POWER ELECTRONIC MODULE COOLING SYSTEM AND METHOD
An improved cooling mechanism for a power electronics device is provided. More specifically, a cooling mechanism is provided wherein an air directing structure with a finite air-flow resistance is deployed in a cooling channel adjacent to a heatsink in a first cooling zone, such that some portion of the cooling air is forced through the heatsink while the rest of the cooling air bypasses the heatsink to provide additional cooling air to a second cooling zone. Additionally, the air-flow resistance of the air directing structure can be chosen so that the fan operates at its optimal point (maximum power input to the air).
Latest Rockwell Automation Technologies, Inc. Patents:
- Systems and methods for controlling contactor bounce
- System and method for controlling movers in an independent cart system during heavy traffic
- Systems and methods for software telemetry pipeline agent
- Collaborative work on translations in industrial system projects
- Programming environment security model
The invention relates generally to the field of power electronic devices such as those used in power conversion or applying power to motors and similar loads. More particularly, the invention relates to a motor drive with an improved cooling arrangement which provides enhanced air flow characteristics and enhanced heat dissipation.
In the field of power electronic devices, a wide range of circuitry is known and currently available for converting, producing and applying power to loads. Depending upon the application, such circuitry may convert incoming power from one form to another as needed by the load. In a typical arrangement, for example, constant (or varying) frequency alternating current power (such as from a utility grid or generator) is converted to controlled frequency alternating current power to drive motors, and other loads. In this type of application, the frequency of the output power can be regulated to control the speed of the motor or other device. Many other applications exist, however, for power electronic circuits which can convert alternating current power to direct current power, or vice versa, or that otherwise manipulate, filter, or modify electric signals for powering a load. Circuits of this type generally include rectifiers (converters), inverters, and similar switched circuitry. For example, a motor drive will typically include a rectifier that converts AC power to DC. Often power conditioning circuits, such as capacitors and/or inductors, are employed to remove unwanted voltage ripple on the internal DC bus. Inverter circuitry can then convert the DC signal into an AC signal of a particular frequency desired for driving a motor at a particular speed. The inverter circuitry typically includes several high power switches, such as insulated-gate bipolar transistors (IGBTs), controlled by drive circuitry.
The motor drive circuitry detailed above will typically generate substantial amounts of heat, which must be dissipated to avoid damaging heat sensitive electronics. Typically, therefore, some form of cooling mechanism is usually employed to enhance heat extraction and dissipation. Often, the motor drive circuitry is packaged together as a unit with a built-in cooling channel that carries cool air to several components. Because the air within the channel is heated as it travels through the channel, components near the exhaust end of the air channel will usually experience a diminished cooling effect. Therefore, as packaged control units become more compact, the need for efficient heat dissipation becomes more critical.
Additionally, as the workload or motor speed changes, the temperature of the IGBTs generally increases, causing higher failure rates and reduced reliability. The output of the unit is often, therefore, limited by the maximum temperature that the unit can handle without substantially increasing the risk of failure. A more effective cooling mechanism would, therefore, allow the motor drive to operate at higher motor speeds.
Therefore, it may be advantageous to provide a motor drive with an improved cooling mechanism. In particular, it may be advantageous to provide a cooling mechanism which provides a reduced air-flow resistance and increased air flow while maintaining a high level of thermal performance.
BRIEF DESCRIPTIONThe present invention relates generally to a cooling configuration designed to address such needs. One embodiment of the present invention employs an air directing structure deployed adjacent to a heatsink, such that the air directing structure urges air to pass through a heatsink thermally coupled to power electronic circuitry, but also allows cooling air to bypass the heatsink and flow to a region of the cooling channel adjacent to the power conditioning circuitry.
Another embodiment of the present invention employs an air directing structure deployed adjacent to a heatsink in a first cooling zone, such that the air directing structure allows cooling air to pass through the air directing structure to a second cooling zone.
In another embodiment of the present invention, the heat dissipating structure is chosen to provide a near-optimal thermal conductivity, while the air-flow resistance of the air directing structure is selected to cause the fan to operate at or near its optimal point.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
An inverter 22 is coupled to the DC bus 34 and generates a three phase output waveform at a desired frequency for driving a motor 30 connected to the output terminals 24, 26 and 28. Within the inverter 22, two switches 44 are coupled in series, collector to emitter, between the high side 36 and low side 38 of the DC bus 34. Three of these switch pairs are then coupled in parallel to the DC bus 34, for a total of six switches 44. Each switch 44 is paired with a flyback diode 46 such that the collector is coupled to the anode and the emitter is coupled to the cathode. Each of the output terminals 24, 26 and 28 is coupled to one of the switch outputs between one of the pairs of switches 44. The driver circuitry 48 signals the switches 44 to rapidly close and open, resulting in a three phase waveform output across output terminals 24, 26 and 28. The driver circuitry 48 is controlled by the control circuitry 50, which responds to the remote control and monitoring circuitry 52 through the network 54.
Those of ordinary skill in the art will recognize that many of the circuit components depicted in
Turning now to
In embodiments of the present invention, cooling air is forced by the fans 60 into the cooling channel 58, at which point, some of the air passes through the heatsink 70, while some portion of air flows through the air directing structure 72. The air directing structure 72 provides a selected resistance to air flow that determines what portion of air will flow through the heatsink as opposed to the air directing structure. In exemplary embodiments of the present invention, the air-flow resistance of the air directing structure 72 is chosen so that the overall channel resistance causes the fan or fans to operate at or near its optimal point, as will be explained in more detail below. The air that passes through the heatsink 70 will draw heat from the rectifier and the inverter circuitry 10 before passing into second zone 68 where the cooling air flow will provide additional cooling to the choke 63. Because the air is warmer when it reaches the second zone 68, the cooling capacity of the air flowing through the heatsink 70 is reduced when it reaches the second zone 68. The air that passes through the air directing structure 72 will, however, remain relatively cool because the air directing structure 72 is not significantly thermally coupled to the heatsink 70. The air that reaches the second zone through the air directing structure 72 will, therefore, provide significant additional cooling air to the choke 63.
It should also be noted that in embodiments of the present invention, the heatsink 70 and the air directing structure 72 are fluidly coupled along the adjacent surfaces between the heatsink 70 and the air directing structure 72. There may, therefore, be some passage of warm air across the border between the heatsink 70 and the air directing structure 72. This cross flow will usually be small, however, compared to the longitudinal air flow, i.e. down the length of the cooling channel 58. In alternate embodiments, the heatsink 70 and the air directing structure 72 are not fluidly coupled along the adjacent surfaces between the heatsink and the air directing structure. Rather, some physical barrier is imposed between the heatsink 70 and the air directing structure 72 such that cross flow is essentially eliminated.
In this embodiment, the air directing structure 72 includes a base 80 and fins 82 coupled to the base 80 with flow channels 84 between the fins 82. In certain embodiments of the present invention, the air directing structure 72 may be made of a low thermal conductivity material, such as, for example, a moldable plastic. The fin spacing 88 is chosen to decrease the overall system air flow resistance of the cooling channel 58 and to provide a desired level of additional air flow. Air, depicted by arrows, flows through the channels provided by the heatsink 70 and the air directing structure 72 and exits at the other end. In one embodiment, the spacing 86 between the fins 76 of the heatsink 70 equals the spacing 88 between the fins 82 of the air directing structure 72. In that embodiment, the heatsink 70 and the air directing structure 72 may present generally equal air flow resistance and may pass equal amounts of air. However, the present invention is not limited to configurations in which the heatsink 70 and the air directing structure 72 present equal air flow resistances. Rather, in some embodiments, the air flow resistance of the heatsink 70 and the air directing structure 72 may be substantially different so as to direct appropriate amounts of air to cool the first zone and the second zone. For example, in certain embodiments, the fin geometry of the heatsink 70 is chosen to maximize thermal conductance, while the geometry of the air directing structure 72 is chosen to provide the optimal overall system air flow resistance, as will be detailed further below.
It should be appreciated that the present invention may be embodied in a wide variety of configurations. For example, the fins of the heatsink 70 and the air directing structure 72 may be the same length or different lengths. Additionally, the fins of the heatsink 70 and the air directing structure 72 could be fluidly coupled as shown in
The configurations shown by the above figures are intended as exemplary embodiments of an air directing structure in accordance with the present invention. It should be appreciated that alternative embodiments, not depicted, may nevertheless fall within the scope of the present invention as defined by the claims.
In some embodiments of the present invention, the configuration of the heatsink 70 is chosen to provide optimal thermal conductivity for maximum cooling of components in the first zone 66, while the configuration of the air directing structure 72 is chosen so that the cooling channel 58 presents an optimal air-flow resistance to the fans 60. The optimal air-flow resistance is that which causes the fans 60 to operate at the optimal point (providing maximum power), thereby providing the maximum combined cooling effect for both the first zone 66 and the second zone 68.
The fan optimal point is best illustrated by
Returning to
Data points 104, 106 and 108 represent heatsinks with a 2.2 millimeter (mm), 4 mm and 6 mm fin spacing respectively. The table below provides the relative temperature change of the electronics coupled to the different heatsink configurations represented by data points 104, 106 and 108:
As seen in table above, the optimal fin spacing of the heatsink 70, as evidenced by the 3.2 degree temperature drop, is close to 4 mm. As seen in
Referring again to
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Claims
1. A motor drive comprising:
- power electronic circuitry coupled to a DC bus and configured to generate drive signals for driving a motor;
- power conditioning circuitry coupled to the DC bus;
- a fan for directing a flow of cooling air through an air passageway;
- a heat dissipating structure thermally coupled to the power electronic circuitry and extending into the air passageway and cooled by the flow of cooling air from the fan; and
- an air directing structure disposed in the air passageway at least adjacent to the heat dissipating structure and configured to urge cooling air into contact with the heat dissipating structure, but to permit cooling air to flow to a region of the air passageway adjacent to the power conditioning circuitry.
2. The motor drive of claim 1, wherein the power electronic circuitry includes a rectifier.
3. The motor drive of claim 1, wherein the power electronic circuitry includes an inverter circuit.
4. The motor drive of claim 1, wherein the power conditioning circuitry includes a capacitive circuit configured to smooth power applied to the DC bus.
5. The motor drive of claim 1, wherein the air directing structure includes a plurality of fins disposed adjacent to fins of the heat dissipating structure.
6. The motor drive of claim 5, wherein the air directing structure is not conductively thermally coupled to the heat dissipating structure.
7. The motor drive of claim 5, wherein the air directing structure includes a moldable plastic element of which the plurality of fins are an integral part.
8. The motor drive of claim 1, wherein the air directing structure includes a mesh.
9. The motor drive of claim 1, wherein the air directing structure creates a resistance to air flow that favors flow of cooling air towards the heat dissipating structure, but that permits flow through the air directing structure to cool the power conditioning circuitry.
10. A motor drive comprising:
- power electronic circuitry coupled to a DC bus and configured to generate drive signals for driving a motor;
- power conditioning circuitry coupled to the DC bus;
- a heat dissipating structure thermally coupled to the power electronic circuitry for extracting heat from the power electronic circuitry during operation;
- a fan for directing a flow of cooling air through an air passageway having a first zone adjacent to the power electronic circuitry and a second zone adjacent to the power conditioning circuitry; and
- an air directing structure disposed in the air passageway and configured to urge cooling air into contact with the heat dissipating structure, but to permit cooling air to the second zone for cooling the power conditioning circuitry.
11. The motor drive of claim 10, wherein the air directing structure is disposed at least partially in the first zone.
12. The motor drive of claim 10, wherein the air directing structure includes a plurality of fins disposed adjacent to fins of the heat dissipating structure.
13. The motor drive of claim 12, wherein the air directing structure includes a moldable plastic element of which the plurality of fins are an integral part.
14. The motor drive of claim 10, wherein the air directing structure includes a mesh.
15. A motor drive comprising:
- power electronic circuitry coupled to a DC bus and configured to generate drive signals for driving a motor;
- power conditioning circuitry coupled to the DC bus;
- a fan for directing a flow of cooling air through an air passageway;
- a heat dissipating structure thermally coupled to the power electronic circuitry and configured to provide optimal or near optimal thermal conductivity; and
- an air directing structure disposed in the air passageway at least adjacent to the heat dissipating structure and configured to cause the fan to operate at or near the optimal fan efficiency.
16. The motor drive of claim 15, wherein the air directing structure provides a specified air flow resistance configured to cause the fan to operate at or near the optimal fan efficiency.
17. The motor drive of claim 15, wherein the air directing structure is configured to permit cooling air to flow to a region of the air passageway adjacent to the power conditioning circuitry.
18. The motor drive of claim 15, wherein the air directing structure includes a plurality of fins disposed adjacent to fins of the heat dissipating structure.
19. The motor drive of claim 18, wherein the air directing structure includes a moldable plastic element of which the plurality of fins are an integral part.
20. The motor drive of claim 15, wherein the air directing structure includes a mesh.
Type: Application
Filed: Apr 25, 2008
Publication Date: Oct 29, 2009
Applicant: Rockwell Automation Technologies, Inc. (Mayfield Heights, OH)
Inventor: Mehdi Kaveh (Brown Deer, WI)
Application Number: 12/109,849
International Classification: H05K 7/20 (20060101);