PULSE WIDTH MODULATION CONTROL FOR HEAT PUMP FAN TO ELIMINATE COLD BLOW
A heat pump refrigerant system is provided with a pulse width modulation control for a fan moving air over the indoor heat exchanger. When it is determined that there is insufficient heat rejected by the indoor heat exchanger to heat the volume of air being delivered by the fan into the conditioned environment, the volume of air supplied to the conditioned environment is reduced by utilizing one of pulse width modulation techniques to cycle the indoor fan motor to reduce the average volume of supplied air. Therefore, a precise control over the temperature of air delivered to the conditioned space is achieved, temperature of the delivered air is increased to the target value, and so-called “cold blow” conditions are avoided.
This application relates to a heat pump, wherein a fan for moving air into a conditioned environment is provided with a pulse width modulation control to address the problem of “cold blow”.
Heat pumps are known in the art and utilized to provide cooling to a conditioned environment during time periods of hot weather or excessive internal thermal load generation, and to provide heat to the same indoor environment when the weather is cold. Also, there are known a more simplistic heat pump designs that are able to operate just in a heating mode. Heat pumps have great potential to provide efficient conditioning to the indoor environment, however, there have been impediments to their use.
One known problem with existing heat pump designs is so-called “cold blow.” “Cold blow” occurs when the heat pump does not have sufficient heat rejection capability to adequately heat air being driven into the environment to be conditioned.
When this phenomenon occurs, air driven over the indoor heat exchanger and into the environment to be conditioned is not heated to the temperature desired by the occupant of the environment, causing uncomfortable conditions to the occupant, that is of course undesirable.
It has been known to address “cold blow” by reducing the volume of air delivered into the environment to be conditioned either through the use of a variable speed drive, or through a two-speed fan motor. A two-speed fan motor does not provide sufficient flexibility to adequately tailor the airflow to achieve the desired temperature. A variable speed drive may provide such flexibility, however, it is quite expensive, represent an additional source of potential reliability problems and associated with efficiency losses. Thus, there has not been an adequate cost effective solution offered to resolve this problem.
Pulse width modulation controls are known for controlling the amount of refrigerant passing to a compressor in a refrigerant system, such as an air conditioning system or a heat pump. However, pulse width modulation controls have not been utilized to address the “cold blow” problem mentioned above.
SUMMARY OF THE INVENTIONIn a disclosed embodiment of this invention, fan moving air over an indoor heat exchanger is operated in a pulse width modulated manner. The use of the pulse width modulation control precisely tailors the amount of air moved over the indoor heat exchanger and into the climate-controlled environment, such that the heat rejected by the indoor heat exchanger, in the heating mode of operation, to the indoor air stream is sufficient to heat the controlled volume of air to the desired temperature. Thus, if less heat is rejected by the indoor heat exchanger and available to heat the air, the amount of air being driven into the environment will be reduced accordingly, such that air is delivered to a climate-controlled environment at the target temperature.
By closely controlling and cycling the fan between “on” and “off” positions, in single-speed fan applications, the present invention is able to precisely control the temperature of air delivered to the indoor space. If a two-speed fan is utilized, the pulse width modulation control can cycle the fan between the lower and a higher speed to achieve the desired effect. In the tatter case, the cycling between a lower speed and zero speed as well as a higher speed and zero speed is also permissible, if desired.
The time interval during which the fan is engaged in a full-speed position, for a single-speed fan, or in a higher speed position, for a two-speed fan, is determined by the temperature requirement and comfort level, while the cycle rate is primarily determined by fan assembly reliability requirements and temperature variation tolerance bounds. Further, frequent cycling is not necessary, since refrigerant system thermal inertia compensates for sudden changes in fan speed. Also, the fan does not have to be brought to a full stop state, between activation and deactivation of the pulse width modulation signal, since the mechanical inertia allows for a softer start in a subsequent cycle.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A refrigerant system 20 is illustrated in
As shown in
By utilizing the pulse width modulation control, a single-speed motor for the indoor fan 34 is rapidly cycled between “on” and “off” (or fully engaged and fully disengaged) positions. In the case of a two-speed fan, the indoor fan motor may be rapidly cycled between its higher and lower speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”. In either case, the volume of air delivered into the environment 36 is precisely adjusted, such that the heat rejected by the indoor heat exchanger 26 is adequate to heat this adjusted air volume to the desired temperature. As mentioned above, when a multi-speed fan motor is used, the pulse width modulation cycling can be executed between any of the speeds, including a speed of zero.
It is proposed to control the indoor fan 34, in the heating mode of operation, by pulse width modulation method to precisely adjust the temperature of the conditioned (heated) air delivered to the indoor environment 36. This control is straightforward and does not require additional components. The cycling frequency is determined by the indoor fan assembly reliability and temperature variation tolerance requirements. The time interval at each speed position is defined by the required air temperature values and comfort level to be achieved and efficiency considerations. Frequent cycling will not be necessary and is avoided, since refrigerant system thermal inertia smoothes sharp variation of operational parameters and compensates for sudden abrupt peeks and valleys. Cycling can be executed between a zero and-full speed, for a single-speed fan, and between the lower and the higher speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”, for a dual-fan speed fan. Multi-speed fans provide even a higher degree of flexibility and precision control. Lastly, indoor fan mechanical inertia may assist in continuous rotation of the indoor fan (although at a constantly reducing speed), while the pulse width modulation signal is activated and deactivated allowing for a softer start in a subsequent cycle.
Similarly,
It has to be noted that although a square waveform is used in
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Claims
1. A heat pump comprising:
- a compressor for compressing refrigerant and delivering the refrigerant to a downstream indoor heat exchanger, said indoor heat exchanger being provided with an air-moving device for moving air over said indoor heat exchanger and into an environment to be conditioned, refrigerant passing from said indoor heat exchanger through an expansion device and then through an outdoor heat exchanger, refrigerant from the outdoor heat exchanger returning to the compressor; and
- a control for said air-moving device for said indoor heat exchanger, said control providing a pulse width modulation signal to adjust the time-average volume of air moved by said air-moving device over said indoor heat exchanger when it has been determined that there is insufficient heat rejected by said indoor heat exchanger to heat a nominal volume of air to a desired temperature.
2. The heat pump as set forth in claim 1, wherein a four-way valve selectively routes refrigerant from said compressor to said indoor heat exchanger when the heat pump is operating in a heating mode, and to said outdoor heat exchanger when the heat pump is operating in a cooling mode.
3. The heat pump as set forth in claim 1, wherein said air-moving device is a fan.
4. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a single-speed motor, and said pulse width modulation control rapidly cycles the motor.
5. The heat pump as set forth in claim 4, wherein said pulse width modulation control rapidly cycles the motor between an “on” position and an “off” position.
6. The heat pump as set forth in claim 5, wherein a time interval for said “on” position is determined by at least one of temperature requirements and efficiency considerations.
7. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a two-speed motor, and said pulse width modulation control rapidly cycles the two-speed motor between at least one of a higher speed and a lower speed, the lower speed and the “off” position and the higher speed and the “off” position.
8. The heat pump as set forth in claim 7, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
9. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a multi-speed motor, and said pulse width modulation control rapidly cycles the multi-speed motor between multiple speeds, including the motor “off” position.
10. The heat pump as set forth in claim 9, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
11. The heat pump as set forth in claim 1, wherein the environment to be conditioned is provided with a temperature sensor for sensing the temperature of air being delivered into the environment, and said sensed temperature being provided to said control, such that said control can adjust the time-average volume of air moved into the environment by utilizing said pulse width modulation technique to match the sensed temperature to a desired temperature.
12. The heat pump as set forth in claim 1, wherein said indoor heat exchanger is a condenser, while said heat pump operates in a subcritical region at least for a portion of the time.
13. The heat pump as set forth in claim 1, wherein said indoor heat exchanger is a gas cooler, while said heat pump operates in a transcritical region at least for a portion of the time.
14. The heat pump as set forth in claim 1, wherein the pulse width modulation cycling rate is determined by at least one of the air-moving device reliability requirements, the temperature variation tolerance band requirements and efficiency considerations.
15. The heat pump as set forth in claim 1, wherein the pulse width modulation control cycles said air-moving device between at or near zero speed and a non-zero speed, and the consequent cycle starts while the air-moving device is still in motion.
16. A method of operating a heat pump comprising the steps of:
- (1) compressing refrigerant and delivering the refrigerant to a downstream indoor heat exchanger, indoor heat exchanger being provided with an air-moving device moving air over said indoor heat exchanger and into an environment to be conditioned, refrigerant passing from said indoor heat exchanger through an expansion device and then through an outdoor heat exchanger, refrigerant from the outdoor heat exchanger returning to the compressor; and
- (2) controlling said air-moving device for said indoor heat exchanger, by providing a pulse width modulation signal to adjust the time-average volume of air moved by said air-moving device over said indoor heat exchanger when it has been determined that there is insufficient heat rejected by said indoor heat exchanger to heat a nominal volume of air to a desired temperature.
17. The method as set forth in claim 16, wherein a four-way valve selectively routes refrigerant from said compressor to said indoor heat exchanger when the heat pump is operating in a heating mode, and to said outdoor heat exchanger when the heat pump is operating in a cooling mode.
18. The method as set forth in claim 16, wherein said air-moving device is a fan.
19. The method as set forth in claim 16, wherein a motor for said air-moving device is a single-speed motor, and said pulse width modulation control rapidly cycles the motor.
20. The method as set forth in claim 19, wherein said pulse width modulation control rapidly cycles the motor between an “on” and an “off” position.
21. The method as set forth in claim 20, wherein a time interval for said “on” position is determined by at least one of temperature requirements and efficiency considerations.
22. The method as set forth in claim 16, wherein a motor for said air-moving device is a two-speed motor, and said pulse width modulation control rapidly cycles the two-speed motor between at least one of a higher speed and a lower speed, the lower speed and the “off” position and the higher speed and the “off” position.
23. The method as set forth in claim 22, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
24. The method as set forth in claim 16, wherein a motor for said air-moving device is a multi-speed motor, and said pulse width modulation control rapidly cycles the multi-speed motor between multiple speeds, including the motor “off” position.
25. The method as set forth in claim 24, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
26. The method as set forth in claim 16, wherein the environment to be conditioned is provided with a temperature sensor for sensing the temperature of air being delivered into the environment, and said sensed temperature being provided to said control, such that said control can adjust the time-average volume of air moved into the environment by utilizing said pulse width modulation technique to match the sensed temperature to a desired temperature.
27. The method as set forth in claim 16, wherein said indoor heat exchanger is a condenser, while said heat pump operates in a subcritical region at least for a portion of the time.
28. The method as set forth in claim 16, wherein said indoor heat exchanger is a gas cooler, while said heat pump operates in a transcritical region at least for a portion of the time.
29. The method as set forth in claim 16, wherein the pulse width modulation cycling rate is determined by at least one of the air-moving device reliability requirements, the temperature variation tolerance band requirements and efficiency considerations.
30. The method as set forth in claim 16, wherein the pulse width modulation control cycles said air-moving device between at or near zero speed and non-zero speed, and the consequent cycle starts while the air-moving device is still in motion.
Type: Application
Filed: Dec 21, 2006
Publication Date: Jan 7, 2010
Inventors: Alexander Lifson (Manlius, NY), Michael F. Taras (Fayetteville, NY)
Application Number: 12/447,549
International Classification: F25D 17/06 (20060101); F25B 1/00 (20060101); F25D 17/04 (20060101);