EXPRESSION OF SOLUBLE FACTOR VIII PROTEINS IN BACTERIA

The present invention provides enhanced methods of producing soluble Factor VIII proteins in microorganisms that have an oxidizing environment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/732,352 filed Oct. 31, 2005; which is herein incorporated by reference for all purposes.

FIELD OF INVENTION

The present invention provides enhanced methods of producing soluble factor VIII proteins in microorganisms that have an oxidizing environment.

BACKGROUND OF THE INVENTION

Many recently developed pharmaceuticals are therapeutic proteins. Therapeutic protein products were not routinely administered to patients until molecular biology techniques had evolved to allow production of the protein recombinantly. Therapeutic proteins are typically from a mammal, e.g., a human, and are generally produced in cultured cells derived from multicellular eukaryotic organisms, e.g., Chinese hamster ovary cells or other mammalian cells. Such mammalian cell production methods are expensive and time consuming, but are believed to allow for optimal post-translational processing of the recombinant protein. Post-translational processing includes, e.g., refolding, formation of correct disulfide bonds, and glycosylation of the protein. Microorganisms are an attractive and cost-effective substitute for eukaryotic cells for recombinant protein production. However, microorganisms, in particular E. coli, do not promote post-translational processing of eukaryotic proteins. The lack of proper post-translation processing can cause the recombinant therapeutic protein to be degraded by the E. coli or accumulated in an insoluble, inactive form.

Factor VIII is a particularly difficult protein to express recombinantly. Factor VIII is a large protein that is extensively post-translationally modified by e.g., proteolysis and glycosylation. Factor VIII protein also has many cysteine residues that form a complex pattern of disulfide bonds that must be reproduced in heterologous systems for efficient production of properly folded, active protein. Factor VIII is now commercially produced in mammalian cells. Factor VIII has not been commercially produced in bacteria and is insoluble when expressed in E. coli. Thus, there is a need for improved methods to produce soluble Factor VIII proteins in microorganisms. The present invention solves this and other needs.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a method of producing a soluble Factor VIII protein in a microorganism, using a microorganism that has an oxidizing environment. A nucleic acid that encodes the Factor VIII protein is expressed in the microorganism, which is then grown under conditions that allow production of the soluble Factor VIII protein.

In one aspect the microorganism is an E. coli bacterium. In one embodiment, the E. coli has a mutation in a trxB gene and a gor gene. The invention also encompasses use of E. coli cells that have trxB and gor mutations, as well as at least one suppressor mutation that allows enhanced growth of the trxB and gor mutant E. coli cells. In a further embodiment, the Factor VIII nucleic acid is expressed under the control of an inducible promoter. In another embodiment, expression of the Factor VIII nucleic acid is induced at a temperature lower than an optimal growth temperature. For E. coli cells, a temperature less than optimal growth temperature is less than 37° C., e.g., between 18° C. and 30° C.

In one aspect the microorganism has a mutation in an endogenous reductase nucleic acid.

In one aspect, the microorganism is grown at a temperature lower than an optimal growth temperature.

In one aspect the method includes a step of isolating or purifying the soluble factor VIII protein. In one embodiment, the soluble Factor VIII protein is produced on a commercial scale. In another embodiment, the Factor VIII protein comprises a purification tag. If desired, the purification tag can be removed from the Factor VIII protein after production.

In one aspect, the microorganism comprises a heterologous protein disulfide isomerase (PDI). In another aspect, the microorganism comprises a heterologous chaperone protein. In a further aspect, the microorganism comprises a heterologous chaperone protein and a heterologous PDI.

In one aspect, the Factor VIII protein exhibits enzymatic or biological activity.

In one aspect, all or a portion of the B-domain is deleted from the Factor VIII protein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 demonstrates expression levels of an internally-truncated version of human Factor VIII in various E. coli strains. Nucleic acids encoding this form of Factor VIII were cloned into two different vector backbones (Vector1, lanes 2 and 4; and Vector2, lanes 3 and 5), which were tested for expression in E. coli strain W3110 at 37° C. (lanes 2-3) and in a trxB gor supp mutant E. coli strain at 20° C. (lanes 4-5). Cells were harvested after overnight incubation in induction medium with IPTG. Total cell extracts were analyzed by SDS-PAGE. A box indicates the position of Factor VIII in the gel. The first lane in the gel is molecular weight markers.

FIG. 2 demonstrates the solubility of an internally-truncated form of human Factor VIII when expressed from Vector2 in E. coli strain W3110 (lanes 2-3) or trxB gor supp mutant E. coli (lanes 4-5). Cell pellets collected from some of the E. coli cultures described in FIG. 1 were lysed and separated by centrifugation into insoluble (lanes 2 and 4) and soluble (lanes 3 and 5) fractions. Protein fractions were analyzed by SDS-PAGE. A box indicates the position of human Factor VIII in the gel. The first lane is molecular weight markers. Recombinant Factor VIII was observed in the soluble fraction prepared from trxB gor supp mutant E. coli (lane 5) but not from E. coli strain W3110.

FIG. 3 provides Western blot analysis for recombinant Factor VIII in soluble fractions prepared from cultures of W3110 (lanes 2 and 4) or trxB gor supp mutant E. coli (lane 3 and 5). Samples of the soluble fractions described in FIG. 2 were resolved by SDS-PAGE, transferred to nitrocellulose, Ponceau stained for total protein staining (lanes 2-3), and immunoblotted with anti-Factor VIII antibody (lanes 4-5). Factor VIII was observed only in the soluble fraction from trxB gor supp mutant cells (lane 5). A box indicates the position of the human Factor VIII on the filter. The first lane is molecular weight markers.

DEFINITIONS

A “factor VIII protein” as used herein, refers to a protein, peptide, glycoprotein or glycopeptide that is a component of the blood coagulation pathway in mammals. In a preferred embodiment the factor VIII protein is a human protein. Exemplary full length, native human Factor VIII amino acid and nucleic acid sequences are disclosed as SEQ ID NOs:3 and 4. Other disclosures of Factor VIII proteins include Toole et al., Nature 312:342 (1984) and U.S. Pat. No. 4,965,199. Hemophilia is a deficiency of Factor VIII activity in humans and recombinant Factor VIII is used to treat hemophilia.

Full length factor VIII is 2351 amino acids long, including a signal peptide and unique domains, A, B, and C. The B domain is dispensable for Factor VIII activity and can be deleted from the protein in whole or in part. Using the amino acid numbering from SEQ ID NO:3, the B-domain of Factor VIII from amino acid 760 to amino acid 1665. An exemplary Factor VIII protein, lacking a B domain and the signal peptide, is disclosed in SEQ ID NO:1. The encoding nucleic acid sequence ins disclosed in SEQ ID NO:2. Another B-domain deleted Factor VIII protein is disclosed in SEQ ID NO:5. Using the methods disclosed herein, the Factor VIII protein is produced in a microorganism that has an oxidizing intracellular environment. In a preferred embodiment, a Factor VIII protein lacks a signal sequence. In another preferred embodiment, a Factor VIII protein lacks all or part of the B-domain. Examples of B-domain deleted Factor VIII proteins include, e.g., a Factor VIII protein lacking amino acids 760-1665, or amino acids 795-1665.

A soluble Factor VIII protein refers to a factor VIII protein that is soluble in an aqueous solution. In some embodiments the soluble factor VIII protein is soluble in an intracellular compartment of a prokaryotic cell. All of the expressed factor VIII protein, most of the expressed factor VIII protein, or some portion of the expressed factor VIII protein can be soluble in the intracellular compartment of a prokaryotic cell.

The soluble Factor VIII produced using the methods of the invention can include Factor VIII proteins that have been mutated to facilitate modification of the expressed protein, e.g., PEGylation, transglutamination, and N-linked glycosylation. Mutated Factor VIII proteins that can be used in the invention are disclosed in WO/2006/103298, which is herein incorporated by reference for all purposes. WO/2006/103298 discloses Factor VIII proteins with introduced cysteine residues that are PEGylated on the cysteine residue after production in mammalian cells. Mutated amino acids include the following (or corresponding residues, depending on the position of the initiating methionine and insertions or deletions into the Factor VIII sequence): residue 377K→C, residue 433D→N, residue 435T→C, residue 435T→N and residue 437K→T, residue 486L→N, residue 488S→C, residue 488S→N and residue 490R→T, residue 496K→C, residue 496K→N and residue 498L→S, and residue 504L→C.

A “redox couple” refers to mixtures of reduced and oxidized thiol reagents and include reduced and oxidized glutathione (GSH/GSSG), cysteine/cystine, cysteamine/cystamine, DTT/GSSG, and DTE/GSSG. (See, e.g., Clark, Cur. Op. Biotech. 12:202-207 (2001)).

The term “oxidant” or “oxidizing agent” refers to a compound which oxidizes molecules in its environment, i.e., which changes the molecules in its environment to become more oxidized and more oxidizing. An oxidant acts by accepting electrons, thereby becoming itself reduced after having oxidized a substrate. Thus, an oxidant is an agent which accepts electrons.

The term “oxidizing conditions” or “oxidizing environment” refers to a condition or an environment in which a substrate is more likely to become oxidized than reduced. For example, the periplasm of a wild type E. coli cell constitutes an oxidizing environment, whereas the cytoplasm of a wild type E. coli cell is a reducing environment.

An enzyme in an “oxidized state” refers to an enzyme that has fewer electrons than its reduced form.

The term “reductant” or “reducing agent” refers to a compound which reduces molecules in its environment, i.e., which changes molecules in its environment to become more reduced and more reducing. A reducing agent acts by donating electrons, thereby becoming itself oxidized after having reduced a substrate. Thus, a reducing agent is an agent which donates electrons. Examples of reducing agents include dithiothreitol (DTT), mercaptoethanol, cysteine, thioglycolate, cysteamine, glutathione, and sodium borohydride.

The term “reductase” refers to a thioredoxin reductase, glutathione or glutathione reductase (also referred to as “oxidoreductases”) or any other enzyme that can reduce members of the thioredoxin or glutaredoxin systems.

The term “reductase pathways” refers to the systems in cells which maintain the environment in reducing conditions, and includes the glutaredoxin system and the thioredoxin system.

The term “reducing conditions” or “reducing environment” refers to a condition or an environment in which a substrate is more likely to become reduced than oxidized. For example, the cytoplasm of a eukaryotic cell constitutes a reducing environment.

“Disulfide bond formation” or “disulfide bond oxidation”, used interchangeably herein, refers to the process of forming a covalent bond between two cysteines present in one or two polypeptides. Oxidation of disulfide bonds can be mediated by thiol-disulfide exchange between the active site cysteines of enzymes and cysteines in the target protein. Disulfide bond formation can be catalyzed by enzymes which are referred to as catalysts of disulfide bond formation or can be catalyzed by chemical means, e.g., an intracellular environment.

An enzyme in a “reduced state”, has more electrons than its oxidized form.

“Disulfide bond reduction” refers to the process of cleaving a disulfide bond, thereby resulting in two thiol groups. Reduction of disulfide bonds is mediated by thiol-disulfide exchange between the active site cysteines of enzymes and cysteines in the target protein.

The term “disulfide bond isomerization” refers to an exchange of disulfide bonds between different cysteines, i.e., the shuffling of disulfide bonds. Isomerization of disulfide bonds is mediated by thiol-disulfide exchange between the active site cysteines of enzymes and cysteines in the target protein and catalyzed by isomerases. In E. coli, isomerization is catalyzed by DsbC or DsbG a periplasmic disulfide bond oxidoreductase.

A “catalyst of disulfide bond formation” is an agent which stimulates disulfide bond formation. Such an agent must be in an oxidized state to be active.

A “catalyst of disulfide bond isomerization”, also referred to as an “disulfide bond isomerase” is an agent which stimulates disulfide bond isomerization. Such an agent must be in a reduced form to be active.

The term “contacting” is used herein interchangeably with the following: combined with, added to, mixed with, passed over, incubated with, flowed over, etc.

“Chaperone proteins” are proteins that are known to promote proper folding of newly synthesized proteins. Chaperone proteins include, e.g., trigger factor; members of the Hsp70 chaperone family, e.g. DnaK; members of the Hsp100 chaperone family, e.g. ClpB, and members of the Hsp60 chaperone family, e.g. GroEL. See, e.g., Sorensen and Mortensen, BioMed Central, www.microbialcellfactories.com/content/4/1/1. Chaperones are also known that allow protein folding at 4° C., e.g., Cpn60 and Cpn 10 from Oleispira antartica RB8T. See, e.g., Id. and Ferrer et al., Nat. Biotechnol. 21:1266-1267 (2003).

“Protein disulfide isomerases” or “PDI proteins” can make or shuffle disulfide bonds. PDI proteins are described e.g., in Georgiou et al. U.S. Pat. No. 6,027,888, which is herein incorporated by reference for all purposes. PDI proteins are derived from eukaryotic and prokaryotic organisms. Eukaryotic PDI proteins include those of the Interpro family IPR005792 Protein disulphide isomerase. Exemplary eukaryotic PDI proteins include PDI proteins from e.g., rat liver PDI, Ero1p and Pdi1p proteins from Sacchromyces. Prokaryotic proteins include e.g., DsbC from E. coli. See, e.g., Frand et al., Trends in Cell Biol. 10:203-210 (2000).

Other prokaryotic proteins that act to maintain the redox state of protein disulfide bonds include, e.g., DsbB, DsbA, DsbC, DsbD, and DsbG from E. coli. These proteins are well known in the art and are described in, e.g., Beckwith et al. U.S. Pat. No. 6,872,563, which is herein incorporated by reference for all purposes. In one embodiment, a soluble Factor VIII protein is co-expressed with the DsbA protein in a microorganism.

Any of the PDI proteins or chaperonin proteins listed herein can be expressed in a microorganism with a factor VIII protein to enhance solubility of the factor VIII protein.

The term “specific activity” as used herein refers to the catalytic activity of an enzyme, e.g., a protease activity or Factor VIII or an effect on a blood clotting cascade.

“Commercial scale” refers to grain scale production of a factor VIII protein in a single reaction. In preferred embodiments, commercial scale refers to production of at least about 0.010, 0.025, 0.050, 0.10, 0.2, 0.5, 1, 2, 5, 10, 15, 25, 50, 75, 80, 90 or 100, 125, 150, 175, 200, 500 or 1000 grams of a factor VIII protein in a single reaction.

The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

“Protein”, “polypeptide”, or “peptide” refer to a polymer in which the monomers are amino acids and are joined together through amide bonds, alternatively referred to as a polypeptide. When the amino acids are α-amino acids, either the L-optical isomer or the D-optical isomer can be used. Additionally, unnatural amino acids, for example, β-alanine, phenylglycine and homoarginine are also included. Amino acids that are not gene-encoded may also be used in the present invention. Furthermore, amino acids that have been modified to include reactive groups may also be used in the invention. All of the amino acids used in the present invention may be either the D- or L-isomer. The L-isomers are generally preferred. In addition, other peptidomimetics are also useful in the present invention. For a general review, see, Spatola, A. F., in CHEMISTRY AND BIOCHEMISTRY OF AMINO ACIDS, PEPTIDES AND PROTEINS, B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983).

The term “recombinant” when used with reference to a cell indicates that the cell replicates a heterologous nucleic acid, or expresses a peptide or protein encoded by a heterologous nucleic acid. Recombinant cells can contain genes that are not found within the native (non-recombinant) form of the cell. Recombinant cells can also contain genes found in the native form of the cell wherein the genes are modified and re-introduced into the cell by artificial means. The term also encompasses cells that contain a nucleic acid endogenous to the cell that has been modified without removing the nucleic acid from the cell; such modifications include those obtained by gene replacement, site-specific mutation, and related techniques. A “recombinant protein” is one which has been produced by a recombinant cell. In preferred embodiments, a recombinant Factor VIII protein is produced by a recombinant bacterial cell.

A “fusion protein” refers to a protein comprising amino acid sequences that are in addition to, in place of, less than, and/or different from the amino acid sequences encoding the original or native full-length protein or subsequences thereof. More than one additional domain can be added to a Factor VIII protein as described herein, e.g., an epitope tag or purification tag, or multiple epitope tags or purification tags.

The recombinant factor VIII proteins of the invention can be constructed and expressed as a fusion protein with a molecular “purification tag” at one end, which facilitates purification of the protein. Such tags can also be used for immobilization of a protein of interest during a purification step. Suitable tags include “epitope tags,” which are a protein sequence that is specifically recognized by an antibody. Epitope tags are generally incorporated into fusion proteins to enable the use of a readily available antibody to unambiguously detect or isolate the fusion protein. A “FLAG tag” is a commonly used epitope tag, specifically recognized by a monoclonal anti-FLAG antibody, consisting of the sequence AspTyrLysAspAspAsp AspLys or a substantially identical variant thereof. Other epitope tags that can be used in the invention include, e.g., myc tag, AU1, AU5, DDDDK (EC5), E tag, E2 tag, Glu-Glu, a 6 residue peptide, EYMPME, derived from the Polyoma middle T protein, HA, HSV, IRS, KT3, S tage, S1 tag, T7 tag, V5 tag, VSV-G, β-galactosidase, Gal4, green fluorescent protein (GFP), luciferase, protein C, protein A, cellulose binding protein, GST (glutathione S-transferase), a step-tag, Nus-S, PPI-ases, Pfg 27, calmodulin binding protein, dsb A and fragments thereof, and granzyme B. Epitope peptides and antibodies that bind specifically to epitope sequences are commercially available from, e.g., Covance Research Products, Inc.; Bethyl Laboratories, Inc.; Abcam Ltd.; and Novus Biologicals, Inc.

Other suitable tags are known to those of skill in the art, and include, for example, an affinity tag such as a hexahistidine peptide or other poly-histidine peptides, which will bind to metal ions such as nickel or cobalt ions. Proteins comprising purification tags can be purified using a binding partner that binds the purification tag, e.g., antibodies to the purification tag, nickel or cobalt ions or resins, and amylose, maltose, or a cyclodextrin. Purification tags also include starch binding domains, E. coli thioredoxin domains (vectors and antibodies commercially available from e.g., Santa Cruz Biotechnology, Inc. and Alpha Diagnostic International, Inc.), and the carboxy-terminal half of the SUMO protein (vectors and antibodies commercially available from e.g., Life Sensors Inc.). Starch binding domains, such as a maltose binding domain from E. coli and SBD (starch binding domain) from an amylase of A. niger, are described in WO 99/15636, herein incorporated by reference. Affinity purification of a fusion protein comprising a starch binding domain using a betacyclodextrin (BCD)-derivatized resin is described in U.S. Ser. No. 60/468,374, filed May 5, 2003, herein incorporated by reference in its entirety.

It can be beneficial to remove heterologous epitope tags or purification tags from a Factor VIII protein, particularly from Factor VIII proteins that are used as therapeutics. Therefore, factor VIII proteins can also include a self-cleaving protein tag, such as an “intein”. Inteins facilitate removal of, e.g., a purification or epitope tag. Inteins and kits for their use are commercially available, e.g., from New England Biolabs.

The terms “expression level” or “level of expression” with reference to a protein refers to the amount of a protein produced by a cell. The amount of protein produced by a cell can be measured by the assays and activity units described herein or known to one skilled in the art. One skilled in the art would know how to measure and describe the amount of protein produced by a cell using a variety of assays and units, respectively. Thus, the quantitation and quantitative description of the level of expression of a protein, e.g., a Factor VIII protein, is not limited to the assays used to measure the activity or the units used to describe the activity, respectively. The amount of protein produced by a cell can be determined by standard known assays, for example, the protein assay by Bradford (1976), the bicinchoninic acid protein assay kit from Pierce (Rockford, Ill.), or as described in U.S. Pat. No. 5,641,668. Another method of determining protein expression is to analyze a lysate or other sample containing the protein using gel electrophoresis, e.g., SDS-PAGE, followed by a visualization step. Visualization steps include protein dyes and stains, e.g., Coomassie or silver stain, or immunoassays, such as Western blot analysis using an antibody that will specifically bind to the protein of interest. Antibodies can be directed against the Factor VIII protein or against a purification or epitope tag covalently bound to the protein.

The term “enzymatic activity” refers to an activity of an enzyme and may be measured by the assays and units described herein or known to one skilled in the art. Examples of an activity of a Factor VIII protein include, but are not limited to, protease activity, participation in regulating a clotting reaction of blood, or other biological or biochemical activity.

A “subsequence” refers to a sequence of nucleic acids or amino acids that comprise a part of a longer sequence of nucleic acids or amino acids (e.g., protein) respectively.

The term “nucleic acid” refers to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence includes the complementary sequence thereof.

A “recombinant expression cassette” or simply an “expression cassette” is a nucleic acid construct, generated recombinantly or synthetically, with nucleic acid elements that are capable of affecting expression of a structural gene in hosts compatible with such sequences. Expression cassettes include at least promoters and optionally, transcription termination signals. Typically, the recombinant expression cassette includes a nucleic acid to be transcribed (e.g., a nucleic acid encoding a desired polypeptide), and a promoter. Additional factors necessary or helpful in effecting expression may also be used as described herein. For example, an expression cassette can also include nucleotide sequences that encode a signal sequence that directs secretion of an expressed protein from the host cell. Transcription termination signals, enhancers, and other nucleic acid sequences that influence gene expression, can also be included in an expression cassette. In preferred embodiments, a recombinant expression cassette encoding an amino acid sequence comprising a Factor VIII protein is expressed in a bacterial host cell.

A “heterologous sequence” or a “heterologous nucleic acid”, as used herein, is one that originates from a source foreign to the particular host cell, or, if from the same source, is modified from its original form. Thus, a heterologous glycoprotein gene in a eukaryotic host cell includes a glycoprotein-encoding gene that is endogenous to the particular host cell that has been modified. Modification of the heterologous sequence may occur, e.g., by treating the DNA with a restriction enzyme to generate a DNA fragment that is capable of being operably linked to the promoter. Techniques such as site-directed mutagenesis are also useful for modifying a heterologous sequence.

The term “isolated” refers to material that is substantially or essentially free from components which interfere with the activity of an enzyme. For a saccharide, protein, or nucleic acid of the invention, the term “isolated” refers to material that is substantially or essentially free from components which normally accompany the material as found in its native state. Typically, an isolated saccharide, protein, or nucleic acid of the invention is at least about 80% pure, usually at least about 90%, and preferably at least about 95% pure as measured by band intensity on a silver stained gel or other method for determining purity. Purity or homogeneity can be indicated by a number of means well known in the art. For example, a protein or nucleic acid in a sample can be resolved by polyacrylamide gel electrophoresis, and then the protein or nucleic acid can be visualized by staining. For certain purposes high resolution of the protein or nucleic acid may be desirable and HPLC or a similar means for purification, for example, may be utilized.

The term “operably linked” refers to functional linkage between a nucleic acid expression control sequence (such as a promoter, signal sequence, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence affects transcription and/or translation of the nucleic acid corresponding to the second sequence.

The terms “identical” or percent “identity,” in the context of two or more nucleic acids or protein sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.

The phrase “substantially identical,” in the context of two nucleic acids or proteins, refers to two or more sequences or subsequences that have at least greater than about 60% nucleic acid or amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. Preferably, the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues. In a most preferred embodiment, the sequences are substantially identical over the entire length of the coding regions.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally, Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (1995 Supplement) (Ausubel)).

Examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and Altschuel et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=−4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff& Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

A further indication that two nucleic acid sequences or proteins are substantially identical is that the protein encoded by the first nucleic acid is immunologically cross reactive with the protein encoded by the second nucleic acid, as described below. Thus, a protein is typically substantially identical to a second protein, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions, as described below.

The phrase “hybridizing specifically to” refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA.

The term “stringent conditions” refers to conditions under which a probe will hybridize to its target subsequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 15° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. (As the target sequences are generally present in excess, at Tm, 50% of the probes are occupied at equilibrium). Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5×SSC, and 1% SDS, incubating at 42° C., or, 5×SSC, 1% SDS, incubating at 65° C., with wash in 0.2×SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32-48° C. depending on primer length. For high stringency PCR amplification, a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90-95° C. for 30-120 sec, an annealing phase lasting 30-120 sec, and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are available, e.g., in Innis, et al. (1990) PCR Protocols: A Guide to Methods and Applications Academic Press, N.Y.

The phrases “specifically binds to a protein” or “specifically immunoreactive with”, when referring to an antibody refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind preferentially to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to a protein under such conditions requires an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.

“Conservatively modified variations” of a particular polynucleotide sequence refers to those polynucleotides that encode identical or essentially identical amino acid sequences, or where the polynucleotide does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons CGU, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded protein. Such nucleic acid variations are “silent variations,” which are one species of “conservatively modified variations.” Every polynucleotide sequence described herein which encodes a protein also describes every possible silent variation, except where otherwise noted. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and UGG which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule by standard techniques. Accordingly, each “silent variation” of a nucleic acid which encodes a protein is implicit in each described sequence.

Furthermore, one of skill will recognize that individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids (typically less than 5%, more typically less than 1%) in an encoded sequence are “conservatively modified variations” where the alterations result in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art.

One of skill will appreciate that many conservative variations of proteins, e.g., Factor VIII proteins, and nucleic acid which encode proteins yield essentially identical products. For example, due to the degeneracy of the genetic code, “silent substitutions” (i.e., substitutions of a nucleic acid sequence which do not result in an alteration in an encoded protein) are an implied feature of every nucleic acid sequence which encodes an amino acid. As described herein, sequences are preferably optimized for expression in a particular host cell used to produce the Factor VIII protein. Similarly, “conservative amino acid substitutions,” in one or a few amino acids in an amino acid sequence are substituted with different amino acids with highly similar properties, are also readily identified as being highly similar to a particular amino acid sequence, or to a particular nucleic acid sequence which encodes an amino acid. Such conservatively substituted variations of any particular sequence are a feature of the present invention. See also, Creighton (1984) Proteins, W.H. Freeman and Company. In addition, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence are also “conservatively modified variations”.

The practice of this invention can involve the construction of recombinant nucleic acids and the expression of genes in host cells, preferably bacterial host cells. Molecular cloning techniques to achieve these ends are known in the art. A wide variety of cloning and in vitro amplification methods suitable for the construction of recombinant nucleic acids such as expression vectors are well known to persons of skill. Examples of these techniques and instructions sufficient to direct persons of skill through many cloning exercises are found in Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, Calif. (Berger); and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (1999 Supplement) (Ausubel). Suitable host cells for expression of the recombinant polypeptides are known to those of skill in the art, and include, for example, prokaryotic cells, such as E. coli.

Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qβ-replicase amplification and other RNA polymerase mediated techniques are found in Berger, Sambrook, and Ausubel, as well as Mullis et al. (1987) U.S. Pat. No. 4,683,202; PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, Calif. (1990) (Innis); Arnheim & Levinson (Oct. 1, 1990) C&EN 36-47; The Journal Of NIH Research (1991) 3: 81-94; (Kwoh et al (1989) Proc. Natl. Acad. Sci. USA 86: 1173; Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874; Lomell et al (1989) J. Clin. Chem. 35: 1826; Landegren et al. (1988) Science 241: 1077-1080; Van Brunt (1990) Biotechnology 8: 291-294; Wu and Wallace (1989) Gene 4: 560; and Barringer et al. (1990) Gene 89: 117. Improved methods of cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039.

DETAILED DESCRIPTION OF THE INVENTION I. Introduction

This invention provides for the first time, methods of enhancing production of soluble Factor VIII in microorganisms by producing the factor VIII proteins in microorganisms that have oxidizing intracellular environments. In preferred embodiments, the Factor VIII proteins typically are inactive, insoluble, or expressed at very low levels in microorganisms that have a reducing environment, e.g., wild type E. coli, and expression of the Factor VIII proteins in a microorganism with an oxidizing environment enhances the yield of soluble Factor VIII protein. The invention encompasses use of microorganisms that have oxidizing intracellular environments naturally, such as Pseudomonas. The invention also encompasses use of microorganisms that have reducing intracellular environments naturally, but that are manipulated to have an oxidizing intracellular environment.

Wild type E. coli is an example of a microorganism that naturally has a reducing intracellular environment. Expression of many heterologous proteins in E. coli frequently can be difficult or impractical because disulfide bonds are not properly oxidized, leading to protein misfolding and expression of proteins in inclusion bodies. E. coli and other organisms that have a naturally reducing intracellular environment can be manipulated, however, to generate an intracellular environment that favors oxidation of disulfide bonds. For example, E. coli can be manipulated to reduce activity of endogenous reductase proteins either by mutation of the nucleic acids encoding those proteins or by manipulation of other protein activities in an intracellular oxidation-reduction cycle. Also in E. coli, inactivating mutations in the thioredoxin reductase protein (trxB), the glutathione reductase protein (gor), or in both proteins result in cells that have an oxidizing environment. E. coli cells that have mutations in trxB and gor are commercially available, e.g., from Novagen.

In one embodiment, production of soluble Factor VIII proteins in microorganisms that have oxidizing intracellular environments is further enhanced by growing the cells under conditions that reduce the level of recombinant protein production, i.e., the factor VIII protein, below that of a maximal level.

II. Expression of Soluble Factor VIII Proteins in Microorganisms

Any Factor VIII protein that is predominantly insoluble when expressed in a reducing environment, e.g., wild type E. coli, can be expressed in a microorganism that has an intracellular oxidizing environment to facilitate expression of a soluble protein.

Microorganisms that have an oxidative, intracellular environment can be used to generate most proteins and can be used to enhance protein expression, particularly as compared to proteins that are expressed in inclusion bodies in, e.g., wild type E. coli.

Preferred factor VIII proteins for production using microorganisms that have an oxidative, intracellular environment, include e.g., Factor VIII proteins lacking all or part of the B-domain.

After expression of the soluble factor VIII protein using the methods of the invention, the soluble factor VIII protein will preferably be an active protein. Those of skill will recognize how to determine the activity of a factor VIII protein. One method to determine Factor VIII activity is an APTT-based one-stage clotting time assay. Factor VIII-depleted plasma is used as the substrate and the clotting time with, e.g., recombinant Factor VIII, is compared to the clotting time of normal pooled plasma.

In one embodiment, a soluble factor VIII protein made by the methods described herein has enzymatic or biological activity levels, e.g., U/cell or U/mg protein, up to 1.1, 1.2, 1.5, 2, 3, 5, 10, 15, 20, 50, 100, 500, 1000, or up to 10,000 times greater than activity levels of the same factor VIII protein expressed in a microorganism with a reducing environment.

In one embodiment, a soluble Factor VIII protein made by the methods described herein has improved therapeutic properties, up to 1.1, 1.2, 1.5, 2, 3, 5, 10, 15, 20, 50, 100, 500, 1000, or up to 10,000 times greater than those of the factor VIII protein expressed in a microorganism with a reducing environment.

Enhancement of production of soluble Factor VIII proteins in microorganisms that have oxidizing intracellular environments as compared to production in microorganisms that have reducing intracellular environments is demonstrated in Example 1.

III. Intracellular, Oxidizing Environments

In preferred embodiments, soluble factor VIII proteins are expressed in microorganisms that have oxidizing intracellular environments.

A. Prokaryotic Microorganisms that have Oxidizing Intracellular Environments

The method of the invention are carried out using prokaryotic microorganisms that have oxidizing intracellular environments. Such microorganisms include prokaryotic microorganisms that have endogenous, intracellular oxidizing environments and prokaryotic microorganisms that are genetically manipulated to have an intracellular oxidizing environment.

Some prokaryotic organisms have endogenous, intracellular oxidizing environments and, thus, promote formation of protein disulfide bonds inside the cell. Oxidizing intracellular compartments in prokaryotic organisms specifically exclude a bacterial periplasmic space. Prokaryotic organisms that have endogenous, intracellular oxidizing environments can be used to produce soluble Factor VIII proteins in an intracellular compartment. Prokaryotic organisms with endogenous, intracellular oxidizing environments include members of e.g., Pseudomonas species, including testosteroni, putida, aeruginosa, syringae, and fluorescens; some gram positive bacteria; and some gram negative bacteria. Additional Pseudomonas species and strains are described in, e.g., U.S. Patent Application Publication No. US 2005/0186666, published Aug. 25, 2005, which is herein incorporated by reference for all purposes. Gram positive bacteria include, e.g., Bacillus, Listeria, Staphylococcus, Streptococcus, Enterococcus, and Clostridium species.

Prokaryotic organisms with modification of a redox pathway can also be used in the methods of the invention to produce soluble Factor VIII proteins. Modifications can be performed on prokaryotic organisms that have a reducing environment, e.g., E. coli or other gram negative bacteria or some gram positive bacteria. The prokaryotic microorganisms are modified to promote an oxidizing intracellular environment, thereby enhancing intracellular disulfide bond formation and protein refolding of e.g., factor VIII proteins.

Many prokaryotic organisms use two pathways to reduce disulfide bonds that form in some cytoplasmic proteins, including recombinantly expressed proteins. The components of these pathways can be manipulated to promote formation of an intracellular oxidizing environment. The first pathway is the thioredoxin system, which generally includes a thioredoxin reductase and thioredoxin. Thioredoxin reductase maintains thioredoxin in a reduced state. The second pathway is the glutaredoxin system, which generally includes a glutathione oxidoreductase, glutathione, and glutaredoxins. Inactivating mutations of some components of these redox pathways can ultimately increase the formation of disulfide bonds in expressed proteins, and in the case of heterologous proteins expressed in the prokaryotic organism, can increase the solubility and activity of the expressed heterologous proteins. For example, in E. coli elimination of thioredoxin reductase activity results in an accumulation of oxidized thioredoxin that act as an oxidase in the intracellular compartment.

Some preferred examples are prokaryotic microorganisms that have reduced or absent reductase activity. For example, the activity of a thioredoxin reductase and/or a glutathione oxidoreductase can be reduced or eliminated to modify the intracellular environment, thereby producing an oxidizing intracellular environment that favors formation of disulfide bonds.

For example, E. coli strains that have mutations in both the thioredoxin reductase gene (trxB) and the glutathione oxidoreductase gene (gor) are able to express proteins with higher levels of disulfide bond formation. See, e.g., Prinz et al., J. Biol Chem. 272:15661-15667 (1997). These trxB gor double mutants grow very slowly on most growth media, although growth can be enhanced by addition of a reductant, such as DTT. However, the double mutant strains frequently give rise to suppressor mutant strains that retain the trxB gor mutations and that grow faster in medium lacking DTT. One example of a trxB gor suppressor mutation in E. coli is a mutation of the gene ahpC, which encodes a catalytic subunit of the alkyl hydroperoxidase, AhpCF. This suppressor mutation adds a triplet to the DNA that encodes the catalytic site of the AhpCF enzyme. Fast growing double mutant E. coli strains, e.g., trxB, gor, supp and trxB, gshA, supp strains are disclosed in e.g., U.S. Pat. No. 6,872,563, which is herein incorporated by reference for all purposes. Such manipulated E. coli strains, e.g., trxB, gor, supp strains, are commercially available, e.g., under the trade names ORIGAMI®, ORIGAMI 2®, and ROSETTA-GAMI®, from e.g., EMD Biosciences, Inc. Other E. coli mutations can result in an oxidizing intracellular environment, e.g., trxB, gshA and trxB, gshA supp strains.

Other manipulations of components of a redox pathway in a microorganism can be used to enhance formation of disulfide bonds in a protein, e.g., a Factor VIII protein. For example, proteins with oxidizing activity, e.g., E. coli thioredoxin proteins in trxB, gor mutant strains, can be overexpressed in the prokaryotic microorganism. Another example is expression or overexpression of thioredoxin mutants that have enhanced oxidizing activity. Examples of such mutants are described in, e.g., Bessette, et al. PNAS 96:13703-13708 (1999). Targeted cytoplasmic expression of certain oxidizing enzymes can also be used to enhance formation of intracellular disulfide bonds. For example oxidizing proteins that are typically expressed in the periplasmic space, e.g., DsbC, can be expressed in a bacterial cytoplasm by e.g., deleting a periplasmic targeting sequence or including a cytoplasmic retention sequence. Other oxidizing periplasmic proteins can be expressed in the bacterial cytoplasm to enhance oxidation of cytoplasmic proteins, e.g., by deleting a periplasmic targeting sequence or including a cytoplasmic retention sequence.

Thioredoxin reductase nucleic acids, glutathione oxidoreductase nucleic acids, thioredoxin nucleic acids, glutathione nucleic acids, and nucleic acids encoding other proteins involved in maintenance of an intracellular redox environment can be identified in other bacteria, e.g., Azotobacter sp. (e.g., A. vinelandii), Pseudomonas sp., Rhizobium sp., Erwinia sp., Escherichia sp. (e.g., E. coli), Bacillus, Pseudomonas, Proteus, Salmonella, Serratia, Shigella, Rhizobia, Vitreoscilla, Paracoccus and Klebsiella sp., among many others. Such genes can be identified by sequence analysis and comparison to known thioredoxin reductase genes, glutathione oxidoreductase genes, and genes encoding other proteins involved in maintenance of an intracellular redox environment or to the amino acid sequence of the encoded products. The encoded proteins can be further identified functionally by enzymatic assays or by genetic complementation assays of E. coli mutants of an appropriate gene function. The endogenous thioredoxin reductase and glutathione oxidoreductase genes can be e.g., mutated to inactivate the gene product using standard molecular biology techniques and those mutated strains can also be used to express proteins with increased levels of disulfide bond formation, as compared to unmutated strains.

B. Identification of Intracellular, Oxidizing Environments

Protein refolding and protein activity frequently depend on the correct formation of disulfide bonds. Disulfide bonds are reversible thiol-disulfide (SH—SS) exchange reactions that are greatly influenced by the redox state of the environment surrounding the protein. In many cells, including E. coli and other prokaryotic organisms, glutathione, a tripeptide containing cysteine, is an important thiol-disulfide redox buffer. The redox state of prokaryotic microorganisms is also affected by other proteins, such as thioredoxins. Reductase proteins, in turn, regulate the redox state of glutathione, glutaredoxins and thioredoxins. In E. coli glutathiones, encoded by gshA and gshB, regulates the redox state of glutaredoxins. Reductase proteins include, e.g., thioredoxin reductase and glutathione oxidoreductase. E. coli has thioredoxins encoded by trxA and trxC genes, glutaredoxin 1, glutaredoxin 2, and glutaredoxin 3, encoded by grxA, grxB, and grxC genes. Many of the proteins that regulate the oxidation state of a cell, e.g., thioredoxin, glutathione, thioredoxin reductase and glutathione oxidoreductase, comprise an active site CX1X2C motif. The proteins also comprise a protein structural motif known as the thioredxoin fold.

One method to identify prokaryotes that have an oxidizing intracellular environment is to measure the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Optimum ratios of GSH/GSSG for protein folding have been determined. In vitro, maximum yields of properly folded protein occur at GSH/GSSG ratios of less than 50, preferably less than 40, more preferably less than 30, still more preferably less than 20, and most preferably less than 10. In mammalian cells, cytoplasmic GSH/GSSG ratios ranged from 30/1 to 100/1, while secretory pathway (where most protein refolding occurs) GSH/GSSG ratios ranged from 1/1 to 3/1. Hwang et al., Science 257:1496-1502 (1992). E. coli express very few intracellular proteins with disulfide bonds. E. coli proteins that have disulfide bonds are secreted into the periplasmic space, which has an oxidizing environment. Typical wild type intracellular E. coli GSH/GSSG ratios ranged from 50/1 to 200/1. Hwang et al. supra.

The methods of the invention can by used to produce soluble Factor VIII proteins in prokaryotic organisms that have an oxidizing intracellular environment. Microorganisms with an oxidizing intracellular environment typically have GSH/GSSG ratios of less than 50, preferably less than 40, more preferably less than 30, still more preferably less than 20, and most preferably less than 10. Thus, in some embodiments, the microorganisms of the invention will have GSH/GSSG ratios that range, e.g., from 0 to 50, or from 0.1 to 25, or from 0.5 to 10.

Prokaryotic organisms with intracellular environments can be identified by e.g., determining the intracellular GSH/GSSG ratio of the prokaryotic organisms. Assays for total glutathione concentration are commercially available from, e.g., Sigma. Assays for determination of a GSH/GSSG ratio are described, e.g., in Hwang et al., Science 257:1496-1502 (1992). Methods to quantify intracellular content of GSH and GSSG by derivitization with N-(1-pyrenyl)maleimide (NPM) followed by quantification using HPLC are described in Ostergaard, et al., J. Cell Biol. 166:337-345 (2004).

A number of additional assays are available to those of skill to determine whether a prokaryotic organism has an intracellular, oxidizing environment. Those assays include measurement of glutathione reductase activity and glutathione pool redox state (Tuggle and Fuchs, J. Bacter. 162:448-450 (1985)), sensitivity to thiol-specific oxidants in growth medium (Prinz et al., J. Biol. Chem. 272:15661-15667 (1997)), transcriptional activation of the OxyR gene in E. coli after exposure to hydrogen peroxide or diamide (Bessette et al., PNAS 96:13703-13708 (1999), measurement of the redox state of a reporter gene, such as a redox sensitive green fluorescent protein, (rxYFP) (Ostergaard et al., J. Cell Biol. 166:337-345 (2004)), detection of glutathione using glutathione sensitive dyes such as monochlorobimane, CellTracker Green CMFDA, o-phthaldialdehyde, and naphthalene-2,3-dicaboxaldehyde from e.g., Molecular Probes, and oxidation of cysteine residue in proteins after exposure of cells to a sulfhydryl-alkylating reagent, such as 4-acetamido-4′-maleimidystibene-2,2-disulfonic acid (Jurado et al., J. Mol. Biol. 320:1-10 (2002)).

IV. Enhancement of Soluble Factor VIII Protein Expression

Reduction of disulfide bonds in heterologously expressed proteins, such as the factor VIII proteins used in the methods of the invention, frequently results in protein misfolding and precipitation out of solution. In bacterial cells such as e.g., E. coli, misfolded proteins are expressed as insoluble inclusion bodies. Protein solubility is generally indicated by the presence of the protein in an aqueous fraction after centrifugation at an appropriate speed for an appropriate period. In addition, expression of properly folded proteins results in increased levels of protein activity. Thus, assays of enzyme activity can also be used to determine whether proper protein folding has occurred.

Expression of a solubilized factor VIII protein in a microorganism with an oxidizing environment can be compared to expression of a solubilized Factor VIII protein in a microorganism with a reducing environment, e.g., wild type E. coli. In some embodiments, a Factor VIII protein expressed in a microorganism with an oxidizing environment in a soluble fraction at levels that are up to 1.1, 1.2, 1.5, 2, 3, 5, 10, 15, 20, 50, 100, 500, 1000, or up to 10,000 times greater than soluble levels of the Factor VIII protein when expressed in a microorganism with a reducing environment. Expression of soluble Factor VIII proteins can also be determined by protein activity. Thus, a Factor VIII protein expressed in a soluble fraction of microorganism with an oxidizing environment can have activity levels, e.g., U/cell or U/mg protein, up to 1.1, 1.2, 1.5, 2, 3, 5, 10, 15, 20, 50, 100, 500, 1000, or up to 10,000 times greater than activity levels of the Factor VIII protein expressed in a soluble fraction of a microorganism with a reducing environment.

A. Determination of Protein Solubility

Solubility of factor VIII proteins can be determined as disclosed above, by determining protein levels in an aqueous fraction after centrifugation at an appropriate speed for an appropriate period. Protein levels can be determined using methods known to those of skill in the art, e.g., immunoassays or direct comparison of proteins separated by, e.g., SDS-PAGE. Immunoassays can be performed using antibodies specific for the factor VIII protein of interest or using antibodies specific for an epitope or purification tag that is covalently linked to the Factor VIII protein.

Solubility can also be determined by assaying an appropriate activity of the Factor VIII proteins from, e.g., a soluble fraction of a cell lysate.

B. Further Enhancement of Soluble Protein Expression

Further enhancement of solubility of Factor VIII proteins can occur, e.g., by reducing the rate of protein expression in a cell or by expressing the protein in combination with, e.g. a chaperone protein.

Enhancing the rate of formation of appropriate disulfide bonds can lead to higher expression of soluble Factor VIII proteins. Another method to enhance expression of soluble Factor VIII proteins is to reduce the rate of protein expression thereby allowing the nascent polypeptide more time to achieve a stable, soluble conformation. The combination of the two methods, as described herein, is a preferred embodiment of the invention. Maximal expression of a heterologous protein generally occurs under optimal growth condition for the host cells. One method to slow the expression of proteins is to slow the growth rate of the cells. In a preferred embodiment, host cells are grown at a temperature below the optimal growth temperature. Those of skill can easily determine an optimal growth temperature for any particular microorganism.

The temperature used to slow protein production will depend on the optimal growth temperature of the host cells. As an example, E. coli and many other bacteria have an optimal growth temperature of 37° C. Thus, a temperature lower than an optimal growth temperature for E. coli or for other bacteria that grow optimally at 37° C. could be between 4-35° C., between 12-30° C., or between 15-20° C. In a preferred embodiment the temperature lower than an optimal growth temperature for E. coli or for other bacteria that grow optimally at 37° C. is between 18 and 23° C. For cells that grow optimally at 30° C., as do many yeasts, a temperature lower than an optimal growth temperature could be between 10 and 25° C., between 12 and 21° C., or between 15 and 20° C.

Another method to reduce the rate of expression of a heterologous protein is to vary the concentration of a molecule that regulates expression from an inducible promoter. For example, some lacy mutations allow protein expression to be controlled by varying the amount of IPTG, the inducer molecule, in the medium.

In some embodiments, a Factor VIII protein is expressed in a microorganism that has an oxidizing environment and that further comprises a heterologous chaperone protein. Chaperone proteins include, e.g., trigger factor; members of the Hsp70 chaperone family, e.g. DnaK; members of the Hsp100 chaperone family, e.g. ClpB, and members of the Hsp60 chaperone family, e.g. GroEL. See, e.g., Sorensen and Mortensen, BioMed Central, www.microbialcellfactories.com/content/4/1/1. Chaperones are also known that allow protein folding at 4° C., e.g., Cpn60 and Cpn 10 from Oleispira antartica RB8T. See, e.g., Id. and Ferrer et al., Nat. Biotechnol. 21:1266-1267 (2003). Exemplary chaperonin proteins include, but are not limited to, those listed in the attached informal sequence listing. See, e.g., SEQ ID NO:6-10.

In other embodiments, a Factor VIII protein is expressed in a microorganism that has an oxidizing environment that further comprises a heterologous protein disulfide isomerase (PDI). PDI proteins can make or shuffle disulfide bonds. PDI proteins are described e.g., in Georgiou et al. U.S. Pat. No. 6,027,888, which is herein incorporated by reference for all purposes. PDI proteins include e.g., rat liver PDI, Ero1p and Pdi1p proteins from Sacchromyces, and DsbB, DsbA, DsbC, and DsbC from E. coli. See, e.g., Frand et al., Trends in Cell Biol. 10:203-210 (2000). Exemplary PDI proteins include, but are not limited to, those listed in the attached informal sequence listing. See, e.g., SEQ ID NO:11-18.

In a further embodiment, a Factor VIII protein is expressed in a microorganism that has an oxidizing environment and that also comprises a heterologous chaperone protein and a heterologous PDI protein.

V. Expression of Soluble Factor VIII Proteins in Microorganisms that have Oxidizing Environments

Soluble Factor VIII proteins of the invention can be expressed in a variety of microorganisms with oxidizing intracellular environments, including E. coli, and other bacterial hosts, as described above.

Typically, the polynucleotide that encodes the Factor VIII protein is placed under the control of a promoter that is functional in the desired microorganism that has an oxidizing environment. An extremely wide variety of promoters are well known, and can be used in the expression vectors of the invention, depending on the particular application. Ordinarily, the promoter selected depends upon the cell in which the promoter is to be active. Other expression control sequences such as ribosome binding sites, transcription termination sites and the like are also optionally included. Constructs that include one or more of these control sequences are termed “expression cassettes.” Accordingly, the invention provides expression cassettes into which the nucleic acids that encode fusion proteins are incorporated for high level expression in a desired microorganism that has an oxidizing environment.

Examples of expression vectors include, e.g., the pCWin1 vector and pCWin2 vector, both disclosed in WO 2005/067601, which is herein incorporated by reference for all purposes.

Expression control sequences that are suitable for use in a particular host cell are often obtained by cloning a gene that is expressed in that cell. Commonly used prokaryotic control sequences, which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Change et al., Nature (1977) 198: 1056), the tryptophan (tip) promoter system (Goeddel et al., Nucleic Acids Res. (1980) δ: 4057), the tac promoter (DeBoer, et al., Proc. Natl. Acad. Sci. U.S.A. (1983) 80:21-25); and the lambda-derived PL promoter and N-gene ribosome binding site (Shimatake et al., Nature (1981) 292: 128). The particular promoter system is not critical to the invention, any available promoter that functions in prokaryotes can be used.

For expression of soluble Factor VIII proteins in prokaryotic cells other than E. coli, a promoter that functions in the particular prokaryotic species is required. Such promoters can be obtained from genes that have been cloned from the species, or heterologous promoters can be used. For example, the hybrid trp-lac promoter functions in Bacillus in addition to E. coli. Promoters are known for other bacterial species, e.g. Pseudomonas. See, e.g., U.S. Patent Application Publication No. US 2005/0186666, published Aug. 25, 2005, which is herein incorporated by reference for all purposes.

A ribosome binding site (RBS) is conveniently included in the expression cassettes of the invention. An RBS in E. coli, for example, consists of a nucleotide sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon (Shine and Dalgarno, Nature (1975) 254: 34; Steitz, In Biological regulation and development: Gene expression (ed. R. F. Goldberger), vol. 1, p. 349, 1979, Plenum Publishing, NY).

Either constitutive or regulated promoters can be used in the present invention. Regulated promoters can be advantageous because the host cells can be grown to high densities before expression of the fusion proteins is induced. High level expression of heterologous proteins slows cell growth in some situations and may not be desired in all situations, see below. An inducible promoter is a promoter that directs expression of a gene where the level of expression is alterable by environmental or developmental factors such as, for example, temperature, pH, anaerobic or aerobic conditions, light, transcription factors and chemicals. Such promoters are referred to herein as “inducible” promoters, which allow one to control the timing of expression of the Factor VIII proteins. For E. coli and other bacterial host cells, inducible promoters are known to those of skill in the art. These include, for example, the lac promoter, the bacteriophage lambda PL promoter, the hybrid trp-lac promoter (Amann et al. (1983) Gene 25: 167; de Boer et al. (1983) Proc. Nat'l Acad. Sci. USA 80: 21), and the bacteriophage T7 promoter (Studier et al. (1986) J. Mol. Biol.; Tabor et al. (1985) Proc. Nat'l. Acad. Sci. USA 82: 1074-8). These promoters and their use are discussed in Sambrook et al., supra. A particularly preferred inducible promoter for expression in prokaryotes is a dual promoter that includes a tac promoter component linked to a promoter component obtained from a gene or genes that encode enzymes involved in galactose metabolism (e.g., a promoter from a UDP galactose 4-epimerase gene (galE)). The dual tac-gal promoter, which is described in PCT Patent Application Publ. No. WO98/20111.

Another inducible promoter is the cspA promoter, which is highly induced at low temperatures in E. coli. See, e.g., Sorensen and Mortensen, BioMed Central, www.microbialcellfactories.com/content/4/1/1 and Mujacic et al. Gene 238:325-3332 (1999).

A construct that includes a polynucleotide of interest operably linked to gene expression control signals that, when placed in an appropriate host cell, drive expression of the polynucleotide is termed an “expression cassette.” Expression cassettes that encode the fusion proteins of the invention are often placed in expression vectors for introduction into the host cell. The vectors typically include, in addition to an expression cassette, a nucleic acid sequence that enables the vector to replicate independently in one or more selected host cells. Generally, this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria. For instance, the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria. Alternatively, the vector can replicate by becoming integrated into the host cell genomic complement and being replicated as the cell undergoes DNA replication. A preferred expression vector for expression of the enzymes is in bacterial cells is pTGK, which includes a dual tac-gal promoter and is described in PCT Patent Application Publ. NO. WO98/20111.

The construction of polynucleotide constructs generally requires the use of vectors able to replicate in bacteria. A plethora of kits are commercially available for the purification of plasmids from bacteria (see, for example, EasyPrepJ, FlexiPrepJ, both from Pharmacia Biotech; StrataCleanJ, from Stratagene; and, QIAexpress Expression System, Qiagen). The isolated and purified plasmids can then be further manipulated to produce other plasmids, and used to transfect cells. Cloning in Streptomyces or Bacillus is also possible.

Selectable markers are often incorporated into the expression vectors used to express the polynucleotides of the invention. These genes can encode a gene product, such as a protein, necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that confer resistance to antibiotics or other toxins, such as ampicillin, neomycin, kanamycin, chloramphenicol, or tetracycline. Alternatively, selectable markers may encode proteins that complement auxotrophic deficiencies or supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. Often, the vector will have one selectable marker that is functional in, e.g., E. coli, or other cells in which the vector is replicated prior to being introduced into the host cell. A number of selectable markers are known to those of skill in the art and are described for instance in Sambrook et al., supra. An auxotrophic expression system is known for Pseudomonas species. See, e.g., U.S. Patent Application Publication No. US 2005/0186666, published Aug. 25, 2005, which is herein incorporated by reference for all purposes.

Construction of suitable vectors containing one or more of the above listed components employs standard ligation techniques as described in the references cited above. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required. To confirm correct sequences in plasmids constructed, the plasmids can be analyzed by standard techniques such as by restriction endonuclease digestion, and/or sequence analysis according to known methods. Molecular cloning techniques to achieve these ends are known in the art. A wide variety of cloning and in vitro amplification methods suitable for the construction of recombinant nucleic acids are well-known to persons of skill. Examples of these techniques and instructions sufficient to direct persons of skill through many cloning exercises are found in Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, Volume 152, Academic Press, Inc., San Diego, Calif. (Berger); and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (1998 Supplement) (Ausubel).

A variety of common vectors suitable for use as starting materials for constructing the expression vectors of the invention are well known in the art. For cloning in bacteria, common vectors include pBR322 derived vectors such as PBLUESCRIPT™, and λ-phage derived vectors.

The methods for introducing the expression vectors into a chosen microorganism that has an oxidizing environment are not particularly critical, and such methods are known to those of skill in the art. For example, the expression vectors can be introduced into prokaryotic cells, including E. coli, by calcium chloride transformation, and into eukaryotic cells by calcium phosphate treatment or electroporation. Other transformation methods are also suitable.

Translational coupling may be used to enhance expression. The strategy uses a short upstream open reading frame derived from a highly expressed gene native to the translational system, which is placed downstream of the promoter, and a ribosome binding site followed after a few amino acid codons by a termination codon. Just prior to the termination codon is a second ribosome binding site, and following the termination codon is a start codon for the initiation of translation. The system dissolves secondary structure in the RNA, allowing for the efficient initiation of translation. See Squires, et. al. (1988), J. Biol. Chem. 263: 16297-16302.

The soluble Factor VIII proteins can be expressed intracellularly, or can be secreted from the cell. Intracellular expression often results in surprisingly high yields. Expression of heterologous proteins, e.g., soluble Factor VIII proteins, in microorganisms that have an oxidizing intracellular environment can also result is increased expression and activity of heterologous proteins that are directed to the periplasmic space or that are secreted. If necessary, the amount of soluble Factor VIII protein may be increased by performing refolding procedures (see, e.g., Sambrook et al., supra.; Marston et al., Bio/Technology (1984) 2: 800; Schoner et al., Bio/Technology (1985) 3: 151). In embodiments in which the polypeptides are secreted from the cell, either into the periplasm or into the extracellular medium, the DNA sequence is linked to a cleavable signal peptide sequence. The signal sequence directs translocation of the fusion protein through the cell membrane. An example of a suitable vector for use in E. coli that contains a promoter-signal sequence unit is pTA1529, which has the E. coli phoA promoter and signal sequence (see, e.g., Sambrook et al., supra.; Oka et al., Proc. Natl. Acad. Sci. USA (1985) 82: 7212; Talmadge et al., Proc. Natl. Acad. Sci. USA (1980) 77: 3988; Takahara et al., J. Biol. Chem. (1985) 260: 2670). In another embodiment, the soluble Factor VIII proteins are fused to a subsequence of protein A or bovine serum albumin (BSA), for example, to facilitate purification, secretion, or stability. Computer programs are widely available that allow those of skill to identify amino acid sequences that result in protein secretion or direction to the periplasmic space. See, e.g., Zhang and Hensel, Protein Science, 13:2819-2824 (2004); and Bendtsen et al., J. Mole. Biol. 340:783-795 (2004).

The soluble Factor VIII proteins of the invention can also be further linked to other bacterial proteins. This approach often results in high yields, because normal prokaryotic control sequences direct transcription and translation. In E. coli, lacZ fusions are often used to express heterologous proteins. Other examples are discussed below. Suitable vectors are readily available, such as the pUR, pEX, and pMR100 series (see, e.g., Sambrook et al., supra.). For certain applications, it may be desirable to cleave the non-Factor VIII amino acids from the fusion protein after purification.

A suitable system for obtaining recombinant proteins from E. coli which maintains the integrity of their N-termini has been described by Miller et al. Biotechnology 7:698-704 (1989). In this system, the gene of interest is produced as a C-terminal fusion to the first 76 residues of the yeast ubiquitin gene containing a peptidase cleavage site. Cleavage at the junction of the two moieties results in production of a protein having an intact authentic N-terminal reside.

VI. Purification of Soluble Factor VIII Proteins

The soluble Factor VIII proteins of the present invention are preferably expressed as intracellular proteins. For example, a crude cellular extract containing the expressed intracellular Factor VIII protein can used in the methods of the present invention.

Alternatively, a soluble Factor VIII protein can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes, Protein Purification, Springer-Verlag, N.Y. (1982), Deutscher, Methods in Enzymology Vol 182: Guide to Protein Purification, Academic Press, Inc. N.Y. (1990)). Substantially pure compositions of at least about 70, 75, 80, 85, 90% homogeneity are preferred, and 92, 95, 98 to 99% or more homogeneity are most preferred. The purified proteins may also be used, e.g., as immunogens for antibody production.

To facilitate purification and expression and refolding of the soluble Factor VIII proteins of the invention, the nucleic acids that encode the proteins can also include a coding sequence for an epitope or “tag” for which an affinity binding reagent is available, i.e. a purification tag. Examples of suitable epitopes include the myc and V-5 reporter genes; expression vectors useful for recombinant production of fusion proteins having these epitopes are commercially available (e.g., Invitrogen (Carlsbad Calif.) vectors pcDNA3.1/Myc-His and pcDNA3.1/V5-His are suitable for expression in mammalian cells). Additional expression vectors suitable for attaching a tag to the factor VIII proteins of the invention, and corresponding detection systems are known to those of skill in the art, and several are commercially available (e.g., FLAG” (Kodak, Rochester N.Y.). Another example of a suitable tag is a polyhistidine sequence, which is capable of binding to metal chelate affinity ligands. Typically, six adjacent histidines are used, although one can use more or less than six. Suitable metal chelate affinity ligands that can serve as the binding moiety for a polyhistidine tag include nitrilo-tri-acetic acid (NTA) (Hochuli, E. (1990) “Purification of recombinant proteins with metal chelating adsorbents” In Genetic Engineering: Principles and Methods, J. K. Setlow, Ed., Plenum Press, NY; commercially available from Qiagen (Santa Clarita, Calif.)). Other purification or epitope tags include, e.g., AU1, AU5, DDDDK (EC5), E tag, E2 tag, Glu-Glu, a 6 residue peptide, EYMPME, derived from the Polyoma middle T protein, HA, HSV, IRS, KT3, S tage, S1 tag, T7 tag, V5 tag, VSV-G, β-galactosidase, Gal4, green fluorescent protein (GFP), luciferase, protein C, protein A, cellulose binding protein, GST (glutathione S-transferase), a step-tag, Nus-S, PPI-ases, Pfg 27, calmodulin binding protein, dsb A and fragments thereof, and granzyme B. Epitope peptides and antibodies that bind specifically to epitope sequences are commercially available from, e.g., Covance Research Products, Inc.; Bethyl Laboratories, Inc.; Abcam Ltd.; and Novus Biologicals, Inc.

Purification tags also include maltose binding domains and starch binding domains. Proteins comprising purification tags can be purified using a binding partner that binds the purification tag, e.g., antibodies to the purification tag, nickel or cobalt ions or resins, and amylose, maltose, or a cyclodextrin. Purification tags also include starch binding domains, E. coli thioredoxin domains (vectors and antibodies commercially available from e.g., Santa Cruz Biotechnology, Inc. and Alpha Diagnostic International, Inc.), and the carboxy-terminal half of the SUMO protein (vectors and antibodies commercially available from e.g., Life Sensors Inc.). Starch binding domains, such as a maltose binding domain from E. coli and SBD (starch binding domain) from an amylase of A. niger, are described in WO 99/15636, herein incorporated by reference. Affinity purification of a fusion protein comprising a starch binding domain using a betacyclodextrin (BCD)-derivatized resin is described in WO 2005/014779, published Feb. 17, 2005, herein incorporated by reference in its entirety. In some embodiments, a soluble Factor VIII protein comprises more than one purification or epitope tag.

Other haptens that are suitable for use as tags are known to those of skill in the art and are described, for example, in the Handbook of Fluorescent Probes and Research Chemicals (6th Ed., Molecular Probes, Inc., Eugene Oreg.). For example, dinitrophenol (DNP), digoxigenin, barbiturates (see, e.g., U.S. Pat. No. 5,414,085), and several types of fluorophores are useful as haptens, as are derivatives of these compounds. Kits are commercially available for linking haptens and other moieties to proteins and other molecules. For example, where the hapten includes a thiol, a heterobifunctional linker such as SMCC can be used to attach the tag to lysine residues present on the capture reagent.

One of skill would recognize that modifications can be made to the catalytic or functional domains of the soluble Factor VIII polypeptide without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the catalytic domain into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, the addition of codons at either terminus of the polynucleotide that encodes the catalytic domain to provide, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction enzyme sites or termination codons or purification sequences.

In preferred embodiments, purification of the Factor VIII proteins is simplified by expression of the proteins in microorganisms that have oxidizing environments. Because the solubility of the expressed proteins is enhanced, time consuming purification steps, such as solubilization, denaturation, and refolding, can preferably be omitted from a purification protocol. In some embodiments, the bacterially-expressed Factor VIII protein exhibits enzymatic or biological activity without further post-translational processing.

VII. Modification of Soluble Factor VIII Proteins

In some embodiments, soluble Factor VIII proteins produced by the methods herein are modified after production. The soluble Factor VIII proteins can be purified- or isolated before or after being modified.

In one embodiment, the soluble Factor VIII proteins are modified by sulfation.

In one embodiment, the soluble Factor VIII proteins are modified by transglutamination. Transglutamination of proteins and peptides is disclosed in WO 2005/070468, which is herein incorporated by reference for all purposes.

In one embodiment, the soluble Factor VIII proteins are modified by addition of polyethylene glycol (PEG) or other water soluble molecule. The use of PEG to derivatize peptide therapeutics has been demonstrated to reduce the immunogenicity of the peptides and prolong the clearance time from the circulation. For example, U.S. Pat. No. 4,179,337 (Davis et al.) concerns non-immunogenic peptides, such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol. Between 10 and 100 moles of polymer are used per mole peptide and at least 15% of the physiological activity is maintained. WO 2006/103298 discloses Factor VIII mutants with engineered cysteine residues for conjugation to a PEG molecule.

WO 93/15189 (Veronese et al.) concerns a method to maintain the activity of polyethylene glycol-modified proteolytic enzymes by linking the proteolytic enzyme to a macromolecularized inhibitor. The conjugates are intended for medical applications.

The principal mode of attachment of PEG, and its derivatives, to peptides is a non-specific bonding through a peptide amino acid residue. For example, U.S. Pat. No. 4,088,538 discloses an enzymatically active polymer-enzyme conjugate of an enzyme covalently linked to PEG. Similarly, U.S. Pat. No. 4,496,689 discloses a covalently attached complex of α-1 protease inhibitor with a polymer such as PEG or methoxypoly(ethylene glycol) (“mPEG”). Abuchowski et al. (J. Biol. Chem. 252: 3578 (1977) discloses the covalent attachment of mPEG to an amine group of bovine serum albumin. U.S. Pat. No. 4,414,147 discloses a method of rendering interferon less hydrophobic by conjugating it to an anhydride of a dicarboxylic acid, such as poly(ethylene succinic anhydride). PCT WO 87/00056 discloses conjugation of PEG and poly(oxyethylated) polyols to such proteins as interferon-β, interleukin-2 and immunotoxins. EP 154,316 discloses and claims chemically modified lymphokines, such as IL-2 containing PEG bonded directly to at least one primary amino group of the lymphokine. U.S. Pat. No. 4,055,635 discloses pharmaceutical compositions of a water-soluble complex of a proteolytic enzyme linked covalently to a polymeric substance such as a polysaccharide.

Another mode of attaching PEG to peptides is through the non-specific oxidation of glycosyl residues on a peptide. The oxidized sugar is utilized as a locus for attaching a PEG moiety to the peptide. For example, M'Timkulu (WO 94/05332) discloses the use of a hydrazine- or amino-PEG to add PEG to a glycoprotein. The glycosyl moieties are randomly oxidized to the corresponding aldehydes, which are subsequently coupled to the amino-PEG. See also, Bona et al. (WO 96/40731), where a PEG is added to an immunoglobulin molecule by enzymatically oxidizing a glycan on the immunoglobulin and then contacting the glycan with an amino-PEG molecule.

It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and equivalents thereof known to those skilled in the art, and so forth.

The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. Citations are incorporated herein by reference.

EXAMPLE Example 1 Expression of Factor VIII Proteins in an E. coli Strain with an Oxidizing Intracellular Environment

A single chain, B-domain truncated version of human Factor VIII was designed that lacked its N-terminal signal sequence but retained an amino-terminal methionine (SEQ ID #1). Nucleic acids encoding codon-optimized sequence were synthesized and cloned into two expression vectors, Vector1 (pCWin2, see, e.g., WO 2005/067601; and Vector2, derived from pCWin2 with a modified leader sequence) using flanking 5′ NdeI and 3′ XhoI restriction sites. Cloning and bacterial transformation and culturing were performed using standard techniques (e.g. Current Protocols in Molecular Biology, Ausubel, F M, et al, eds. John Wiley & Sons, Inc. 1998). The Factor VIII constructs were tested in two E. coli strains: W3110 and a trxB gor supp mutant strain.

For protein expression, an overnight small scale culture was used to inoculate a 100 ml culture of prewarmed martone LB containing 50 μg/ml kanamycin. The culture was incubated at 37° C. with shaking, and monitored for OD620. When the OD620 reached 0.5-0.6, the trxB gor supp mutant cultures were transferred to a 20° C. shaking incubator for 40 minutes, and then induced with IPTG. When the OD620 reached 0.6-0.7, the W3110 cultures were induced with IPTG. IPTG was used at 0.1 mM final concentration, and induced cultures were incubated with shaking overnight. Cells were harvested by centrifugation at 4° C., 7000×g for 15 mins in a Sorvall RC3C+ and stored at −80° C.

For total cell extract analysis of protein expression, cells from a 150 μL aliquot of the induced cultures were collected by centrifugation and lysed in PBS/0.1% SDS. Samples were resolved by SDS-PAGE, and stained with Coomassie fluorescent orange. As shown in FIG. 1, Factor VIII expression was observed in both W3110 and trxB gor supp mutant cells.

For the analysis of protein solubility, cell pellets from 100 mL induced cultures were thawed and resuspended using 25 mL of lysis buffer (20 mM Tris pH8, 150 mM NaCl, 5 mM EDTA, 10% glycerol, 0.1% triton X-100), and lysed by mechanical disruption with three passes through a microfluidizer. Small samples were taken and insoluble material was pelleted by centrifugation for 10 minutes at top speed at 4° C. in a microcentrifuge. The supernatant was then separated from the pellet, and both were analyzed by SDS-PAGE and protein staining. As shown in FIG. 2, Factor VIII was largely insoluble when expressed in W3110 cells. By contrast, soluble Factor VIII was observed when expressed in trxB gor supp mutant cells. Western blot analysis with antibodies specific for human Factor VIII was also carried out to verify the identity of the observed soluble protein (FIG. 3)

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

INFORMAL SEQUENCE LISTING SEQ ID NO: 1. B-domain deleted Factor VIII, protein matrryylgavelswdymqsdlgelpvdarfpprvpksfpfntsvvykkt lfveftdhlfniakprppwmgllgptiqaevydtvvitlknmashpvslh avgvsywkasegaeyddqtsqrekeddkvfpggshtyvwqvlkengpmas dplcltysylshvdlvkdlnsgligallvcregslakektqtlhkfillf avfdegkswhsetknslmqdrdaasarawpkmhtvngyvnrslpgligch rksvywhvigmgttpevhsifleghtflvrnhrqasleispitfltaqtl lmdlgqfllfchisshqhdgmeayvkvdscpeepqlrmknneeaedyddd ltdsemdvvrfdddnspsfigirsvakkhpktwvhyiaaeeedwdyaplv lapddrsyksqylnngpqrigrkykkvrfmaytdetfktreaiqhesgil gpllygevgdtlliifknqasrpyniyphgitdvrplysrrlpkgvkhlk dfpilpgeifkykwtvtvedgptksdprcltryyssfvnmerdlasglig pllicykesvdqrgnqimsdkrnvilfsvfdenrswylteniqrflpnpa gvqledpefqasnimhsingyvfdslqlsvclhevaywyilsigaqtdfl svffsgytfkhkmvyedtltlfpfsgetvfmsmenpglwilgchnsdfrn rgmtallkvsscdkntgdyyedsyedisayllsknnaieprsfsqnsrhp strqkqfnattipendiektdpwfahrrraqreitrttlqsdqeeidydd tisvemkkedfdiydedenqsprsfqkktrhyfiaaverlwdygmsssph vlrnraqsgsvpqfkkvvfqeftdgsftqplyrgelnehlgllgpyirae vednimvtfrnqasrpysfysslisyeedqrqgaeprknfvkpnetktyf wkvqhhmaptkdefdckawayfsdvdlekdvhsgligpllvchtntlnpa hgrqvtvqefalfftifdetkswyftenmerncrapcniqmedptfkeny rfhaingyimdtlpglvmaqdqrirwyllsmgsnenihsihfsghvftvr kkeeykmalynlypgvfetvemlpskagiwrvecligehlhagmstlflv ysnkcqtplgmasghirdfqitasgqygqwapklarlhysgsinawstke pfswikvdllapmiihgiktqgarqkfsslyisqfiimysldgkkwqtyr gnstgtlmvffgnvdssgikhnifnppiiaryirlhpthysirstlrmel mgcdlnscsmplgmeskaisdaqitassyftnmfatwspskarlhlqgrs nawrpqvnnpkewlqvdfqktmkvtgvttqgvkslltsmyvkeflisssq dghqwtlffqngkvkvfqgnqdsftpvvnsldpplltrylrihpqswvhq ialrmevlgceaqdly SEQ ID NO: 2. B-domain deleted Factor VIII, nucleic acid catatggcgactcgccgttattaccttggcgccgttgaactgtcatggga ttatatgcaaagcgacctgggagagttacctgtggatgcgcgtttcccgc cgcgtgtgccgaaatccttcccgtttaacacctcggtagtgtacaaaaaa accttatttgttgagttcacggatcacttatttaatattgccaaacctcg ccctccatggatgggtttgttaggtccgaccattcaagcagaagtctatg atacagtagtgattaccctgaaaaacatggcttctcatcccgtaagcttg cacgcagttggtgtgagttattqgaaagccagcgaaggagccgaatacga tgaccagacatcacaacgtgagaaagaagatgataaagttttcccaggcg gtagccatacctacgtgtggcaagtcctgaaagagaatggtccgatggcg tccgatcccctgtgtctgacttattcatatttgtcgcatgttgacctcgt aaaagacctgaactccggtttgatcggcgccttacttgtgtgccgtgagg gcagcctggcgaaagaaaagacccaaaccttacataaattcattctgtta ttcgccgtattcgatgaaggcaaatcctggcattctgaaaccaaaaattc gctgatgcaggatcgcgatgcagcgtccgcccgtgcctggccaaaaatgc acacagtcaacggctacgtcaaccgctccctcccaggcttgatcggctgt catcgcaagagcgtctattggcatgtcatcggaatgggtacgacacccga agtgcactcgatcttcttagagggtcacacgtttctcgttcgcaaccacc gccaggcgtcgcttgaaatcagcccgatcacgttcctcaccgcccaaacg ctgcttatggacctgggccagttcctgctgttctgccatatttccagtca ccagcatgatggcatggaggcgtatgtcaaagtggatagctgccccgaag agccacaactgcgtatgaaaaacaacgaagaggctgaagattatgacgat gatttaacggactcagagatggatgtagtgcgctttgatgatgataactc tccttctttcattcaaatccgtagcgtcgcgaagaaacacccgaaaacat gggttcattacattgcggctgaagaggaggattgggattatgctccgctt gtgctggcacccgacgatcgttcctataaaagccagtatctgaataacgg cccccaacgcattggacgtaaatataaaaaagtgcgcttcatggcctaca ctgacgaaacatttaaaacccgggaagctattcagcatgaatcgggtatt cttggacctttgttatatggtgaagtgggcgataccctgttaattatttt taaaaaccaagcatcgcgcccttataacatttatccacacggaattacgg acgtgcgtccattatatagccggcggttaccaaaaggcgtaaaacatctc aaagattttccaattctgcctggagaaatttttaagtacaaatggaccgt tacagtagaagatggaccaactaaaagcgatccacgctgcctgacccgct actattcaagctttgtaaacatggaacgggacctggcttccggcctgatc ggaccgttattaatttgctataaagaatcggtcgatcaacgtggaaacca gatcatgtctgacaagcgcaacgttattcLtttttcggttttcgatgaaa atcgttcctggtacctgactgagaacatccagcgctttctccctaacccg gcgggcgtacaactggaagacccggaatttcaagcctcaaacattatgca ctccattaacggttatgtcttcgattcccttcagctgagcgtgtgcttac acgaggtcgcttactggtatatcctgtcgattggcgcgcagaccgatttt ttgtccgtttttttttccggatataccttcaaacacaaaatggtttacga agacacgctgaccttatttccgttcagtggtgaaacggttttcatgagta tggagaatcctggactttggatcttgggctgtcataacagcgacttccgc aaccgcggcatgacggcactcctgaaagtaagctcttgtgataaaaatac cggtgactactatgaggactcctacgaggatatttcagcgtaccttctgt caaaaaacaacgctattgaaccacgttctttttcgcaaaatagtcgtcac ccatctactcgtcagaaacaatttaacgccacgacgatccccgaaaacga tattgaaaaaactgatccctggtttgcgcaccgccgtcgcgctcaacgtg aaattacgcgtacaacactgcaaagcgaccaggaagaaattgactacgat gataccatcagcgttgaaatgaagaaagaagattttgatatttacgatga agacgaaaatcaatccccgcgctcatttcagaagaagactcgtcattatt ttattgcagcagtcgaacgtctgtgggattatggtatgagttcgagtccg catgtcctccgcaaccgcgcccaaagtggcagtgtcccacaatttaaaaa ggtcgtgtttcaggaatttactgatggaagctttacccaaccgctttatc gtggcgaacttaacgagcatttgggtttactcggcccttatatccgcgcc gaggtggaagataatattatggtcacatttcgtaaccaagctagtcgtcc gtactccttttactcgtccttaatcagctatgaggaagatcagcgccagg gtgcggaaccacgcaaaaactttgtaaaaccgaacgaaaccaagacctat ttctggaaagtccaacatcacatggcaccgacgaaagatgaatttgattg caaagcgtgggcgtatttctccgatgtggacttagaaaaagatgtacatt cgggcttaattggacctctgctggtctgccatactaatacgttgaatccg gcgcacggacgtcaagtcaccgttcaagaatttgcgctgttctttactat ctttgacgaaacgaaaagttggtattttacagaaaacatggaacgtaatt gccgcgccccgtgtaatattcaaatggaagatcccacctttaaggaaaac tatcgcttccacgcgattaacggctatattatggataccttacctggact ggtaatggctcaagatcaacgtattcgctggtacctcctgtccatgggta gcaacgaaaacattcatagcattcattttagtggacatgtqtttacggtg cgcaaaaaagaggagtacaaaatggcactgtataatctgtatccaggcgt ttttgagaccgtggaaatgctgcccagcaaagcgggtatttggcgcgtag agtgtctgattggggaacatctgcatgcggggatgtctaccttattctta gtgtacagcaataaatgccagaccccactgggcatggccagcggccacat tcgcgacttccaaatcaccgcatccggtcaatatggtcaatgggcgccaa aactggcccgcctccactattcaggttcgattaatgcatggagcaccaaa gaaccgttcagttggatcaaagtagacttgttagctccgatgatcattca tggtatcaaaacgcaaggcgcgcgccagaaattttcatccttatacatct ctcagtttatcattatgtattcactggacggcaaaaaatggcaaacctat cgtggcaattcgaccggtaccctgatggttttcttcgggaatgtagactc ttccggaatcaaacacaacatctttaacccacctattatcgcgcgttata ttcgcctccaccctacacactatagcattcgtagtaccctgcgtatggag ctgatgggttgtgatcttaattcgtgcagcatgccgctcgggatggaaag caaagcaattagtgatgcgcagattacggcatctagttattttactaata tgtttgcaacttggagcccttccaaagcacgtctgcacttgcagggtcgc agcaatgcatggcgtccgcaggttaataatccaaaagaatggttgcaagt agattttcagaaaacgatgaaagtgacgggggttaccacccagggcgtta aatctctgctgacctcgatgtacgtgaaagaatttctgatctccagtagc caggatggtcatcaatggacccttttttttcagaacggcaaggtcaaagt gtttcagggaaatcaggattcctttaccccagttgtaaacagcctggatc cgcccttgctgacccgctatctgcgtatccatccgcaatcgtgggtacat caaatcgcgctgcgcatggaggtcctgggttgtgaagcccaagacttata ttaataactcgag SEQ ID NO: 3. Native Factor VIII protein mqielstcfflcllrfcfsatrryylgavelswdymqsdlgelpvdarfp prvpksfpfntsvvykktlfveftvhlfniakprppwmgllgptiqaevy dtvvitlknmashpvslhavgvsywkasegaeyddqtsgrekeddkvfpg gshtyvwqvlkengpmasdplcltysylshvdlvkdlnsgligallvcre gslakektqtlhkfillfavfdegkswhsetknslmqdrdaasarawpkm htvngyvnrslpgligchrksvywhvigmgttpevhsifleghtflvrnh rqasleispitfltaqtllmdlgqfllfchisshqhdgmeayvkvdscpe epqlrmknneeaedydddltdsemdvvrfdddnspsfiqirsvakkhpkt wvhyiaaeeedwdyaplvlapddrsyksqylnngpqrigrkykkvrfmay tdetfktreaiqhesgilgpllygevgdtlliifknqasrpyniyphgit dvrplysrrlpkgvkhlkdfpilpgeifkykwtvtvedgptksdprcltr yyssfvnmerdlasgligpllicykesvdqrgnqimsdkrnvilfsvfde nrswylteniqrflpnpagvqledpefqasnimhsingyvfdslqlsvcl hevaywyilsigaqtdflsvffsgytfkhkmvyedtltlfpfsgetvfms menpglwilgchnsdfrnrgmtallkvsscdkntgdyyedsyedisayll sknnaieprsfsqnsrhpstrqkqfnattipendiektdpwfahrtpmpk ignvsssdllmllrqsptphglslsdlqeakyetfsddpspgaidsnnsl semthfrpqlhhsgdmvftpesglqlrlneklgttaatelkkldfkvsst snnlistipsdnlaagtdntsslgppsmpvhydsqldttlfgkkssplte sggplslseenndskllesglmnsqesswgknvsstesgrlfkgkrahgp alltkdnalfkvsisllktnktsnnsatnrkthidgpsllienspsvwqn ilesdtefkkvtplihdrmlmdknatalrlnhmsnkttssknmemvqqkk egpippdaqnpdmsffkmlflpesarwiqrthgknslnsgqgpspkqlvs lgpeksvegqnflseknkvvvgkgeftkdvglkemvfpssrnlfltnldn lhennthnqekkiqeeiekketliqenvvlpqihtvtgtknfmknlflls trqnvegsyegayapvlqdfrshadstnrtkkhtahfskkgeeenleglg nqtkqivekyacttrispntsqqnfvtqrskralkqfrlpleetelekri ivddtstqwsknmkhltpstltqidynekekgaitqsplsdcltrshsip qanrsplpiakvssfpsirpiyltrvlfqdnsshlpaasyrkkdsgvqes shflqgakknnlslailtlemtgdqrevgslgtsatnsvtykkventvlp kpdlpktsgkvellpkvhiyqkdlfptetsngspghldlvegsllqgteg aikwneanrpgkvpflrvatessaktpsklldplawdnhygtqipkeewk sgekspektafkkkdtilslnacesnhaiaainegqnkpeievtwakqgr terlcsqnppvlkrhqreitrttlqsdqeeidyddtisvemkkedfdiyd edenqsprsfqkktrhyfiaaverlwdygmsssphvlrnraqsgsvpqfk kvvfqeftdgsftqplyrgelnehlgllgpyiraevednimvtfrnqasr pysfysslisyeedqrqgaeprknfvkpnetktyfwkvqhhmaptkdefd ckawayfsdvdlekdvhsgligpllvchtntlnpahgrqvtvqefalfft ifdetkswyftenmerncrapcniqmedptfkenyrfhaingyimdtlpg lvmaqdqrirwyllsmgsnenihsihfsghvftvrkkeeykmalynlypg vfetvemlpskagiwrvecligehlhagmstlflvysnkcqtplgmasgh irdfqitasgqygqwapklarlhysgsinawstkepfswikvdllapmii hgiktqgarqkfsslyisqfiimysldgkkwqtyrgnstgtlmvffgnvd ssgikhnifnppiiaryirlhpthysirstlrmelmgcdlnscsmplgme skaisdaqitassyftnmfatwspskarlhlqgrsnawrpqvnnpkewlq vdfqktmkvtgvttggvkslltsmyvkeflisssqdghqwtlffqngkvk vfqgnqdsftpvvnsldpplltrylrihpqswvhqialrmevlgceaqdl y* SEQ ID NO: 4. Native Factor VIII nucleic acid atgcaaatagagctctccacctgcttctttctgtgccttttgcgattctg ctttagtgccaccagaagatactacctgggtgcagtggaactgtcatggg actatatgcaaagtgatctcggtgagctgcctgtggacgcaagatttcct cctagagtgccaaaatcttttccattcaacacctcagtcgtgtacaaaaa gactctgtttgtagaattcacggttcaccttttcaacatcgctaagccaa ggccaccctggatgggtctgctaggtcctaccatccaggctgaggtttat gatacagtggtcattacacttaagaacatggcttcccatcctgtcagtct tcatgctgttggtgtatcctactggaaagcttctgagggagctgaatatg atgatcagaccagtcaaagggagaaagaagatgataaagtcttccctggt ggaagccatacatatgtctggcaggtcctgaaagagaatggtccaatggc ctctgacccactgtgccttacctactcatatctttctcatgtggacctgg taaaagacttgaattcaggcctcattggagccctactagtatgtagagaa gggagtctggccaaggaaaagacacagaccttgcacaaatttatactact ttttgctgtatttgatgaagggaaaagttggcactcagaaacaaagaact ccttgatgcaggatagggatgctgcatctgctcgggcctggcctaaaatg cacacagtcaatggttatgtaaacaggtctctgccaggtctgattggatg ccacaggaaatcagtctattggcatgtgattggaatgggcaccactcctg aagtgcactcaatattcctcgaaggtcacacatttcttgtgaggaaccat cgccaggcgtccttggaaatctcgccaataactttccttactgctcaaac actcttgatggaccttggacagtttctactgttttgtcatatctcttccc accaacatgatggcatggaagcttatgtcaaagtagacagctgtccagag gaaccccaactacgaatgaaaaataatgaagaagcggaagactatgatga tgatcttactgattctgaaatggatgtggtcaggtttgatgatgacaact ctccttcctttatccaaattcgctcagttgccaagaagcatcctaaaact tgggtacattacattgctgctgaagaggaggactgggactatgctccctt agtcctcgcccccgatgacagaagttataaaagtcaatatttgaacaatg gccctcagcggattggtaggaagtacaaaaaagtccgatttatggcatac acagatgaaacctttaagactcgtgaagctattcagcatgaatcaggaat cttgggacctttactttatggggaagttggagacacactgttgattatat ttaagaatcaagcaagcagaccatataacatctaccctcacggaatcact gatgtccgtcctttgtattcaaggagattaccaaaaggtgtaaaacattt gaaggattttccaattctgccaggagaaatattcaaatataaatggacag tgactgtagaagatgggccaactaaatcagatcctcggtgcctgacccgc tattactctagtttcgttaatatggagagagatctagcttcaggactcat tggccctctcctcatctgctacaaagaatctgtagatcaaagaggaaacc agataatgtcagacaagaggaatgtcatcctgttttctgtatttgatgag aaccgaagctggtacctcacagagaatatacaacgctttctccccaatcc agctggagtgcagcttgaggatccagagttccaagcctccaacatcatgc acagcatcaatggctatgtttttgatagtttgcagttgtcagtttgtttg catgaggtggcatactggtacattctaagcattggagcacagactgactt cctttctgtcttcttctctggatataccttcaaacacaaaatggtctatg aagacacactcaccctattcccattctcaggagaaactgtcttcatgtcg atggaaaacccaggtctatggattctggggtgccacaactcagactttcg gaacagaggcatgaccgccttactgaaggtttctagttgtgacaagaaca ctggtgattattacgaggacagttatgaagatatttcagcatacttgctg agtaaaaacaatgccattgaaccaagaagcttctcccagaattcaagaca ccctagcactaggcaaaagcaatttaatgccaccacaattccagaaaatg acatagagaagactgacccttggtttgcacacagaacacctatgcctaaa atacaaaatgtctcctctagtgatttgttgatgctcttgcgacagagtcc tactccacatgggctatccttatctgatctccaagaagccaaatatgaga ctttttctgatgatccatcacctggagcaatagacagtaataacagcctg tctgaaatgacacacttcaggccacagctccatcacagtggggacatggt atttacccctgagtcaggcctccaattaagattaaatgagaaactgggga caactgcagcaacagagttgaagaaacttgatttcaaagtttctagtaca tcaaataatctgatttcaacaattccatcagacaatttggcagcaggtac tgataatacaagttccttaggacccccaagtatgccagttcattatgata gtcaattagataccactctatttggcaaaaagtcatctccccttactgag tctggtggacctctgagcttgagtgaagaaaataatgattcaaagttgtt agaatcaggtttaatgaatagccaagaaagttcatggggaaaaaatgtat cgtcaacagagagtggtaggttatttaaagggaaaagagctcatggacct gctttgttgactaaagataatgccttattcaaagttagcatctctttgtt aaagacaaacaaaacttccaataattcagcaactaatagaaagactcaca ttgatggcccatcattattaattgagaatagtccatcagtctggcaaaat atattagaaagtgacactgagtttaaaaaagtgacacctttgattcatga cagaatgcttatggacaaaaatgctacagctttgaggctaaatcatatgt caaataaaactacttcatcaaaaaacatggaaatggtccaacagaaaaaa gagggccccattccaccagatgcacaaaatccagatatgtcgttctttaa gatgctattcttgccagaatcagcaaggtggatacaaaggactcatggaa agaactctctgaactctgggcaaggccccagtccaaagcaattagtatcc ttaggaccagaaaaatctgtggaaggtcagaatttcttgtctgagaaaaa caaagtggtagtaggaaagggtgaatttacaaaggacgtaggactcaaag agatggtttttccaagcagcagaaacctatttcttactaacttggataat ttacatgaaaataatacacacaatcaagaaaaaaaaattcaggaagaaat agaaaagaaggaaacattaatccaagagaatgtagttttgcctcagatac atacagtgactggcactaagaatttcatgaagaaccttttcttactgagc actaggcaaaatgtagaaggttcatatgagggggcatatgctccagtact tcaagattttaggtcattaaatgattcaacaaatagaacaaagaaacaca cagctcatttctcaaaaaaaggggaggaagaaaacttggaaggcttggga aatcaaaccaagcaaattgtagagaaatatgcatgcaccacaaggatatc tcctaatacaagccagcagaattttgtcacgcaacgtagtaagagagctt tgaaacaattcagactcccactagaagaaacagaacttgaaaaaaggata attgtggatgacacctcaacccagtggtccaaaaacatgaaacatttgac cccgagcaccctcacacagatagactacaatgagaaggagaaaggggcca ttactcagtctcccttatcagattgccttacgaggagtcatagcatccct caagcaaatagatctccattacccattgcaaaggtatcatcatttccatc tattagacctatatatctgaccagggtcctattccaagacaactcttctc atcttccagcagcatcttatagaaagaaagattctggggtccaagaaagc agtcatttcttacaaggagccaaaaaaaataacctttctttagccattct aaccttggagatgactggtgatcaaagagaggttggctccctggggacaa gtgccacaaattcagtcacatacaagaaagttgagaacactgttctcccg aaaccagacttgcccaaaacatctggcaaagttgaattgcttccaaaagt tcacatttatcagaaggacctattccctacggaaactagcaatgggtctc ctggccatctggatctcgtggaagggagccttcttcagggaacagaggga gcgattaagtggaatgaagcaaacagacctggaaaagttccctttctgag agtagcaacagaaagctctgcaaagactccctccaagctattggatcctc ttgcttgggataaccactatggtactcagataccaaaagaagagtggaaa tcccaagagaagtcaccagaaaaaacagcttttaagaaaaaggataccat tttgtccctgaacgcttgtgaaagcaatcatgcaatagcagcaataaatg agggacaaaataagcccgaaatagaagtcacctgggcaaagcaaggtagg actgaaaggctgtgctctcaaaacccaccagtcttgaaacgccatcaacg ggaaataactcgtactactcttcagtcagatcaagaggaaattgactatg atgataccatatcagttgaaatgaagaaggaagattttgacatttatgat gaggatgaaaatcagagcccccgcagctttcaaaagaaaacacgacacta ttttattgctgcagtggagaggctctgggattatgggatgagtagctccc cacatgttctaagaaacagggctcagagtggcagtgtccctcagttcaag aaagttgttttccaggaatttactgatggctcctttactcagcccttata ccgtggagaactaaatgaacatttgggactcctggggccatatataagag cagaagttgaagataatatcatggtaactttcagaaatcaggcctctcgt ccctattccttctattctagccttatttcttatgaggaagatcagaggca aggagcagaacctagaaaaaactttgtcaagcctaatgaaaccaaaactt acttttggaaagtgcaacatcatatggcacccactaaagatgagtttgac tgcaaagcctgggcttatttctctgatgttgacctggaaaaagatgtgca ctcaggcctgattggaccccttctggtctgccacactaacacactgaacc ctgctcatgggagacaagtgacagtacaggaatttgctctgtttttcacc atctttgatgagaccaaaagctggtacttcactgaaaatatggaaagaaa ctgcagggctccctgcaatatccagatggaagatcccacttttaaagaga attatcgcttccatgcaatcaatggctacataatggatacactacctggc ttagtaatggctcaggatcaaaggattcgatggtatctgctcagcatggg cagcaatgaaaacatccattctattcatttcagtggacatgtgttcactg tacgaaaaaaagaggagtataaaatggcactgtacaatctctatccaggt gtttttgagacagtggaaatgttaccatccaaagctggaatttggcgggt ggaatgccttattggcgagcatctacatgctgggatgagcacactttttc tggtgtacagcaataagtgtcagactcccctgggaatggcttctggacac attagagattttcagattacagcttcaggacaatatggacagtgggcccc aaagctggccagacttcattattccggatcaatcaatgcctggagcacca aggagcccttttcttggatcaaggtggatctgttggcaccaatgattatt cacggcatcaagacccagggtgcccgtcagaagttctccagcctctacat ctctcagtttatcatcatgtatagtcttgatgggaagaagtggcagactt atcgaggaaattccactggaaccttaatggtcttctttggcaatgtggat tcatctgggataaaacacaatatttttaaccctccaattattgctcgata catccgtttgcacccaactcattatagcattcgcagcactcttcgcatgg agttgatgggctgtgatttaaatagttgcagcatgccattgggaatggag agtaaagcaatatcagatgcacagattactgcttcatcctactttaccaa tatgtttgccacctggtctccttcaaaagctcgacttcacctccaaggga ggagtaatgcctggagacctcaggtgaataatccaaaagagtggctgcaa gtggacttccagaagacaatgaaagtcacaggagtaactactcagggagt aaaatctctgcttaccagcatgtatgtgaaggagttcctcatctccagca gtcaagatggccatcagtggactctcttttttcagaatggcaaagtaaag gtttttcagggaaatcaagactccttcacacctgtggtgaactctctaga cccaccgttactgactcgctaccttcgaattcacccccagagttgggtgc accagattgccctgaggatggaggttctgggctgcgaggcacaggacctc tactga SEQ ID NO: 5. B-domain deleted Factor VIII protein ATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTL FVEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHA VGVSYWKASEGAEYDDQTSQREKEDDKVFPGGSHTYVWQVLKENGPMASD PLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFA VFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHR KSVYWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLL MDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLRMKNMEEAEDYDDDL TDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVL APDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILG PLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKD FPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIGP LLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAG VQLEDPEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLS VFFSGYTFKHKMVYEDTLTLFPFSGETVFMSMENPGLWILGCHNSDFRNR GMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNPPVLK RHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKK TRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFT QPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEE DQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLE KDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSWYFTEN MERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYL LSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAG IWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYG QWAPKLAPWHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFS SLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPI IARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASS YFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVT TQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVV NSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY SEQ ID NO: 6. dnaK E. coli EG10241 HSP-70-type molecular chaperone, heat-inducible MGKIIGIDLGTTNSCVAIMDGTTPRVLENAEGDRTTPSIIAYTQDGETLV GQPAKRQAVTNPQNTLFAIKRLIGRRFQDEEVQRDVSIMPFKIIAADNGD AWVEVKGQKMAPPQISAEVLKKMKKTAEDYLGEPVTEAVITVPAYFNDAQ RQATKDAGRIAGLEVKRIINEPTAAALAYGLDKGTGNRTIAVYDLGGGTF DISIIEIDEVDGEKTFEVLATNGDTELGGEDFDSRLINYLVEEFKKDQGI DLRNDPLANQRLKEAAEKAKIELSSAQQTDVNLPYITADATGPKEMNIKV TRAKLESLVEDLVNRSIEPLKVALQDAGLSVSDIDDVILVGGQTRMPMVQ KKVAEFFGKEPRKDVNPDEAVAIGAAVQGGVLTGDVKDVLLLDVTPLSLG IETMGGVMTTLIAKNTTIPTKHSQVFSTAEDNQSAVTIHVLQGERKRAAD NKSLGQFNLDGINPAPRGMPQIEVTFDIDADGILHVSAKDKNSGKEQKTT IKASSGLNEDEIQKMVRDAEANAEADRKFEELVQTRNQGDHLLHSTRKQV EEAGDKLPADDKTAIESALTALETALKGEDKAAIEAKMQELAQVSQKLME IAQQQHAQQQTAGADASANNAKDDDVVDAEFEEVKDKK SEQ ID NO: 7. clpB, E. coli EG10157 ClpB protease, ATP dependent MRLDRLTNKFQLALADAQSLALGHDNQFIEPLHLMSALLNQEGGSVSPLL TSAGINAGQLRTDINQALNRLPQVEGTGGDVQPSQDLVRVLNLCDKLAQK RGDNFISSELFVLAALESRGTLADILKAAGATTANITQAIEQMRGGESVN DQGAEDQRQALKKYTIDLTEPAEQGKLDPVIGRDEEIRRTIQVLQRRTKN NPVLIGEPGVGKTAIVEGLAQRIINGEVPEGLKGRRVLALDMGALVAGAK YRGEFEERLKGVLNDLAKQEGNVILFIDELHTMVGAGKADGAMDAGNMLK PALARGELHCVGATTLDEYRQYIEKDAALERRFQKVFVAEPSVEDTIAIL RGLKERYELHHHVQITDPAIVAAATLSHRYIADRQLPDKAIDLIDEAASS IRMQIDSKPEELDRLDRRIIQLKLEQQALMKESDEASKKRLDMLNEELSD KERQYSELEEEWKAEKASLSGTQTIKAELEQAKIAIEQARRVGDLARMSE LQYGKIPELEKQLEAATQLEGKTMRLLRNKVTDAEIAEVLARWTGIPVSR MMESEREKLLRMEQELHHRVIGQNEAVDAVSNAIRRSPAGLADPNRPIGS FLFLGPTGVGKTELCKALANFMFDSDEAMVRIDMSEFMEKHSVSRLVGAP PGYVGYEEGGYLTEAVRRRPYSVILLDEVEKAHPDVFNILLQVLDDGRLT DGQGRTVDFRNTVVIMTSNLGSDLIQERFGELDYAHMKELVLGVVSHNFR PEFINRIDEVVVFHPLGEQHIASIAQIQLKRLYKRLEERGYETHISDEAL KLLSENGYDPVYGAPPLKPAIQQQIENPLAQQILSGELVPGKVIRLEVNE DRIVAVQ SEQ ID NO: 8. GroEL, E. coli AAKDVKFGNDARVKMLRGVNVLADAVKVTLGPKGRNVVLDKSFGAPTITK DGVSVAREIELEDKFENMGAQMVKEVASKANDAAGDGTTTATVLAQAIIT EGLKAVAAGMNPMDLKRGIDKAVTAAVEELKALSVPCSDSKAIAQVGTIS ANSDETVGKLIAEAMDKVGKEGVITVEDGTGLQDELDVVEGMQFDRGYLS PYFINKPETGAVELESPFILLADKKISNIREMLPVLEAVAKAGKPLLIIA EDVEGEALATLVVNTMRGIVKVAAVKAPGFGDRRKAMLQDIATLTGGTVI SEEIGMELEKATLEDLGQAKRVVINKDTTTIIDGVGEEAAIQGRVAQIRQ QIEEATSDYDREKLQERVAKLAGGVAVIKVGAATEVEMKEKKARVEDALH ATRAAVEEGVVAGGGVALIRVASKLADLRGQNEDQNVGIKVALRANEAPL RQIVLNCGEEPSVVANTVKGGDGNYGYNAATEEYGNMIDMGILDPTKVTR SALQYAASVAGLMITTECMVTDLPKNDAADLGAAGGMGGM SEQ ID NO: 9. Cpn10, Oleispira antarctica MKIRPLHDRIVVRRKEEETATAGGIILPGAAAEKPNQGVVISVGTGRILD NGSVQALAVNEGDVVVFGKYSGQNTIDIDGEELLILNESDIYGVLEA SEQ ID NO: 10. Cpn 60, Oleispira Antarctica MAAKDVLFGDSARAKMLVGVNILADAVRVTLGPKGRNVVIEKSFGAPIIT KDGVSVAREIELKDKFENMGAQMVKEVASQANDQAGDGTTTATVLAQAII SEGLKSVAAGMNPMDLKRGIDKATAAVVAAIKEQAQPCLDTKAIAQVGTI SANADETVGRLIAEANEKVGKEGVITVEEGKGLEDELDVVEGMQFDRGYL SPYFINNQEKMTVEMENPLILLVDKKIDNLQELLPTLENVAKSGRPLLIV AEDVEGQALATLVVNNLRGTFKVAAVKAPGFGDRRKANLQDLAILTGGQV ISEELGMSLETADPSSLGTASKVVIDKENTVIVDGAGTEASVNTRVDQIR AEIESSTSDYDIEKLQERVAKLAGGVAVIKVGAGSEMEMKEKKDRVDDAL HATRAAVEEGVVAGGGVALIRALSSVTVVGDNEDQNVGIALALRAMEAPI RQIAGNAGAEGSVVVDKVKSGTGSFGFNASTGEYGDMIANGILDPAKVTR SSLQAAASIAGLMITTEAMVADAPVEEGAGGMPDMGGMGGMGGMPGMM SEQ ID NO: 11. Rat PDI protein, PDIA1_RAT MLSRALLCLALAWAARVGADALEEEDNVLVLKKSNFAEALAAHNYLLVEF YAPWCGHCKALAPEYAKAAAKLKAEGSEIRLAKVDATEESDLAQQYGVRG YPTIKFFKNGDTASPKEYTAGREADDIVNWLKKRTGPAATTLSDTAAAES LVDSSEVTVIGFFKDAGSDSAKQFLLAAEAVDDIPFGITSNSDVFSKYQL DKDGVVLFKKFDEGRNNFEGEITKEKLLDFIKHNQLPLVIEFTEQTAPKI FGGEIKTHILLFLPKSVSDYDGKLSNFKKAAEGFKGKILFIFIDSDETDN QRILEFFGLKKEECPAVRLITLEEEMTKYKPESDELTAEKITQFCHHFLE GKIKPHLMSQELPEDWDKQPVKVLVGKNFEEVAFDEKKNVFVEFYAPWCG HCKQLAPIWDKLGETYKDHENIVIAKMDSTANEVEAVKVHSFPTLKFFPA SADRTVIDYNGERTLDGFKKFLESGGQDGAGDNDDLDLEEALEPDMEEDD DQKAVKDEL SEQ ID NO: 12. Ero1p Sacchromyces MRLRTAIATLCLTAFTSATSNNSYIATDQTQNAFNDTHFCKVDRNDHVSP SCNVTFNELNAINENIRDDLSALLKSDFFKYFRLDLYKQCSFWDANDGLC LNRACSVDVVEDWDTLPEYWQPEILGSFNNDTMKEADDSDDECKFLDQLC QTSKKPVDIEDTINYCDVNDFNGKNAVLIDLTANPERFTGYGGKQAGQIW STIYQDNCFTIGETGESLAKDAFYRLVSGFHASIGTHLSKEYLNTKTGKW EPNLDLFMARIGNFPDRVTNMYFNYAVVAKALWKIQPYLPEFSFCDLVNK EIKNKMDNVISQLDTKIFNEDLVFANDLSLTLKDEFRSRFKNVTKIMDCV QCDRCRLWGKIQTTGYATALKILFEINDADEFTKQHIVGKLTKYELIALL QTFGRLSESIESVNMFEKMYGKRLNGSENRLSSFFQNNFFNILKEAGKSI RYTIENINSTKEGKKKTNNSQSHVFDDLKMPKAEIVPRPSNGTVNKWKKA WNTEVNNVLEAFRFIYRSYLDLPRNIWELSLMKVYKFWNKFIGVADYVSE ETREPISYKLDIQ SEQ ID NO: 13. Pdi1p Sacchromyces MKMNLKRLVVTFFSCITFLLKFTIAAAEPPEGFPEPLNPTNFKEELSKGL HIIDFYSPYCPHCKHLAPVWMETWEEFKEESKTLNITFSQVNCIESADLC GDENIEYFPEIRLYNPSGYIKSFTETPRTKESLIAFARRESMDPNNLDTD LDSAKSESQYLEGFDFLELIAGKATRPHLVSFWPTKDMKNSDDSLEFKNC DKCHEFQRTWKIISRQLAVDDINTGHVNCESNPTICEELGFGDLVKITNH RADREPKVALVLPNKTSNNLFDYFNGYSAKSDGYVDFARRTFTNSKFPNI TEGELEKKANRDIDFLQERGRVTNNDIHLVFSYDPETVVIEDFDILEYLI EPLSKIPNIYLRQIDKNLINLSRNLFGRMYEKINYDASQTQKVFNKEYFT MNTVTQLPTFFMFKDGDPISYVFPGYSTTEMRNIDAIMDWVKKYSNPLVT EVDSSNLKKLISFQTKSYSDLAIQLISSTDHKHIKGSNKLIKNLLLASWE YEHIRMENNFEEINERPARKADGIKKIKEKKAPANKIVDKMREEIPHMDQ KKLLLGYLDISKEKNFFRKYGITGEYKIGDVIIIDKSNNYYYNKDNFGNS LTSNNPQLLREAFVSLNIPSKALYSSKLKGRLINSPFHNVLSFLDIIHGN GMPGYLIVIVLFIAILKGPSIYRRYKVRKHYRAKPNAVGILGNMEKKKNQ D SEQ ID NO: 14. DsbB protein, E. coli MLRFLNQCSQGRGAWLLMAFTALALELTALWFQHVMLLKPCVLCIYERCA LFGVLGAALIGAIAPKTPLRYVAMVIWLYSAFRGVQLTYEHTMLQLYPSP FATCDFMVRFPEWLPLDKWVPQVFVASGDCAERQWDFLGLEMPQWLLGIF IAYLIVAVLVVISQPFKAKKRDLFGR SEQ ID NO: 15. DsbA protein, E. coli MKKIWLALAGLVLAFSASAAQYEDGKQYTTLEKPVAGAPQVLEFFSFFCP HCYQFEEVLEISDNVKKKLPEGVKMTKYHVNFMGGDLGKDLTQAWAVAMA LGVEDKVTVPLFEGVQKTQTIRSASDIRDVFINAGIKGEEYDAAWNSFVV KSLVAQQEKAAADVQLRGVPAIVIFVNGKYQLNPQGMDTSNMDVFVQQYA DTVKYLSEKK SEQ ID NO: 16. DsbC protein, E. coli MKKGFMLFTLLAAFSGFAQADDAAIQQTLAKMGIKSSDIQPAPVAGMKTV LTNSGVLYITDDGKHIIQGPMYDVSGTAPVNVTNKMLLKQLWALEKEMIV YKAPQEKHVITVFTDITCGYCHKLEEQMADYNALGITVRYLAFPRQGLDS DAEKEMKAIWCAKDKNKAFDDVMAGKSVAPASCDVDIADHYALGVQLGVS GTPAVVLSNGTLVPGYQPPKEMKEFLDEHQKMTSGK SEQ ID NO: 17. DsbD protein, E. coli MAQRIFTLILLLCSTSVFAGLFDAPGRSQFVPADQAFAFDFQQNQHDLNL TWQIKDGYYLYRKQIRITPEHAKIADVQLPQGVWHEDEFYGKSEIYRDRL TLPVTINQASAGATLTVTYQGCADAGFCYPPETKTVPLSEVVANNAAPQP VSVPQQEQPTAQLPFSALWALLIGIGIAFTPCVLPMYPLISGIVLGGKQR LSTARALLLTFIYVQGMALTYTALGLVVAAAGLQFQAALQHPYVLIGLAI VFTLLAMSMFGLFTLQLPSSLQTRLTLMSNRQQGGSPGGVFVMGAIAGLI CSPCTTAPLSAILLYIAQSGNMWLGGGTLYLYALGMGLPLMLITVFGNRL LPKSGPWMEQVKTAFGFVILALPVFLLERVIGDVWGLRLWSALGVAFFGW AFITSLQAKRGWMRIVQIILLAAALVSVRPLQDWAFGATHTAQTQTHLNF TQIKTVDELNQALVEAKGKPVMLDLYADWCVACKEFEKYTFSDPQVQKAL ADTVLLQANVTANDAQDVALLKHLNVLGLPTILFFDGQGQEHPQARVTGF MDAETFSAHLRDRQP SEQ ID NO: 18. DsbG protein, E. coli MTVIGYAFYSTFALTEKDKLMLKKILLLALLPAIAFAEELPAPVKAIEKQ GITIIKTFDAPGGMKGYLGKYQDMGVTIYLTPDGKHAISGYMYNEKGENL SNTLIEKEIYAPAGREMWQRMEQSHWLLDGKKDAPVIVYVFADPFCPYCK QFWQQARPWVDSGKVQLRTLLVGVIKPESPATAAAILASKDPAKTWQQYE ASGGKLKLNVPANVSTEQMKVLSDNEKLMDDLGANVTPAIYYMSKENTLQ QAVGLPDQKTLNIIMGNK

Claims

1. A method of producing a soluble Factor VIII protein in a microorganism, wherein the microorganism has an oxidizing environment,

the method comprising the steps of
a) expressing in the microorganism a nucleic acid that encodes the Factor VIII protein; and
b) growing the microorganism under conditions that allow production of the soluble Factor VIII protein.

2. The method of claim 1, wherein the microorganism is an E. coli.

3. The method of claim 2, wherein the E. coli has a mutation in a trxB gene and a gor gene.

4. The method of claim 2, wherein the nucleic acid is expressed under the control of an inducible promoter.

5. The method of claim 4, wherein expression of the nucleic acid is induced at a temperature lower than an optimal growth temperature.

6. The method of claim 1, wherein the microorganism has a mutation in an endogenous reductase nucleic acid.

7. The method of claim 1, wherein the microorganism is grown at a temperature lower than an optimal growth temperature.

8. The method of claim 1, further comprising the step of isolating the soluble factor VIII protein.

9. The method of claim 1, wherein the soluble Factor VIII protein is produced on a commercial scale.

10. The method of claim 1, wherein the Factor VIII protein comprises a purification tag.

11. The method of claim 10, wherein the purification tag is removed from the Factor VIII protein.

12. The method of claim 1, wherein the microorganism comprises a heterologous protein disulfide isomerase (PDI).

13. The method of claim 1, wherein the microorganism comprises a heterologous chaperone protein.

14. The method of claim 1, wherein the Factor VIII protein exhibits enzymatic or biological activity.

15. The method of claim 1, wherein all or a portion of a B-domain is deleted from the Factor VIII protein.

Patent History
Publication number: 20090305349
Type: Application
Filed: Oct 31, 2006
Publication Date: Dec 10, 2009
Inventors: Marc F. Schwartz (West Windsor, NJ), Shawn Defrees (North Wales, PA), Karl Johnson (Hatboro, PA)
Application Number: 12/092,128
Classifications
Current U.S. Class: Blood Proteins (435/69.6)
International Classification: C12P 21/02 (20060101);