Washing Machine
The present invention provides a washing machine configured such that a gas having a cleaning function is prevented from leaking to the outside. The washing machine performs an ozone cleaning step for cleaning dry laundry by supplying ozone to the laundry prior to a washing step. Before the start of the ozone cleaning step, a dehumidification water valve (14) is opened to once retain dehumidification water in a bottom of an outer tub (7). Then, water is retained in an overflow trap (45) by utilizing the dehumidification water, whereby a flow passage extending from the outer tub (7) to the outside is sealed with the water. Further, a detergent valve (55) or a finishing agent valve (56) is opened to retain water in a water supply trap (24), whereby a flow passage extending from the outer tub (7) to the outside is sealed with the water.
Latest SANYO ELECTRIC CO., LTD Patents:
- RECTANGULAR SECONDARY BATTERY AND METHOD OF MANUFACTURING THE SAME
- Power supply device, and vehicle and electrical storage device each equipped with same
- Electrode plate for secondary batteries, and secondary battery using same
- Rectangular secondary battery and assembled battery including the same
- Secondary battery with pressing projection
The present invention relates to a washing machine and, more specifically, to a washing machine having a gas generating function.
BACKGROUND ARTWashing machines capable of cleaning laundry contained in a washing tub by supplying ozone to the laundry are conventionally known. One example of such washing machines hitherto proposed includes a washing tub, and an ozone generator which supplies ozone to the washing tub (see, for example, Patent Document 1). Patent Document 1: Japanese Unexamined Patent Publication No. 2002-320792
DISCLOSURE OF THE INVENTION Problems to be Solved by the InventionIn the washing machine disclosed in Patent Document 1, the ozone is supplied as a sterilizing component into the washing tub for the cleaning of the laundry in a water draining step after a washing step.
The ozone has a characteristic odor, and it is unfavorable that the ozone is inhaled into a human body. Therefore, it is desirable to prevent the ozone from leaking to the outside of the washing machine. If the ozone is supplied into the washing tub in the water draining step with a drain valve being open in the washing machine disclosed in Patent Document 1, the supplied ozone is liable to leak to the outside through a drain pipe.
Further, a common washing machine generally includes an overflow tube for draining excess water above a predetermined water level from the washing tub to the outside, and a detergent containing portion provided in the midst of a water supply tube through which water is supplied into the washing tub. Where the ozone generator is provided in the washing machine, it is necessary to prevent the ozone from leaking to the outside through these tubes.
In view of the foregoing, it is a principal object of the present invention to provide a washing machine which, when a gas having a cleaning function and containing a disinfecting component or a sterilizing component such as ozone is supplied to laundry, prevents the gas from leaking to the outside.
Means for Solving the ProblemsAccording to an inventive aspect as set forth in claim 1, there is provided a washing machine, which includes: a treatment tub in which laundry and water are contained, and washing, dehydrating and other operations are performed; water supply means which supplies water to the treatment tub; a drain passage through which the water contained in the treatment tub is drained to the outside; an overflow passage through which excess water is drained if the amount of the water contained in the treatment tub is not less than a predetermined amount, the overflow passage being connected to the drain passage; a drain trap provided as a part of at least one of the drain passage and the overflow passage for retaining water; gas supply means which generates a laundry cleaning gas and supplies the gas into the treatment tub; and water supply control means which controls the water supply means to retain water in the drain trap before the gas is supplied into the treatment tub.
According to an inventive aspect as set forth in claim 2, the washing machine of claim 1 further includes a drain valve provided in the drain passage upstream of a junction of the overflow passage and the drain passage for opening and closing the drain passage, and the water supply control means closes the drain valve and controls the water supply means to retain a predetermined amount of water in the treatment tub, and then opens the drain valve to retain water in the drain trap.
According to an inventive aspect as set forth in claim 3, the washing machine of claim 2 further includes a water level sensor which detects a water level in the treatment tub, and the water supply control means opens the drain valve to retain water in the drain trap if the water level sensor detects that the water level reaches a predetermined water level.
According to an inventive aspect as set forth in claim 4, the water supply control means performs a water supply error process if the water level sensor does not detect that the water level reaches the predetermined water level in the washing machine of claim 3.
According to an inventive aspect as set forth in claim 5, the washing machine of claim 3 or 4 is configured such that, if a difference between a first water level detected by the water level sensor after a lapse of a first predetermined water supply period from start of water supply to the treatment tub and a second water level detected after a lapse of a second predetermined water supply period is not less than a predetermined threshold, the water supply control means opens the drain valve to retain water in the drain trap.
According to an inventive aspect as set forth in claim 6, in the washing machine of any of claims 1 to 5, the water supply means includes a water supply passage through which water is introduced into the treatment tub, a detergent containing portion provided in the water supply passage for containing a detergent and a finishing agent to be dissolved in the supplied water, and a water supply trap provided in the water supply passage downstream of the detergent containing portion for retaining the supplied water, and the water supply control means retains water in the water supply trap before the gas is supplied into the treatment tub.
According to an inventive aspect as set forth in claim 7, in the washing machine of claim 6, the water supply passage includes a bypass water supply passage which bypasses the detergent containing portion to supply water into the treatment tub, and the water supply control means supplies water through the bypass water supply passage to retain the water in the water supply trap.
According to an inventive aspect as set forth in claim 8, there is provided a washing machine, which includes: a treatment tub in which laundry and water are contained, and washing, dehydrating and other operations are performed; a drain passage through which the water contained in the treatment tub is drained to the outside; an overflow passage through which excess water is drained if the amount of the water contained in the treatment tub is not less than a predetermined amount, the overflow passage being connected to the drain passage; a drain trap provided as a part of at least one of the drain passage and the overflow passage for retaining water; gas supply means which generates a laundry cleaning gas and supplies the gas into the treatment tub; an air circulation duct having opposite ends, one of which is connected to a lower portion of the treatment tub and the other of which is connected to a portion of the treatment tub other than the lower portion, and configured to circulate air flowing out of the treatment tub from the one end thereof to introduce the air into the treatment tub from the other end thereof; dehumidification water supply means connected to the air circulation duct, and configured to supply dehumidification water into the air circulation duct for dehumidifying the air flowing through the air circulation duct; and water supply control means which controls the dehumidification water supply means to supply water into the drain trap from the air circulation duct through the lower portion of the treatment tub to retain water in the drain trap before the gas is supplied into the treatment tub.
According to an inventive aspect as set forth in claim 9, the washing machine of claim 8 further includes a drain valve provided in the drain passage upstream of a junction of the overflow passage and the drain passage for opening and closing the drain passage, and the water supply control means closes the drain valve and controls the dehumidification water supply means to retain a predetermined amount of water in the treatment tub, and then opens the drain valve to retain water in the drain trap.
EFFECTS OF THE INVENTIONAccording to the inventive aspect of claim 1, the water is retained in the drain trap provided as a part of at least one of the drain passage and the overflow passage before the laundry cleaning gas is supplied into the treatment tub, whereby a part of a passage extending from the treatment tub to the outside through the overflow passage and the drain passage is sealed with the water retained in the drain trap. As a result, even if the laundry cleaning gas is thereafter supplied into the treatment tub, the gas is prevented from leaking to the outside of the washing machine through the passage extending from the treatment tub to the outside through the overflow passage and the drain passage. Even if a gas such as ozone having a characteristic odor is supplied, the odor is prevented from wafting to the outside.
According to the inventive aspect of claim 2, the drain valve provided in the drain passage upstream of the junction of the overflow passage and the drain passage is closed to once retain the predetermined amount of water in the treatment tub, and then the drain valve is opened to drain the water from the treatment tub to retain the water in the drain trap. Therefore, even if the drain trap is provided in the drain passage upstream of the junction of the overflow passage and the drain passage, for example, the predetermined amount of the water is caused to flow into the drain passage at a time and further flow toward the overflow passage, i.e., toward the drain trap, from the junction. As a result, the water is reliably retained in the drain trap. This arrangement ensures an efficient water draining operation without the need for provision of a drain trap having a complicated shape on the drain passage side.
According to the inventive aspect of claim 3, if the water level sensor detects that the water level in the treatment tub reaches the predetermined water level, the drain valve is opened to retain the water in the drain trap. Therefore, a water level corresponding to the amount of the water to be retained in the drain trap is preliminarily set in the water level sensor, whereby the water is reliably retained in the drain trap.
According to the inventive aspect of claim 4, if the water level sensor does not detect that the water level in the treatment tub reaches the predetermined water level, i.e., if the amount of water contained in the treatment tub is insufficient for retaining the water in the drain trap, the drain valve is not opened, but the water supply error process is performed. Even if it is impossible to retain the water in the treatment tub and hence in the drain trap, for example, due to malfunction of the water supply means or the dehumidification water supply means, the cleaning gas is prevented from being erroneously supplied into the treatment tub and leaking to the outside.
According to the inventive aspect of claim 5, if the difference between the first water level (L1) detected after a lapse of the first water supply period from the start of the water supply to the treatment tub and the second water level (L2) detected after a lapse of the second water supply period is not less than the predetermined threshold (X), i.e., L2−L1≧X, the drain valve is opened to retain the water in the drain trap. Only a small amount of water is required for retaining the water in the drain trap and, therefore, a high precision water level sensor is required for precisely measuring the small amount of water. That is, a water level sensor capable of precisely measuring a very low water level is required. However, the amount of the water to be used for retaining the water in the drain trap is not particularly limited, as long as it is not less than the aforementioned small amount (because an excess amount of water above the capacity of the drain trap is drained to the outside through the drain passage). Therefore, it is merely necessary to judge whether the amount of the water contained in the treatment tub is above the predetermined amount. With the aforementioned arrangement, it is judged whether the difference between the two water levels is above the predetermined threshold (which is, for example, approximately equivalent to the water amount required for retaining the water in the drain trap). Even if the water level is below a reset water level (which is the lowermost water level precisely detectable by the water level sensor), it is possible to judge whether a small amount of water is retained in the treatment tub without the use of the high precision water level sensor. Thus, the water can be reliably retained in the drain trap. Without the need for the high precision water level sensor, this arrangement does not lead to a cost increase.
According to the inventive aspect of claim 6, the water supply trap is provided in the water supply passage downstream of the detergent containing portion, and the water is retained in the water supply trap before the laundry cleaning gas is supplied into the treatment tub, whereby a part of a passage extending from the treatment tub to the outside through the water supply passage and the detergent containing portion is sealed with the water retained in the water supply trap. As a result, even if the laundry cleaning gas is thereafter supplied into the treatment tub, the gas is prevented from leaking to the outside of the washing machine through the passage extending from the treatment tub to the outside through the water supply passage and the detergent containing portion. Even if a gas such as ozone having a characteristic odor is supplied, the odor is prevented from wafting to the outside.
According to the inventive aspect of claim 7, the water is supplied into the water supply trap through the bypass water supply passage which bypasses the detergent containing portion for the water supply to the treatment tub, and retained in the water supply trap. Therefore, even if a user puts the detergent or the finishing agent in the detergent containing portion for an ordinary washing process after the cleaning process with the cleaning gas, the water is supplied into the water supply trap with the detergent containing portion being bypassed. Therefore, washing water which contains the detergent or the finishing agent is prevented from being supplied into the water supply trap. Thus, the detergent component and the finishing agent component are prevented from being retained in the water supply trap.
According to the inventive aspect of claim 8, the dehumidification water is supplied into the air circulation duct from the dehumidification water supply means, and further supplied into the drain trap from the air circulation duct through the lower portion of the treatment tub and retained in the drain trap. This makes it possible to retain the water in the drain trap without supplying water from an upper portion of the treatment tub. As a result, even if the laundry cleaning process is performed to clean the laundry with the cleaning gas without the use of water prior to the washing process, it is possible to retain the water in the drain trap while preventing the laundry preliminarily contained in the treatment tub from being wetted with water.
According to the inventive aspect of claim 9, as according to the inventive aspect of claim 2, the drain valve provided in the drain passage upstream of the junction of the overflow passage and the drain passage is closed to once retain the predetermined amount of water in the treatment tub, and then opened to drain the water from the treatment tub to be retained in the drain trap. Therefore, even if the drain trap is disposed in the overflow passage upstream of the junction of the overflow passage and the drain passage, the predetermined amount of water is caused to flow out into the drain passage at a time and further flow from the junction toward the overflow passage, i.e., toward the drain trap, through the junction. As a result, the water is reliably retained in the drain trap. This arrangement ensures the efficient water draining operation without the need for the provision of a drain trap having a complicated shape on the drain passage side.
- 1: Drum-type washing machine
- 3: Drying unit
- 7: Outer tub
- 8: Detergent containing portion
- 10: Drum
- 14: Dehumidification water valve
- 17: Water supply hose
- 18: Drain valve
- 20: Drain hose
- 24: Water supply trap
- 31: Air duct member
- 33: Guide hood
- 36: Dehumidification water supply port
- 37: Overflow tube
- 40: Control section
- 42: Ozone generator
- 43: Introduction tube
- 45: Overflow trap
- 47: Water level sensor
- 55: Detergent valve
- 56: Finishing agent valve
- 80: Detergent container
- 81: Detergent container accommodating chamber
- 522: Finishing agent tap water supply passage
- 535A: Lower water spouts
With reference to the drawings, embodiments of the present invention will hereinafter be described more specifically.
Construction of Drum-Type Washing MachineAs shown in
The outer lid 2A is biased rearward in an opening uncovering direction by springs 38 (see FIG. 5A). During the operation of the drum-type washing machine 1, an outer lid lock mechanism 49 (see
A lid opening button 6A to be operated to disengage the outer lid 2A from the aforementioned outer lid lock mechanism 49 (see
A housing portion 15 of a laterally elongated and generally rectangular box shape having an open top as shown in
As shown in
Further, the tap water supply valve 2B is a triple valve which unitarily includes a detergent valve 55 (see
The detergent valve 55 (see
A supply pipe (not shown) connected to a dehumidification water supply port 36 (see
On the other hand, a bath water supply hose (not shown) connected to a bath water inlet port 513 (to be described later and see
As shown in
As shown in
A drum 10 in which the laundry is contained is disposed in the outer tub 7. The drum 10 includes a generally cylindrical peripheral wall 10C having opposite end faces closed by end face walls (a left end face wall 10L and a right end face wall 10R), and is disposed with its axis extending laterally (generally horizontally). In the present invention, the outer tub 7 and the drum 10 cooperatively function as a washing tub.
Rotation shafts 11L and 11R extending along the axis of the drum 10 are attached to the left and right end face walls 10L and 10R, respectively, of the drum 10. The rotation shafts 11L and 11R are rotatably attached to the left and right end face walls 7L and 7R, respectively, of the outer tub 7. A drum-driving motor 12 of a so-called DD (direct drive) type is connected to the left rotation shaft 11L. By rotatively driving the motor 12, the drum 10 connected to the rotation shaft 11L is rotated about its axis at the same rotation speed as that of the motor. Three baffles 10B which lift the laundry within the drum 10 during the rotation of the drum 10 are provided on an interior surface of the peripheral wall 10C of the drum 10 in equiangularly spaced relation (e.g., in 120-degree spaced relation) along the inner periphery of the peripheral wall 10C as projecting inward and extending laterally.
As shown in
The opening 22 of the drum 10 is covered and uncovered with a drum lid 25 which is pivotal outward, and the opening 23 of the outer tub 7 is covered and uncovered with an intermediate lid 26 which is pivotal outward. With the outer lid 2A, the intermediate lid 26 and the drum lid 25 being open, the laundry can be loaded into and unloaded from the drum 10 through the opening 4 of the housing 2, the opening 23 of the outer tub 7 and the opening 22 of the drum 10.
For loading or unloading the laundry into/from the drum 10, the drum lid 25 is permitted to be opened only when the opening 22 of the drum 10 is located in opposed relation to the opening 23 of the outer tub 7. Therefore, as shown in
As shown in
A water supply trap 24 is provided between the water supply hose 17 and the detergent containing portion 8 (downstream of the detergent containing portion 8). The water supply trap 24 temporarily retains the water flowing from the detergent containing portion 8 to the water supply hose 17 to isolate the detergent containing portion 8 and the water supply hose 17 from each other by sealing with the retained water, thereby preventing air communication between the outer tub 7 and the outside. A method for the water supply to the water supply trap 24 will be described later in detail with reference to
As shown in
As shown in
The detergent container accommodating chamber 81 is anteroposteriorly elongated, and has a bottom recessed as inclined rearwardly downward. The detergent container accommodating chamber 81 has an outlet port 81A provided at a lower edge of a rear wall thereof and connected to the inside of the washing machine.
The water supply unit 82 is disposed on a left wall of the detergent container accommodating chamber 81, and includes anteroposteriorly elongated thin planar primary member 82A and secondary member 82B which are combined with each other in a laterally opposed relation. Hollow water flow passages are defined between the two members 82A and 82B (see
More specifically, as shown in
As described above, the detergent valve 55 (see
As shown in
The powdery detergent container portion 85 has openings formed in a left wall thereof in opposed relation to the second water spouts 531 and the fourth water spouts 532 with the detergent container 80 fitted in the detergent container accommodating chamber 81 (though not shown, these openings are each provided like an opening 50 opposed to the upper water spout 535B as shown in
The powdery detergent container portion 85 has a bottom wall gradually inclined rearwardly downward, and a detergent outlet port 412 provided at a lower portion of a rear wall thereof. When the powdery detergent is contained in the powdery detergent container portion 85 and the tap water or the bath water flows into the powdery detergent container portion 85, the water flows out together with the powdery detergent into the detergent container accommodating chamber 81 through the detergent outlet port 412. In this case, the detergent thus flowing out is powdery, so that the powdery detergent flowing down into the detergent container accommodating chamber 81 is liable to remain undissolved on the bottom wall of the detergent container accommodating chamber 81. Particularly, where the powdery detergent flows forward of the detergent outlet port 412 in the detergent container accommodating chamber 81, it is difficult for the water flowing out of the detergent outlet port 412 to push the detergent toward the outlet port 81A. Even in this case, the powdery detergent remaining on the bottom wall of the detergent container accommodating chamber 81 is caused to smoothly flow out of the outlet port 81A by supplying the water from the auxiliary water spout 536 to a front end of the detergent container accommodating chamber 81 with the provision of the auxiliary water spout 536 in the water supply unit 82 as described above.
The liquid detergent container portion 86 has openings formed in a left wall thereof in opposed relation to the first water spout 534 and the third water spout 533 with the detergent container 80 fitted in the detergent container accommodating chamber 81 (though not shown, these openings are each provided like the opening 50 opposed to the upper water spout 535B as shown in
As shown in
As shown in
As shown in
The drying unit 3 includes an air duct member 31 which sucks air from the outer tub 7 and guides the air upward, a fan 32 which supplies the air from the air duct member 31 into the outer tub 7, a guide hood 33 which guides the air fed by the fan 32 into the outer tub 7, and a pair of heaters 34A, 34B (see
Referring to
The outer tub 7 has an opening 7B provided in a center portion of the right end face wall 7R thereof, and the guide hood 33 (see
During the drying process, for example, the air circulated in the air circulation passage is heated by the heaters 34 and supplied into the drum 10 from the air blowing port 41 (see
It is possible to supply lower temperature air into the drum 10 by energizing one of the heaters 34 (the heaters 34A and 34B) shown in
Referring again to
Referring to
Referring to
Referring to
The ozone generator 42 includes an ozone plate (not shown) which actually generates the ozone. When a high voltage is applied to the ozone plate, silent discharge occurs, whereby ozone is generated in air present around the ozone plate.
The introduction tube 43 is connected to a left end portion of the ozone generator 42 at one end thereof, and connected to a left wall of the second air duct member 312 of the air duct member 31 at the other end thereof, whereby the inside of the ozone generator 42 communicates with the inside of the aforementioned air circulation passage including the air duct member 31, i.e., the drying unit 3. The introduction tube 43 is moderately bent downward from the one end thereof, then bent in a middle portion thereof to extend further downward, and further bent to form a passage extending to the other end thereof. Therefore, the air containing the ozone generated by the ozone generator 42 flows down through the introduction tube 43 to be supplied into the air duct member 31. When the fan 32 is rotatively driven, the air duct member 31 has a negative internal pressure as described above. This promotes the supply of the ozone to the air duct member 31 from the ozone generator 42.
Washing Process in Drum-Type Washing MachineAs shown in
The control section 40 includes the microcomputer, for example, including a CPU 51, a ROM 52, a RAM 53 and a timer 54. Operations to be performed in a washing step, a rinsing step, a dehydrating step, a drying step and other steps by the drum-type washing machine 1 are controlled by the control section 40.
The operation/display section 6 (see
Control operations to be performed by the control section 40 when the drum-type washing machine 1 performs the respective steps will hereinafter be described with reference to
When the operation of the drum-type washing machine 1 is started, a first washing step is first performed (Step S1). Upon the start of the first washing step, the detergent valve 55 is opened or the bath water pump 2D is driven, whereby water is supplied into the outer tub 7 through the detergent tap water flow passage 521 or the bath water flow passage 523. At this time, the powdery detergent and the liquid detergent preliminarily put in the powdery detergent container portion 85 and the liquid detergent container portion 86 shown in
Upon the start of the second washing step, the drum 10 is rotated, while steam is supplied into the outer tub 7 from the drying unit 3 shown in
Upon the start of the intermediate dehydrating step, the drum 10 shown in
Upon the start of the rinsing step, water is supplied into the outer tub 7 by opening the detergent valve 55 or by driving the bath water pump 2D, and then the drum 10 is rotated with a predetermined amount of water being retained in the outer tub 7. Thus, the laundry is tumbled in the drum 10 for rinsing. After a lapse of a predetermined period, the drum 10 is once stopped. Then, the water is drained from the outer tub 7, and water is supplied again into the outer tub 7 for rinsing the laundry again. After this operation is performed a plurality of times (e.g., twice), the rinsing step is completed. In the final rinsing step (e.g., the second rinsing step), water is supplied into the outer tub 7 by opening the finishing agent valve 56 as well as the detergent valve 55. Thus, the softening agent preliminarily put in the finishing agent container portion 87 is dissolved in the supplied water, and the softening agent-containing water flows out from the outlet port 81A to be supplied into the outer tub 7. Thus, the laundry is rinsed with this water. At the end of the water supply in the final rinsing step, a part of the supplied water is retained in the water supply trap 24, so that the outer tub 7 is isolated from the detergent containing portion 8 by sealing with the retained water. After the completion of the rinsing step, a final dehydrating step is performed (Step S5).
Final Dehydrating StepUpon the start of the final dehydrating step, the drum 10 is rotated at a higher speed (e.g., at 300 to 1000 rpm), whereby the water contained in the laundry is extracted from the laundry in the drum 10 by a centrifugal force and drained through the drain hose 20. At the end of the water draining in the final dehydrating step, a part of the drained water is retained in the V-shaped portion 95 of the overflow trap 45 shown in
Upon the start of the drying step, the drum 10 is rotated to tumble the laundry therein, while the air heated by the heaters 34 shown in
In the drying step, the blower motor 35 shown in
Before the end of the drying step, a so-called cool-down operation is performed for a predetermined period for cooling the dried laundry to a predetermined temperature by supplying unheated air into the drum 10. During the cool-down operation, the ozone generator 42 is turned on to generate ozone. The generated ozone flows into the air duct member 31 through the introduction tube 43, whereby the ozone is fed together with the air flowing through the aforementioned air circulation passage into the outer tub 7 (drum 10) and applied onto the laundry. Thus, a dirt component, an odor component and a bacterial component remaining in the laundry are oxidized by the supplied ozone, so that the laundry can be cleaned, deodorized and sterilized. During the supply of the ozone to the outer tub 7, the detergent valve 55, the finishing agent valve 56, the dehumidification water valve 14 and the drain valve 18 are closed, and the bath water pump 2D is inactive. Further, water is trapped in the water supply trap 24 during the water supply in the washing step, and trapped in the overflow trap 45 during the water draining. Thus, the outer tub 7 is kept air-tight, thereby eliminating the possibility that the ozone leaks outside the washing machine. During the supply of the ozone to the outer tub 7, as shown in
The drum-type washing machine 1 is capable of performing an ozone cleaning step (also referred to as “air-wash step” because the laundry is washed with the ozone-containing air) for cleaning the laundry (e.g., for sterilization and deodorization) by supplying ozone without the use of the water, in addition to the washing step, the rinsing step, the dehydrating step and the drying step described above.
Where the ozone cleaning step is performed in addition to the ordinary washing operation, for example, the ozone cleaning step precedes the washing step, i.e., the rinsing step and the final dehydrating step. Further, where a course in which the laundry is not washed but deodorized (which may be referred to as “air-wash course” because of its image) is selected, the ozone cleaning step is performed. Therefore, when the ozone cleaning step is started, there is a possibility that no water is retained in the water supply trap 24 (see
Referring to
Upon the start of the trap water supply step, a water-supply-trap water supply control for supplying water to the water supply trap 24 is started (Step S101).
Referring to
Referring again to
If the water level in the outer tub 7 is less than the reset water level (Yes in Step S104), the drain valve 18 is closed (Step S105), and a water level L1 detected in the outer tub 7 at this time is read (Step S106). Then, the dehumidification water valve 14 is opened (Step S107). As the water to be retained in the overflow trap 45, the dehumidification water supplied from the dehumidification water supply port 36 with the dehumidification water valve 14 being open is further supplied to the outer tub 7 through the air duct member 31 to be retained in the bottom of the outer tub 7.
On the other hand, if it is judged in Step S104 that the water level in the outer tub 7 is not less than the reset water level (No in Step S104), it is judged whether a draining operation is consecutively performed five times (Step S108). That is, it is judged whether a process sequence including Steps S104, S108, S110, S111, S112 and S104 is consecutively repeated four times in the trap water supply step. If this operation is the fifth draining operation (Yes in Step S108), drain abnormality information is provided, for example, by sounding a buzzer (not shown) or displaying an error indication number on the operation/display section 6 (Step S109). That is, if it is judged five consecutive times in Step S104 that the water level in the outer tub 7 is not less than the reset water level, the aforementioned abnormality information is provided based on an assumption that the drain valve 18 malfunctions, that a drainage failure occurs, that the laundry is wet and water contained in the laundry continuously drips into the bottom of the outer tub 7 to increase the water level in the outer tub 7, or that the water level sensor 47 malfunctions. If this operation is not the fifth draining operation (No in Step S108), the drain valve 18 is opened (Step S110), and it is judged whether 10 seconds have elapsed from the opening of the drain valve 18 (Step S111). If the elapsed time does not reach 10 seconds (No in Step S111), the drain valve 18 is kept open for 10 seconds. After a lapse of 10 seconds from the opening of the drain valve 18 (Yes in Step S111), the drain valve 18 is closed (Step S112), and it is judged again whether the water level in the outer tub 7 is less than the reset water level (Step S104). If the water level is less than the reset water level (Yes in Step S104), the drain valve 18 is closed (Step S105), and Steps S106 and S107 are performed in the aforementioned manner.
Referring to
On the other hand, if it is judged in Step S113 that the water level in the outer tub 7 is less than the reset water level (Yes in Step S113), it is judged whether a predetermined first period, e.g., 120 seconds, has elapsed from the opening of the dehumidification water valve 14 or the start of the water supply from the dehumidification water supply port 36 (Step S114). If the elapsed time does not reach 120 seconds (No in Step S114), the dehumidification water valve 14 is kept open for 120 seconds. If the time elapsed from the opening of the dehumidification water valve 14 reaches 120 seconds (Yes in Step S114), the dehumidification water valve 14 is closed (Step S115), and a water level L2 detected in the outer tube 7 at this time is read (Step S116). Then, it is judged whether a difference between the water levels L1 and L2 satisfies a condition of L2−L1≧X (Step S117). If the water level difference does not satisfy the condition of L2−L1≧X (No in Step S117), water supply abnormality information is provided (a water supply error process is performed), for example, by sounding a buzzer (not shown) or displaying an error indication number on the operation/display section 6 (Step S119). Here, X is the amount of water (predetermined threshold) required to be retained in the overflow trap 45 for sealing the flow passage between the outer tub 7 and the outside with the water, and is preliminarily stored in the control section 40. That is, if the condition of L2−L1≧X is not satisfied, there is a possibility that the water is not retained in the outer-tub 7 due to malfunction of the dehumidification water valve 14. Therefore, even if the drain valve 18 is opened in this state, the overflow trap 45 fails to seal the flow passage between the outer tub 7 and the outside with water. Therefore, the ozone supplied into the outer tub 7 in the ozone cleaning step is liable to leak through the flow passage extending from the outer tub 7 to the outside through the overflow tube 37 and the drain hose 20. However, the leak of the ozone can be prevented by providing the water supply abnormality information.
On the other hand, if the condition of L2−L1≧X is satisfied (Yes in Step S117), the drain valve 18 is opened (Step S118), and it is judged whether 30 seconds have elapsed from the opening of the drain valve 18 (Step S120). If the elapsed time does not reach 30 seconds (No in Step S120), the drain valve 18 is kept open for 30 seconds. If the elapsed time from the opening of the drain valve 18 reaches 30 seconds (Yes in Step S120), the drain valve 18 is closed (Step S121), and the trap water supply step is completed.
Where the process goes to Step S118 after it is judged in Step S113 that the water level in the outer tub 7 is not less than the reset water level (No in Step S113) and it is judged that the water-supply-trap water supply control is completed (Yes in Step S123), the drain valve 18 is opened in the same manner as described above (Step S118). After a lapse of 30 seconds from the opening of the drain valve 18 (Yes in Step S120), the drain valve 18 is closed (Step S121), and the trap water supply step is completed.
After the predetermined amount of water is retained in the outer tub 7, the water is thus caused to flow out into the drain hose 20 at a time by opening the drain valve 18, whereby the water flows to the downstream side of the drain hose 20 (to the outer side) as well as to the upstream side of the overflow tube 37 (to the overflow trap side) around the junction of the drain hose 20 and the overflow tube 37. As a result, the water flowing to the overflow tube side is retained in the V-shaped portion 95 of the overflow trap 45.
EffectsAs described above, the trap water supply step is performed to retain the water in the overflow trap 45 before the start of the ozone cleaning step, whereby a part of the passage extending from the outer tub 7 to the outside through the overflow tube 37 and the drain hose 20 is sealed with the water retained in the overflow trap 45. Therefore, even if the ozone cleaning step is thereafter performed, the ozone is prevented from leaking to the outside of the drum-type washing machine 1 through the passage extending from the outer tub 7 to the outside through the overflow tube 37 and the drain hose 20. Thus, the ozone odor is prevented from wafting to the outside.
The water supplied from the dehumidification water supply port 36 through the air duct member 31 and retained in the bottom of the outer tub 7 is used as the water to be retained in the overflow trap 45. That is, there is no need to supply water through the water supply hose 17 (see
After the predetermined amount of water is retained in the outer tub 7, the water to be retained in the overflow trap 45 is caused to flow out into the drain hose 20 at a time with the drain valve 18 being open, whereby the water flows to the downstream side of the drain hose 20 (to the outer side) as well as to the upstream side of the overflow tube 37 (to the overflow trap side) around the junction of the drain hose 20 and the overflow tube 37. As a result, the water flowing to the overflow tube side is reliably retained in the V-shaped portion 95 of the overflow trap 45. With this arrangement, the water draining process can be efficiently performed without the need for provision of the V-shaped overflow trap 45 on the drain hose side.
As described above, the drain valve 18 is opened, for example, when the water level sensor 47 judges that the condition of L2−L1≧X is satisfied (Yes in Step S117 in
A small amount of water is required for retaining the water in the overflow trap 45 and, therefore, a high precision water level sensor would be required to precisely measure such a small amount of water. That is, a water level sensor capable of precisely measuring even a small amount of water would be required. However, the amount of water to be used for retaining the water in the overflow trap 45 is not particularly limited, as long as the amount is not less than the aforementioned small amount (because an excess amount of water greater than the capacity of the drain trap 45 is drained to the outside through the drain hose 20). Therefore, it is merely necessary to judge whether the amount of the water retained in the outer tub 7 is greater than the predetermined level. To this end, it is judged whether a difference between the two water levels is greater than the predetermined threshold (which is approximately equivalent to the water amount required for retaining the water in the overflow trap 45), i.e., whether the condition of L2−L1≧X is satisfied. Thus, even if the water level is less than the reset water level, it is possible to judge whether the small amount of water is retained in the outer tub 7 without the use of the high precision water level sensor. Therefore, the water can be reliably retained in the overflow trap 45. Without the need for the high precision water level sensor, this arrangement does not lead to a cost increase.
Further, as shown in
Where the water is retained in the water supply trap 24, as shown in
The present invention is not limited to the embodiments described above, but various modifications may be made within the purviews of the appended claims.
Although the overflow trap 45 is provided in the overflow tube 37 upstream of the junction of the drain hose 20 and the overflow tube 37, the overflow trap 45 may be provided downstream of the junction in the drain hose 20. Further, overflow traps 45 may be provided upstream and downstream of the junction. In this case, it is necessary to check if water is reliably retained in the overflow traps. Therefore, the water supply control (see
In order to prevent the laundry from being wetted, the dehumidification water valve 14 is opened to supply the dehumidification water into the overflow trap 45. If no laundry is contained in the outer tub 7, for example, the detergent valve 55 may be opened to supply the water from the top of the outer tub 7 through the water supply hose 17 without the possibility of the wetting of the laundry.
In the water-supply-trap water supply control, the water is retained in the water supply trap 24 by opening the finishing agent valve 56 a plurality of times (e.g., eight times). However, where the user selects the air wash course, water may be retained in the water supply trap 24 by opening the detergent valve 55 or by opening the detergent valve 55 and the finishing agent valve 56, because neither the detergent nor the finishing agent is contained in the detergent containing portion 8.
The gas supply means is not limited to the ozone generator 42, but may be adapted to generate a gas effective for cleaning, deodorizing, sterilizing or disinfecting the laundry or to generate a gas effective for aromatizing the laundry.
The axis of the drum 10 is not necessarily required to extend laterally, but may extend anteroposteriorly. In this case, the direction of the axis of the drum is not limited to a generally horizontal direction, but the axis of the drum may be inclined at an angle smaller than a predetermined angle (e.g., up to about 30 degrees) with respect to the horizontal direction. Further, the axis of the drum may extend vertically.
The drum-type washing machine 1 is of a so-called top open type in which the upper lid 2A is provided on the top wall of the housing 2, but may be of a so-called front open type in which a lid is provided on the front wall.
In the embodiments described above, the drum-type washing machine 1 having the drying function has been described as an example of the drum-type washing machine. The present invention is applicable to a drum-type washing machine having no drying function and to a vortex-type washing machine employing a pulsator.
Claims
1. A washing machine comprising:
- a treatment tub in which laundry and water are contained, and washing, dehydrating and other operations are performed;
- water supply means which supplies water to the treatment tub;
- a drain passage through which the water contained in the treatment tub is drained to the outside;
- an overflow passage through which excess water is drained if an amount of the water contained in the treatment tub is not less than a predetermined amount, the overflow passage being connected to the drain passage;
- a drain trap provided as a part of at least one of the drain passage and the overflow passage for retaining water;
- gas supply means which generates a laundry cleaning gas and supplies the gas into the treatment tub; and
- water supply control means which controls the water supply means to retain water in the drain trap before the gas is supplied into the treatment tub.
2. A washing machine as set forth in claim 1 further comprising:
- a drain valve provided in the drain passage upstream of a junction of the overflow passage and the drain passage for opening and closing the drain passage;
- wherein the water supply control means closes the drain valve and controls the water supply means to retain a predetermined amount of water in the treatment tub, and then opens the drain valve to retain water in the drain trap.
3. A washing machine as set forth in claim 2 further comprising:
- a water level sensor which detects a water level in the treatment tub;
- wherein the water supply control means opens the drain valve to retain water in the drain trap if the water level sensor detects that the water level reaches a predetermined water level.
4. A washing machine as set forth in claim 3, wherein the water supply control means performs a water supply error process if the water level sensor does not detect that the water level reaches the predetermined water level.
5. A washing machine as set forth in claim 3, wherein, if a difference between a first water level detected by the water level sensor after a lapse of a first predetermined water supply period from start of water supply to the treatment tub and a second water level detected after a lapse of a second predetermined water supply period is not less than a predetermined threshold, the water supply control means opens the drain valve to retain water in the drain trap.
6. A washing machine as set forth in claim 1,
- wherein the water supply means includes:
- a water supply passage through which water is introduced into the treatment tub;
- a detergent containing portion provided in the water supply passage for containing a detergent and a finishing agent to be dissolved in the supplied water; and
- a water supply trap provided in the water supply passage downstream of the detergent containing portion for retaining the supplied water,
- wherein the water supply control means retains water in the water supply trap before the gas is supplied into the treatment tub.
7. A washing machine as set forth in claim 6,
- wherein the water supply passage includes a bypass water supply passage which bypasses the detergent containing portion to supply water into the treatment tub,
- wherein the water supply control means supplies water through the bypass water supply passage to retain water in the water supply trap.
8. A washing machine comprising:
- a treatment tub in which laundry and water are contained, and washing, dehydrating and other operations are performed;
- a drain passage through which the water contained in the treatment tub is drained to the outside;
- an overflow passage through which excess water is drained if an amount of the water contained in the treatment tub is not less than a predetermined amount, the overflow passage being connected to the drain passage;
- a drain trap provided as a part of at least one of the drain passage and the overflow passage for retaining water;
- gas supply means which generates a laundry cleaning gas and supplies the gas into the treatment tub;
- an air circulation duct having opposite ends, one of which is connected to a lower portion of the treatment tub and the other of which is connected to a portion of the treatment tub other than the lower portion, and configured to circulate air flowing out of the treatment tub from the one end thereof to introduce the air into the treatment tub from the other end thereof;
- dehumidification water supply means connected to the air circulation duct, and configured to supply dehumidification water into the air circulation duct for dehumidifying the air flowing through the air circulation duct; and
- water supply control means which controls the dehumidification water supply means to supply water into the drain trap from the air circulation duct through the lower portion of the treatment tub to retain water in the drain trap before the gas is supplied into the treatment tub.
9. A washing machine as set forth in claim 8 further comprising:
- a drain valve provided in the drain passage upstream of a junction of the overflow passage and the drain passage for opening and closing the drain passage;
- wherein the water supply control means closes the drain valve and controls the dehumidification water supply means to retain a predetermined amount of water in the treatment tub, and then opens the drain valve to retain water in the drain trap.
10. A washing machine as set forth in claim 4, wherein, if a difference between a first water level detected by the water level sensor after a lapse of a first predetermined water supply period from start of water supply to the treatment tub and a second water level detected after a lapse of a second predetermined water supply period is not less than a predetermined threshold, the water supply control means opens the drain valve to retain water in the drain trap.
Type: Application
Filed: Jan 17, 2007
Publication Date: Oct 22, 2009
Applicant: SANYO ELECTRIC CO., LTD (OSAKA)
Inventors: Ryosuke Saito (Osaka), Haruo Mamiya (Osaka), Harumi Takeuchi (Osaka), Kazumasa Danno (Tokyo)
Application Number: 12/227,575