowable solid material, such as polyurethane, or a gel, which thickens or hardens substantially upon injection into balloon 34. The marker 40 is contained in a capsule 49 and therefore can be contained within the balloon type spacer or affixed to the surface of the balloon type spacer as described further below in reference to
According to aspects of the invention, the markers may be incorporated into other spinal stabilization devices, for example, the expandable spine stabilization system in U.S. Publication No. 2005/0171543 entitled Spine Stabilization Systems and Associated Devices, Assemblies and Methods; U.S. Publication No. 2006/0084988 entitled System and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0241614 entitled Implants and Methods for Posterior Dynamic Stabilization of a Spinal Motion Segment; U.S. Publication No. 2006/0241613 entitled Implants and Methods for Inter-Transverse Process Dynamic Stabilization of a Spinal Motion Segment; U.S. Publication No. 2006/0229608 entitled Apparatus and Methods for Spinal Implant with Dynamic Stabilization System; U.S. Publication No. 2006/0085069 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0084987 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0111715 entitled Dynamic Stabilization Assemblies, Tool Set and Method; U.S. Publication No. 2006/0084985 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0084984 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0084983 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0084982 entitled Systems and Methods for Posterior Dynamic Stabilization of the Spine; U.S. Publication No. 2006/0079898 entitled Spinal Motion Preservation Assemblies; U.S. Publication No. 2006/0058800 entitled Methods and Apparatus for Provision of Therapy to Adjacent Motion Segments; U.S. Publication No. 2006/0036240 entitled System and Method for Dynamic Skeletal Stabilization.
The instrument illustrated in
The instrument shown in
According to further aspects of the invention, electromagnetic markers could be used in orthopedic surgical applications such as a marker affixed to in-situ bone or to an implant; in a fixed relationship with a surgical guide to provide objective, real-time location information to allow more accurate surgical cuts of existing bone, length, rotation; during surgery to assure alignment and/or post surgery to confirm implant positioning and range of motion; in a bone screw to guide positioning of the screw, guide removal of the screw, or monitor implanted position of the screw.
The marker could further be used in any number of guides or templates that attach to the bony anatomy, such as a surgical guide, cutting guide, cutting jig, resection block and/or resurfacing guide. For example, the marker could be incorporated into an existing intramedullary guide rod for a femur and an extramedullary guide rod for a tibia in a knee replacement surgery; or into an external surgical guide system, or the marker could eliminate the need for an external template altogether. According to yet another anticipated use of the tracking system, the marker could be used in conjunction with or replace an optical alignment system. Templates or guides are commonly used in orthopedic surgery of the spine, joints (e.g. knee or hip), and trauma.
According to aspects of the invention, a tracking system for use in orthopedic surgeries and other procedures provides objective internal alignment data (inflection, flexure, rotation, overall mechanical alignment) from bone (registration problem) for clinical confidence (need to take acquisition reference points away from cut). According to further aspects of the invention, relative position of remaining bone components can be confirmed once an initial cut has been made so that the completed replacement joint maintains correct position and rotation of bone components relative to each other (e.g. tibia and femur bone components in knee replacement surgery). Poor initial placement is the primary reason for replacement joints to fail in patients.
According to further aspects of the invention, an easier way to integrate image data into a computer guided cutting and implantation surgical process is provided. For example, as detailed further below with, the system can provide data for use in treatment planning to increase the accuracy of the surgery, for a patient communication tool, and to reduce the duration of the surgery. In addition, orthopedic surgery is generally trending toward minimally invasive surgery (MIS), a surgical technique that allows the surgeon to see less of the surgery site. The tracking system of the present invention will provide significant benefits in a surgery technique that increases the risk of misalignment due to reduced visibility. By providing objective tracking and alignment data, minimally invasive knee replacement surgery and other minimally invasive surgeries will be practical for mainstream surgeons.
One expected advantage of a tracking system for implants, guides and other orthopedic devices used in surgeries is the ability to rely on objective internal alignment data for bone increasing confidence for first cut. Additional advantages of obtaining objective internal alignment data includes confirmation of the relative position once an initial cut has been made. A further advantage is the ability to integrate image data into computer guided surgery. Yet another advantage is the enablement of treatment planning with preoperative x-ray or CT. Still another advantage is the enablement of accurate and precise image guided surgery for alignment of bone components during surgery.
According to further aspects of the invention, the markers can be implanted in or relative to bone components of interest and used after surgery to monitor healing and/or physical therapy progress without any detrimental effects to the patient such as x-ray radiation
According to aspects of the invention, the electromagnetic tracking system may be combined with an optical system to provide increased accuracy and ease of use. The combination system is advantageous over standard optical tracking for at least the following reasons: there are no line of sight issues; the electromagnetic markers can resonate at different frequencies and are distinguishable from each other by the system, the electromagnetic markers are a better proxy for the location of the implant than just the implant.
As shown in
Examplary Work Flow for a Knee Replacement Surgery:
Pre-Surgery
1. X-Ray (diagnostic+markers) (image overlay)
1a. Treatment planning tool
Surgery
2. Pre-registration. Localization framework (template or temporary guidance rod)
3. Data acquisition
4. Tibia/Femur planning pre-cut
5. Cut
5a. Remove intramedullary guide rod
6. Implant Placement
7. Ligament balancing
D. Systems and Procedures of a Localization and Tracking SystemThe localization system includes an excitation source 60 (e.g., a pulsed magnetic field generator), a sensor assembly 70, and a controller 80 coupled to both the excitation source 60 and the sensor assembly 70. The excitation source 60 generates an excitation energy to energize at least one of the markers 40a-c on the instrument 10. The embodiment of the excitation source 60 shown in
The sensor assembly 70 can include a plurality of coils to sense the location signals L1-3 from the markers 40a-c. The sensor assembly 70 can be a flat panel having a plurality of coils that are at least substantially coplanar relative to each other. In other embodiments, the sensor assembly 70 may be a nonplanar array of coils.
The controller 80 includes hardware, software or other computer-operable media containing instructions that operate the excitation source 60 to multiplex the excitation energy at the different frequencies E1-3. For example, the controller 80 causes the excitation source 60 to generate the excitation energy at the first frequency E1 for a first excitation period, and then the controller 80 causes the excitation source 60 to terminate the excitation energy at the first frequency E1 for a first sensing phase during which the sensor assembly 70 senses the first location signal L1 from the first marker 40a without the presence of the excitation energy at the first frequency E1. The controller 80 also causes the excitation source 60 to (a) generate the second excitation energy at the second frequency E2 for a second excitation period and (b) terminate the excitation energy at the second frequency E2 for a second sensing phase during which the sensor assembly 70 senses the second location signal L2 from the second marker 40b without the presence of the second excitation energy at the second frequency E2. The controller 80 replicates this operation with the third excitation energy at the third frequency E3 such that the third marker 40c transmits the third location signal L3 to the sensor assembly 70 during a third sensing phase. As such, the excitation source 60 wirelessly transmits the excitation energy in the form of pulsed magnetic fields at the resonant frequencies of the markers 40a-c during excitation periods, and the markers 40a-c wirelessly transmit the location signals L1-3 to the sensor assembly 70 during sensing phases.
The computer-operable media in the controller 80, or in a separate signal processor, also includes instructions to determine the absolute positions of each of the markers 40a-c in a three-dimensional reference frame. Based on signals provided by the sensor assembly 70 that correspond to the magnitude of each of the location signals L1-3, the controller 80 and/or a separate signal processor calculate the absolute coordinates of each of the markers 40a-c in the three-dimensional reference frame.
One procedure for tracking the prosthesis, guide and/or instrument 10 through the patient includes attaching reference markers 40d-f to the patient and acquiring reference images showing the position of the reference markers 40d-f relative to the target site using MRI images, CT images, radiographic images or other suitable types of images. The reference markers 40d-f can be adhered to the patient using an external patch, implanted in tissue, or otherwise anchored to the bone structure of the patient. The instrument 10 is then implanted in the patient by moving the distal section 18 of the spinal device 24 through a desired vessel or other passageway. As the instrument 10 is inserted into the patient, the markers 40a-f are individually energized by the excitation source 60 at six different frequencies, and the sensor assembly 70 receives independent location signals from each of the markers 40a-f. The controller 80 and/or a separate signal processor then calculates the absolute position of each marker in a three-dimensional reference frame. The controller 80 can also calculate (a) the location of the device 20 using the absolute locations of the markers 40a-c and (b) the location of the target site using the absolute locations of the reference markers 40d-f. Based on the calculated locations of the markers 40a-c and the target site, the controller 80 can further calculate the relative offset between these items in real time.
The instrument 10 and localization system enable a practitioner to track the location of the instrument 10 relative to the target site as it is being implanted into the patient and at any time after implantation. The location system illustrated in
The method 450 continues with a third stage 456 in which the reference markers 40d-f and device markers 40a-b (
The fourth stage 458 of the method 450 can have several different embodiments. Referring to
The systems and methods set forth above with respect to
One problem with such wired systems is that the reference assemblies are attached to the patient after obtaining the diagnostic images. The system is thus manually calibrated before performing the therapeutic procedure. This is a relatively time consuming aspect of the procedure that reduces the utilization of expensive equipment and facilities associated with surgical or therapeutic procedures. Another problem with such systems is that the reference assemblies may not be accurately positioned relative to the target such that the external reference frame defined by the reference assemblies introduces systemic errors that decrease the accuracy of the measurements. Therefore, wired magnetic tracking systems are not expected to provide satisfactory results for many applications.
In contrast to the wired systems, the systems and methods set forth in
The systems and methods described above with reference to
The systems set forth in
According to methods of the invention, implanting an electromagnetic marker within in a bone to define a reference point relative to the bone structure; localizing the position of the bone during reconstructive surgery relative to either a prosthesis or another bone structure. According to aspects of the invention, the localization can be in real-time during a procedure with a person in the operating room.
According to further methods of the invention, positioning an electromagnetic marker on a device relative to a bone to define a reference point relative to the bone structure, and the reference point localizes the position of the bone element during reconstructive surgery relative to either a prosthesis or another bone element. In further aspects of this example, the device can have one or more of the following characteristics: the device being a template of known mechanical dimensions temporarily used during surgery; the device being a prosthetic device of known mechanical dimensions and permanently implanted; and/or the device being a bone screw or similar device and permanently implanted.
A method for using implanted an electromagnetic transponder to localize bone components. This method can further include on or more of the following: localization bone components using one or more electromagnetic transponders pre-operatively with X-ray; localization bone components using one or more electromagnetic transponders during surgery electromagnetically; localization bone components using one or more electromagnetic transponders following surgery electromagnetically.
A method for using implanted an electromagnetic transponder to localize bone components relative to prosthetic devices during surgery. According to this method, a marker is directly implanted into the bone of a patient to provide a fixed reference point for use during orthopedic surgery. Alternatively, the marker can be substantially fixed relative to the bony anatomy of a patient to be used as a reference point during orthopedic surgery.
F. Specific Embodiments of Markers and Localization SystemsThe following specific embodiments of markers, excitation sources, sensors and controllers provide additional details to implement the systems and processes described above with reference to
1. Markers
The magnetic transponder 120 can include a resonating circuit that wirelessly transmits a location signal in response to a wirelessly transmitted excitation field as described above. In this embodiment, the magnetic transponder 120 comprises a coil 122 defined by a plurality of windings of a conductor 124. Many embodiments of the magnetic transponder 120 also include a capacitor 126 coupled to the coil 122. The coil 122 resonates at a selected resonant frequency. The coil 122 can resonate at a resonant frequency solely using the parasitic capacitance of the windings without having a capacitor, or the resonant frequency can be produced using the combination of the coil 122 and the capacitor 126. The coil 122 accordingly generates an alternating magnetic field at the selected resonant frequency in response to the excitation energy either by itself or in combination with the capacitor 126. The conductor 124 of the illustrated embodiment can be hot air or alcohol bonded wire having a gauge of approximately 45-52. The coil 122 can have 800-1000 turns, and the windings are preferably wound in a tightly layered coil. The magnetic transponder 120 can further include a core 128 composed of a material having a suitable magnetic permeability. For example, the core 128 can be a ferromagnetic element composed of ferrite or another material. The magnetic transponder 120 can be secured to the casing 110 by an adhesive 129 (
The marker 100 also includes an imaging element that enhances the radiographic image of the marker to make the marker more discernible in radiographic images. The imaging element also has a radiographic profile in a radiographic image such that the marker has a radiographic centroid at least approximately coincident with the magnetic centroid of the magnetic transponder 120. As explained in more detail below, the radiographic and magnetic centroids do not need to be exactly coincident with each other, but rather can be within an acceptable range.
The first and second contrast elements 132 and 134 illustrated in
The radiographic centroid of the image produced by the imaging element 130 does not need to be absolutely coincident with the magnetic centroid Mc, but rather the radiographic centroid and the magnetic centroid should be within an acceptable range. For example, the radiographic centroid Rc can be considered to be at least approximately coincident with the magnetic centroid Mc when the offset between the centroids is less than approximately 5 mm. In more stringent applications, the magnetic centroid Mc and the radiographic centroid Rc are considered to be at least substantially coincident with each other when the offset between the centroids is 2 mm or less. In other applications, the magnetic centroid Mc is at least approximately coincident with the radiographic centroid Rc when the centroids are spaced apart by a distance not greater than half the length of the magnetic transponder 120 and/or the marker 100.
The imaging element 130 can be made from a material and configured appropriately to absorb a high fraction of incident photons of a radiation beam used for producing the radiographic image. For example, when the imaging radiation has high-acceleration voltages in the megavoltage range, the imaging element 130 is made from, at least in part, high-density materials with sufficient thickness and cross-sectional area to absorb enough of the photon fluence incident on the imaging element to be visible in the resulting radiograph. Many high-energy beams used for therapy have acceleration voltages of 6 MV-25 MV, and these beams are often used to produce radiographic images in the 5 MV-10 MV range, or more specifically in the 6 MV-8 MV range. As such, the imaging element 130 can be made from a material that is sufficiently absorbent of incident photon fluence to be visible in an image produced using a beam with an acceleration voltage of 5 MV-10 MV, or more specifically an acceleration voltage of 6 MV-8 MV.
Several specific embodiments of imaging elements 130 can be made from gold, tungsten, platinum and/or other high-density metals. In these embodiments the imaging element 130 can be composed of materials having a density of 19.25 g/cm3 (density of tungsten) and/or a density of approximately 21.4 g/cm3 (density of platinum). Many embodiments of the imaging element 130 accordingly have a density not less than 19 g/cm3. In other embodiments, however, the material(s) of the imaging element 130 can have a substantially lower density. For example, imaging elements with lower-density materials are suitable for applications that use lower-energy radiation to produce radiographic images. Moreover, the first and second contrast elements 132 and 134 can be composed of different materials such that the first contrast element 132 can be made from a first material and the second contrast element 134 can be made from a second material.
Referring to
One specific process of using the marker involves imaging the marker using a first modality and then tracking the target of the patient and/or the marker using a second modality. For example, the location of the marker relative to the target can be determined by imaging the marker and the target using radiation. The marker and/or the target can then be localized and tracked using the magnetic field generated by the marker in response to an excitation energy in a non-ionizing environment.
The marker 100 shown in
The marker 200 is expected to operate in a manner similar to the marker 100 described above. The marker 200, however, does not have two separate contrast elements that provide two distinct, separate points in a radiographic image. The imaging element 230 is still highly useful in that it identifies the radiographic centroid of the marker 200 in a radiographic image, and it can be configured so that the radiographic centroid of the marker 200 is at least approximately coincident with the magnetic centroid of the magnetic transponder 120.
Additional embodiments of markers in accordance with the invention can include imaging elements incorporated into or otherwise integrated with the casing 110, the core 128 (
The markers described above with reference to
2. Localization Systems
The excitation source 1010 is adjustable to generate a magnetic field having a waveform with energy at selected frequencies to match the resonant frequencies of the markers 40. The magnetic field generated by the excitation source 1010 energizes the markers at their respective frequencies. After the markers 40 have been energized, the excitation source 1010 is momentarily switched to an “off” position so that the pulsed magnetic excitation field is terminated while the markers wirelessly transmit the location signals. This allows the sensor assembly 1012 to sense the location signals from the markers 40 without measurable interference from the significantly more powerful magnetic field from the excitation source 1010. The excitation source 1010 accordingly allows the sensor assembly 1012 to measure the location signals from the markers 40 at a sufficient signal-to-noise ratio so that the signal processor 1014 or the controller 1016 can accurately calculate the absolute location of the markers 40 relative to a reference frame.
a. Excitation Sources
Referring still to
The energy storage device 1042 is capable of storing adequate energy to reduce voltage drop in the energy storage device while having a low series resistance to reduce power losses. The energy storage device 1042 also has a low series inductance to more effectively drive the coil assembly 1046. Suitable capacitors for the energy storage device 1042 include aluminum electrolytic capacitors used in flash energy applications. Alternative energy storage devices can also include NiCd and lead acid batteries, as well as alternative capacitor types, such as tantalum, film, or the like.
The switching network 1044 includes individual H-bridge switches 1050 (identified individually by reference numbers 1050a-d), and the coil assembly 1046 includes individual source coils 1052 (identified individually by reference numbers 1052a-d). Each H-bridge switch 1050 controls the energy flow between the energy storage device 1042 and one of the source coils 1052. For example, H-bridge switch #1 1050a independently controls the flow of the energy to/from source coil #1 1052a, H-bridge switch #2 1050b independently controls the flow of the energy to/from source coil #2 1052b, H-bridge switch #3 1050c independently controls the flow of the energy to/from source coil #3 1052c, and H-bridge switch #4 1050d independently controls the flow of the energy to/from source coil #4 1052d. The switching network 1044 accordingly controls the phase of the magnetic field generated by each of the source coils 1052a-d independently. The H-bridges 1050 can be configured so that the electrical signals for all the source coils 1052 are in phase, or the H-bridges 1050 can be configured so that one or more of the source coils 1052 are 180° out of phase. Furthermore, the H-bridge switches 1050 can be configured so that the electrical signals for one or more of the source coils 1052 are between 0 and 180° out of phase to simultaneously provide magnetic fields with different phases.
The source coils 1052 can be arranged in a coplanar array fixed relative to the reference frame. Each source coil 1052 can be a square, planar winding arranged to form a flat, substantially rectilinear coil. The source coils 1052 can have other shapes and other configurations in different embodiments. In one embodiment, the source coils 1052 are individual conductive lines formed in a stratum of a printed circuit board, or windings of a wire in a foam frame. Alternatively, the source coils 1052 can be formed in different substrates or arranged so that two or more of the source coils are not planar with each other. Additionally, alternate embodiments of the invention may have fewer or more source coils than illustrated in
The selected magnetic fields from the source coils 1052 combine to form an adjustable excitation field that can have different three-dimensional shapes to excite the markers 40 at any spatial orientation within an excitation volume. When the planar array of the source coils 1052 is generally horizontal, the excitation volume is positioned above an area approximately corresponding to the central region of the coil assembly 1046. The excitation volume is the three-dimensional space adjacent to the coil assembly 1046 in which the strength of the magnetic field is sufficient to adequately energize the markers 40.
In the embodiment of
The spatial configuration of the excitation field in the excitation volume 1109 can be quickly adjusted by manipulating the switching network to change the phases of the electrical signals provided to the source coils 1052a-d. As a result, the overall magnetic excitation field can be changed to be oriented in either the X, Y or Z directions within the excitation volume 1109. This adjustment of the spatial orientation of the excitation field reduces or eliminates blind spots in the excitation volume 1109. Therefore, the markers 40 within the excitation volume 1109 can be energized by the source coils 1052a-d regardless of the spatial orientations of the leadless markers.
In one embodiment, the excitation source 1010 is coupled to the sensor assembly 1012 so that the switching network 1044 (
The excitation source 1010 illustrated in
b. Sensor Assemblies
The panel 1604 may be a substantially nonconductive material, such as a sheet of KAPTON® produced by DuPont. KAPTON® is particularly useful when an extremely stable, tough, and thin film is required (such as to avoid radiation beam contamination), but the panel 1604 may be made from other materials and have other configurations. For example, FR4 (epoxy-glass substrates), GETEK or other Teflon-based substrates, and other commercially available materials can be used for the panel 1604. Additionally, although the panel 1604 may be a flat, highly planar structure, in other embodiments, the panel may be curved along at least one axis. In either embodiment, the field sensors (e.g., coils) are arranged in a locally planar array in which the plane of one field sensor is at least substantially coplanar with the planes of adjacent field sensors. For example, the angle between the plane defined by one coil relative to the planes defined by adjacent coils can be from approximately 0° to 10°, and more generally is less than 5°. In some circumstances, however, one or more of the coils may be at an angle greater than 10° relative to other coils in the array.
The sensor assembly 1012 shown in
The sensor assembly 1012 can further include a first exterior cover 1630a on one side of the sensing subsystem and a second exterior cover 1630b on an opposing side. The first and second exterior covers 1630a-b can be thin, thermally stable layers, such as Kevlar or Thermount films. Each of the first and second exterior covers 1630a-b can include electric shielding 1632 to block undesirable external electric fields from reaching the coils 1602. The electric shielding 1632, for example, prevents or minimizes the presence of eddy currents caused by the coils 1602 or external magnetic fields. The electric shielding 1632 can be a plurality of parallel legs of gold-plated copper strips to define a comb-shaped shield in a configuration commonly called a Faraday shield. It will be appreciated that the electrical shielding 1632 can be formed from other materials that are suitable for shielding. The electric shielding 1632 can be formed on the first and second exterior covers 1630a-b using printed circuit board manufacturing technology or other techniques.
The panel 1604 with the coils 1602 is laminated to the core 1620 using a pressure sensitive adhesive or another type of adhesive. The first and second exterior covers 1630a-b are similarly laminated to the assembly of the panel 1604 and the core 1620. The laminated assembly forms a rigid structure that fixedly retains the arrangement of the coils 1602 in a defined configuration over a large operating temperature range. As such, the sensor assembly 1012 does not substantially deflect across its surface during operation. The sensor assembly 1012, for example, can retain the array of coils 1602 in the fixed position with a deflection of no greater than ±0.5 mm, and in some cases no more than ±0.3 mm. The stiffness of the sensing subsystem provides very accurate and repeatable monitoring of the precise location of leadless markers in real time.
In still another embodiment, the sensor assembly 1012 can further include a plurality of source coils that are a component of the excitation source 1010. One suitable array combining the sensor assembly 1012 with source coils is disclosed in U.S. patent application Ser. No. 10/334,700. entitled PANEL-TYPF SENSOR/SOURCE ARRAY ASSEMBLY, filed on Dec. 30, 2002, which is herein incorporated by reference.
The coils 1602 may be conductive traces or depositions of copper or another suitably conductive metal formed on the panel 1604. Each coil 1602 has a trace with a width of approximately 0.15 mm and a spacing between adjacent turns within each coil of approximately 0.13 mm. The coils 1602 can have approximately 15 to 90 turns, and in specific applications each coil has approximately 40 turns. Coils with less than 15 turns may not be sensitive enough for some applications, and coils with more than 90 turns may lead to excessive voltage from the source signal during excitation and excessive settling times resulting from the coil's lower self-resonant frequency. In other applications, however, the coils 1602 can have less than 15 turns or more than 90 turns.
As shown in
The pitch of the coils 1602 in the array 1605 is a function of, at least in part, the minimum distance between the marker and the coil array. In one embodiment, the coils are arranged at a pitch of approximately 67 mm. This specific arrangement is particularly suitable when the markers 40 are positioned approximately 7-27 cm from the sensor assembly 1012. If the markers are closer than 7 cm, then the sensing subsystem may include sensor coils arranged at a smaller pitch. In general, a smaller pitch is desirable when wireless markers are to be sensed at a relatively short distance from the array of coils. The pitch of the coils 1602, for example, is approximately 50%-200% of the minimum distance between the marker and the array.
In general, the size and configuration of the array 1605 and the coils 1602 in the array depend on the frequency range in which they are to operate, the distance from the markers 40 to the array, the signal strength of the markers, and several other factors. Those skilled in the art will readily recognize that other dimensions and configurations may be employed depending, at least in part, on a desired frequency range and distance from the markers to the coils.
The array 1605 is sized to provide a large aperture to measure the magnetic field emitted by the markers. It can be particularly challenging to accurately measure the signal emitted by an implantable marker that wirelessly transmits a marker signal in response to a wirelessly transmitted energy source because the marker signal is much smaller than the source signal and other magnetic fields in a room (e.g., magnetic fields from CRTs, etc.). The size of the array 1605 can be selected to preferentially measure the near field of the marker while mitigating interference from far field sources. In one embodiment, the array 1605 is sized to have a maximum dimension D1 or D2 across the surface of the area occupied by the coils that is approximately 100% to 300% of a predetermined maximum sensing distance that the markers are to be spaced from the plane of the coils. Thus, the size of the array 1605 is determined by identifying the distance that the marker is to be spaced apart from the array to accurately measure the marker signal, and then arrange the coils so that the maximum dimension of the array is approximately 100% to 300% of that distance. The maximum dimension of the array 1605, for example, can be approximately 200% of the sensing distance at which a marker is to be placed from the array 1605. In one specific embodiment, the marker 40 has a sensing distance of 20 cm and the maximum dimension of the array of coils 1602 is between 20 cm and 60 cm, and more specifically 40 cm.
A coil array with a maximum dimension as set forth above is particularly useful because it inherently provides a filter that mitigates interference from far field sources. As such, one aspect of several embodiments of the invention is to size the array based on the signal from the marker so that the array preferentially measures near field sources (i.e., the field generated by the marker) and filters interference from far field sources.
The coils 1602 are electromagnetic field sensors that receive magnetic flux produced by the markers 40 and in turn produce a current signal representing or proportional to an amount or magnitude of a component of the magnetic field through an inner portion or area of each coil. The field component is also perpendicular to the plane of each coil 1602. Each coil represents a separate channel, and thus each coil outputs signals to one of 32 output ports 1606. A preamplifier, described below, may be provided at each output port 1606. Placing preamplifiers (or impedance buffers) close to the coils minimizes capacitive loading on the coils, as described herein. Although not shown, the sensing unit 1601 also includes conductive traces or conductive paths routing signals from each coil 1602 to its corresponding output port 1606 to thereby define a separate channel. The ports in turn are coupled to a connector 1608 formed on the panel 1604 to which an appropriately configured plug and associated cable may be attached.
The sensing unit 1601 may also include an onboard memory or other circuitry, such as shown by electrically erasable programmable read-only memory (EEPROM) 1610. The EEPROM 1610 may store manufacturing information such as a serial number, revision number, date of manufacture, and the like. The EEPROM 1610 may also store per-channel calibration data, as well as a record of run-time. The run-time will give an indication of the total radiation dose to which the array has been exposed, which can alert the system when a replacement sensing subsystem is required.
Although shown in one plane only, additional coils or electromagnetic field sensors may be arranged perpendicular to the panel 1604 to help determine a three-dimensional location of the markers 40. Adding coils or sensors in other dimensions could increase the total energy received from the markers 40, but the complexity of such an array would increase disproportionately. The inventors have found that three-dimensional coordinates of the markers 40 may be found using the planar array shown in
Implementing the sensor assembly 1012 may involve several considerations. First, the coils 1602 may not be presented with an ideal open circuit. Instead, they may well be loaded by parasitic capacitance due largely to traces or conductive paths connecting the coils 1602 to the preamplifiers, as well as a damping network (described below) and an input impedance of the preamplifiers (although a low input impedance is preferred). These combined loads result in current flow when the coils 1602 link with a changing magnetic flux. Any one sensor coil 1602, then, links magnetic flux not only from the marker 40, but also from all the other sensor coils as well. These current flows should be accounted for in downstream signal processing.
A second consideration is the capacitive loading on the coils 1602. In general, it is desirable to minimize the capacitive loading on the coils 1602. Capacitive loading forms a resonant circuit with the coils themselves, which leads to excessive voltage overshoot when the excitation source 1010 is energized. Such a voltage overshoot should be limited or attenuated with a damping or “snubbing” network across the coils 1602. A greater capacitive loading requires a lower impedance damping network, which can result in substantial power dissipation and heating in the damping network.
Another consideration is to employ preamplifiers that are low noise. The preamplification can also be radiation tolerant because one application for the sensor assembly 1012 is with radiation therapy systems that use linear accelerators (LINAC). As a result, PNP bipolar transistors and discrete elements may be preferred. Further, a DC coupled circuit may be preferred if good settling times cannot be achieved with an AC circuit or output, particularly if analog to digital converters are unable to handle wide swings in an AC output signal.
c. Signal Processors and Controllers
The signal processor 1014 and the controller 1016 illustrated in
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the invention, as will be recognized by those skilled in the relevant art. The teachings provided herein of the invention can be applied to target locating and tracking systems, not necessarily the exemplary system generally described above.
The various embodiments described above can be combined to provide further embodiments. All the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the invention can be modified, if necessary, to employ systems, devices, and concepts of the various patents, applications, and publications to provide yet further embodiments of the invention, for example, the markers can be implanted in bone, can be implanted in an intramedullary device, can be affixed to a minimally invasive surgical device and/or can be affixed to a surgical guide.
These and other changes can be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all target locating and monitoring systems that operate in accordance with the claims to provide apparatus and methods for locating, monitoring, and/or tracking the position of a selected target within a body. Accordingly, the invention is not limited, except as by the appended claims.
Claims
1. An electromagnetic marker for use in orthopedic procedures, comprising:
- a template of known mechanical dimensions temporarily used during surgery; and
- a marker fixed to the template in a substantially fixed relationship.
2. An electromagnetic marker for use in orthopedic procedures, comprising:
- a prosthetic device configured for implantation in a patient; and
- a marker fixed to the prosthetic device in a substantially fixed relationship.
3. An electromagnetic marker for use in orthopedic procedures, comprising:
- a bone screw or similar device; and
- a marker fixed to the bone screw or similar device in a substantially fixed relationship.
4. The apparatus of claim 1 wherein the marker comprises a wireless transponder configured to wirelessly transmit a location signal in response to a wirelessly transmitted excitation energy.
5. The apparatus of claim 1 wherein the marker comprises a casing affixed in or on the template and a magnetic transponder in the casing, and wherein the magnetic transponder comprises a coil and a capacitor coupled to the coil.
6. The apparatus of claim 1 wherein the template comprises a cutting guide, and wherein the apparatus further comprises a plurality of markers attached to the cutting guide.
7. The apparatus of claim 6 wherein the markers comprise wireless transponders configured to wirelessly transmit location signals in response to wirelessly transmitted excitation energy.
8. The apparatus of claim 6 wherein the markers comprise a first magnetic transponder having a first resonant frequency and a second magnetic transponder having a second resonant frequency different than the first resonant frequency.
9. The apparatus of claim 7 wherein the markers comprise radiopaque elements.
10. The apparatus of claim 7 wherein the markers comprise magnetic transponders and/or radiographic fiducials.
11. The apparatus of claim 10 wherein the transponders and the fiducials are in a fixed relationship and/or orientation to one another.
12. The apparatus of claim 4 wherein the transponder comprises an alternating magnetic circuit having a ferrite core and a coil with a plurality of windings around the ferrite core.
13. The apparatus of claim 4 wherein the transponder comprises a ferrite core and a coil around the ferrite core, and wherein the marker further comprises a capsule encasing the transponder, the capsule having a longitudinal axis and a cross-sectional dimension normal to the longitudinal axis of not greater than 2 mm.
14. The apparatus of claim 2 wherein the prosthetic device further comprises a first marker in a first portion of the member and a second marker in a second portion of the member spaced apart from the first marker, wherein the first and the second markers are orthogonally oriented with respect to each other.
15. The apparatus of claim 2 wherein the marker comprises an alternating magnetic circuit and wherein the marker has a radiographic centroid and the alternating magnetic circuit has a magnetic centroid at least approximately coincident with the radiographic centroid.
16. A system for localizing and/or tracking a device contained in a bony anatomy of a patient, comprising:
- a transponder affixed to the bone of a patient, wherein the transponder has a circuit configured to be energized by a wirelessly transmitted pulsed magnetic field and to wirelessly transmit a pulsed magnetic location signal in response to the pulsed magnetic field;
- an alignment device for aligning the bone of a patient during localizing and/or tracking of the transponder; and
- an excitation source comprising an energy storage device, a source coil, and a switching network coupled to the energy storage device and the source coil, the source coil being configured to wirelessly transmit the pulsed magnetic field to energize the transponder, and the switching network being configured to alternately transfer (a) stored energy from the energy storage device to the source coil and (b) energy in the source coil back to the energy storage device.
17. The system of claim 16 wherein the switching network comprises an H-bridge switch.
18. The system of claim 16 wherein the switching network is configured to have a first on position in which the stored energy is transferred from the energy storage device to the source coil and a second on position in which energy in the source coil is transferred back to the energy storage device.
19. The system of claim 18 wherein the first on position has a first polarity and the second on position has a second polarity opposite the first polarity.
20. The system of claim 16 wherein the source coil comprises an array having a plurality of coplanar source coils.
21. The system of claim 20 wherein the switching network is configured to selectively energize the coplanar source coils to change a spatial configuration of the pulsed magnetic field.
22. The system of claim 16 wherein the transponder comprises an alternating magnetic circuit having a ferrite core and a coil with a plurality of windings around the ferrite core.
23. The system of claim 16 wherein the transponder is not electrically coupled to external leads outside the body.
24. A system for tracking a body contained in an implanted prosthesis of a human, comprising:
- a prosthesis configured to be received in a cavity of a human and a magnetic transponder contained in or on the body, wherein the transponder has a circuit configured to be energized by a wirelessly transmitted pulsed magnetic field and to wirelessly transmit a pulsed magnetic location signal in response to the pulsed magnetic field; and
- a sensor assembly comprising a support member and a plurality of field sensors carried by the support member configured to sense the pulsed magnetic location signal from the transponder.
25. The system of claim 24 wherein the field sensors are responsive only to field components of the pulsed magnetic location signal normal to individual field sensors.
26. The system of claim 24 wherein the field sensors are arranged in an array occupying an area having a maximum dimension of approximately 100% to 300% of a predetermined sensing distance between the marker and the sensing array.
27. The system of claim 24 wherein the transponder comprises an alternating magnetic circuit having a ferrite core and a coil with a plurality of windings around the ferrite core.
28. A method for using implanted an electromagnetic transponder to localize bone components, comprising:
- implanting one or more electromagnetic transponder pre-operatively;
- localizing bone components using one or more electromagnetic transponders pre-operatively; and
- localizing bone components using one or more electromagnetic transponders during surgery electromagnetically.
29. The method of claim 28 further comprising:
- localizating bone components using one or more electromagnetic transponders following surgery electromagnetically.
30. A method for using implanted an electromagnetic transponder to localize a prosthesis relative to bony anatomy during surgery, comprising:
- localizing bone components using one or more electromagnetic transponders pre-operatively; and
- localizing bone components using one or more electromagnetic transponders during surgery.
31. A method for using an electromagnetic transponder to localize a cutting guide during surgery, comprising:
- localizing the cutting guide using one or more electromagnetic transponders pre-operatively; and
- localizing the cutting guide using one or more electromagnetic transponders during surgery electromagnetically.
32. The method of claim 28 wherein localizing the marker comprises (a) wirelessly delivering a pulsed magnetic field to energize the marker, (b) wirelessly transmitting a pulsed location signal from the marker to a location outside the patient, (c) sensing the pulsed location signal at a sensor located outside the patient, and (d) periodically calculating a three-dimensional location of the marker in a reference frame.
33. The method of claim 32 further comprising providing an output of the location of the marker in the reference frame at least every tf second and within tl second from sensing the pulsed location signal, wherein tf and tl are not greater than 1 second.
34. The method of claim 33 wherein tf and tl are from approximately 10 ms to approximately 500 ms.
35. The method of claim 32 wherein providing an output of the location of the marker further comprises referencing the three-dimensional location of the marker with an image of the marker relative to a target.
36. The method of claim 32 wherein localizing the marker comprises determining whether the marker has moved from a desired location.
37. The method of claim 32 wherein localizing the marker occurs during surgery.
Type: Application
Filed: Nov 17, 2006
Publication Date: Aug 27, 2009
Inventors: Eric Meier (Bellevue, WA), Steven C. Dimmer (Bellevue, WA), J. Nelson Wright (Mercer Island, WA), Rich Edelson (Portland, OR)
Application Number: 12/159,554
International Classification: A61B 5/05 (20060101);