Portable container with integral folding mechanism
A foldable portable container provided with an integral mechanical mechanism for folding or unfolding the container is described. The integral mechanical drive mechanism is utilized to simultaneously angularly displace the opposing container end walls and the container roof attached thereto to fold or unfold the portable container.
The present invention is directed generally to portable containers useful for the shipping and/or storage of goods and materials and for field housing applications, and more particularly to such containers which are foldable and which are provided with an integral mechanical mechanism for effecting the folding and unfolding of the containers without the assistance of external lifting equipment.
The efficiency and costs associated with the moving, shipping and/or storage of various goods and materials has been greatly improved through the use portable containers that can be easily transported to different locations by a suitable carrier such as a truck, rail, or ship. These portable containers are provided in a wide range of sizes varying from relatively small volume containers that are particularly suitable for storage and moving applications and usually transported by truck to larger volume containers suitable for transport of goods and materials by rail or shipping lines.
One shortcoming found to be present with previously known portable containers is that these containers whether empty or filled require the same space for transportation and storage purposes. This problem has been addressed by utilizing foldable containers which can be shipped and stored in a folded state and then unfolded for receiving storable goods and subsequent storage or shipping and storage of the loaded containers. Such a foldable container which when folded occupies a significantly smaller volume than when in an unfolded state has been provided by Peter S. Warhurst et al as shown and described in United States Patent Application Publication, No. US 2007/0108204 A1, published May 17, 2007. Another such foldable container is described by Ono et al in U.S. Pat. No. 4,684,034, issued Aug. 4, 1987. The publication and the patent are each directed to foldable portable containers having foldable end walls pivotally attached to either the floor or the roof and sidewalls pivotally attached to both the roof and floor folded in the middle to fold the container. In a container folding operation, the end walls are initially pivotally folded and then the side walls with the attached roof are folded inwardly to provide a folded container of a significantly reduced volume. The empty containers are unfolded by simply reversing the folding operation. Inasmuch as the side walls and the attached roof of such known portable containers are cumbersome and relatively heavy for manually handling, a lifting mechanism such as provided by a fork lift or crane is necessary to support, lower and lift the roof and side walls during both the container folding and unfolding operations.
SUMMARY OF THE INVENTIONThe present invention is directed to foldable portable containers useful for the storage and/or shipping of goods and materials as well as such containers that are configured for field applications such as housing or medical use. The foldable containers can be transported in a folded state to the selected point of use by utilizing any suitable transportation means such as provided by presently known trucking, rail, air, and shipping lines. Once at the selected point of use a container is readily unfolded by employing a mechanical container folding/unfolding mechanism that is an integral part of the container. Likewise, an empty unfolded container can be folded into a compact shipping unit by employing the onboard or integral container folding/unfolding mechanism. In the practice of the present invention, the folding and unfolding of the portable containers is easily accomplished without employing an external lifting device such as a crane or like as required for the folding or unfolding of previously known containers such as described above.
Generally, the portable foldable container of the present invention comprises elongated rectangle base means and roof means oriented in planes substantially parallel to and vertically spaced from one another. First and second elongated opposing and vertically oriented side wall means are disposed between the base means and the roof means. First and second elongated vertically oriented and opposing end wall means are disposed between the base means and the roof means and are oriented in vertical planes substantially perpendicular to and at the ends of the first and second side wall means. Hinge means connect an end section of each of the first and the second side wall means to the base means for the pivotable or angular displacement of the each side wall means sequentially towards the base means during the container folding operation and into locations adjacent to and overlying the base means. Further hinge means connect an end section of each of the first and second end wall means to the base means for providing rotational axes for the pivotal or angular displacement of the first and second end wall means towards one another during such container folding operations. Movable connecting means are coupled to each of the first and second end wall means and coupled to the roof means in a relatively movable manner the so that first and second end wall means and the connected roof means can be simultaneously displaced in a first direction inwardly towards the base means and into substantially parallel locations overlying and adjacent to the first and second side wall means during container folding. Reversible drive means are supported by the roof means and are connected to each of said first and second end wall means for displacing the movable connecting means and thereby providing the simultaneous displacement of the first and second end wall means in the first direction.
The reversible drive means also displace the movable connecting means during container unfolding in a second direction opposite to the aforementioned first direction to simultaneously displace the first and second end wall means away from the substantially parallel locations overlying the base means for positioning the first and second end wall means in the aforementioned vertical orientation and the roof means in the plane vertically spaced from the base means.
Stabilizing means are preferably utilized to help maintain the roof in a horizontal plane substantially parallel to the base means during the simultaneous displacement of the end wall means and the connected roof means so as to substantially minimize or obviate objectionable binding at the hinges and other relatively movable components. Also, roof lifting means positionable at one or more locations intermediate the roof means and the base means can be used to instigate or substantially assist in the initial vertical displacement of the roof means during container unfolding. The roof lifting means in the form of cantilevered leaf spring means are loaded or biased for the roof-lifting function by the reversible drive means during the final stages of the container folding operation. The reversible drive means maintains the load on the leaf spring means when the container is in a folded condition. Additionally, coil spring means are positionable to be loaded or compressed by the reversible drive means during the final stages of the container folding operation. During the unfolding of the container the stored energy in the compressed coil springs significantly assists the reversible drive means in the initial displacement of the first and second end wall means in the second direction.
By utilizing this combination of features, portable containers can be readily transported to the desired point of use in a folded state then unfolded to form structurally sound containers by simply employing the integral mechanical container folding and unfolding mechanism of the present invention. Also, empty unfolded containers located at various locations including highly remote sites may be readily collapsed or folded into a relatively small shipping package by reversing the integral container folding and unfolding mechanism. In the present invention, a simple hand held ratcheting wrench or a standard pneumatic or battery-powered screw or impact driver, preferably a high torque and high speed rotary device such as D.C. automobile starter motor or similar high torque rotary driver, is all that is needed to displace the movable connecting means in the selected direction for effecting the required pivoting of the first and second end wall means needed for the folding or unfolding the container.
A significant feature of the present invention is that the folding and unfolding of the portable containers is achieved without utilizing an external lifting mechanism such as a fork lift or crane as previously required for the folding or unfolding of previously known foldable containers such as described above. By being able to so fold and unfold the containers in the field, the manpower and equipment requirements for such purposes are significantly less than previously required so as to substantially increase the desirability and practicality of the containers of the present invention.
Other and further features of the present invention will become obvious upon an understanding of the illustrative embodiments about to be described or will be indicated in the appended claims, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.
With reference to
As best shown in
More specifically, the floor 12 of the container 10 has a rectangular frame formed of elongated angle-iron railings 24, 26, 28 and 30 (
The floor 12 includes a deck 32 formed of side-by-side panels of wood or any other suitable material. These floor panels are supported at the ends thereof on the horizontally inwardly extending flanges of by the angle-iron railings 24, 26, 28 and 30. The deck panels may be attached to these angle-iron flanges in any suitable manner such a by screws, bolts or the like. The floor 12 is shown supported by plurality of horizontally spaced-apart wooden beams 34 underlying deck and the angle-iron railings. The floor 12 can also be provided with additional structural support such as provided by metal cross members 35 positioned between the wooden beams 34.
The roof 14 of the container 10 is provided by a rectangular cap 37 formed of any suitable material such sheet metal, fiberglass or of a thermoformed plastic. The roof cap 37 is preferably provided with downwardly extending side regions or eaves 38 which are shown disposed at an outwardly oriented angle with respect to the vertical plane. Thus, when the container 10 is in a folded state as shown in
The roof is supported by four angle iron columns 52, 54, 56 and 58 that are positioned at the corners of the container 10 and vertically extend between the floor railings 24, 26, 28, and 30 and the angle iron sections 42, 44, 46 and 48 of the roof framework 40. The vertical columns can be of any length depending on the interior height desired of the container and are of a sufficient dimension and thickness needed to provide the container with the structural integrity required for the envisioned uses of the container 10. Angle iron columns with dimensions of 3″×3″× 3/16″ should provide a container 10 of the aforementioned exemplary dimensions with sufficient structural strength for most applications. The angle iron used for the floor railing 28 is preferably 3″×2″× 3/16″ with the vertically extending flange of railing 28 being 2 inches in height for reasons explained below. These columns 52, 54, 56 and 58 are each positioned so that the apex connecting the right angle flanges of these angle iron columns defines the vertical corners of the container 10. The flanges of each of these vertical columns project towards the vertical flanges of adjacent columns as shown in
Metal crossbars 60 and 62 in the form of rectangular plates are horizontally positioned and extend between the upper ends of the facing flanges of vertical columns 52 and 54 and columns 56 and 58 respectively. These cross bars 60 and 62 are securely connected at the ends thereof to the flanges of the columns at the uppermost ends thereof by welding, bolting or any other suitable fastening means. These cross bars 60 and 62 are connected to and so positioned on the columns so that the opposite ends or surface regions thereof will nest within the uppermost end regions of the vertical column flanges and be positioned adjacent to the inside surface of the vertically projecting flanges of roof framework sections 46 and 48.
The vertical columns and the attached cross bars form the framework of the end walls 20 and 22. The end wall 20 is completed by placing one or more panels 64 within the framework defined by flanges of columns 52 and 54 and the lower end region of cross bar 60 and affixing these panels 64 to this framework in any suitable manner such as by employing easily removable cam locks, screws or the like. End wall 22 is completed by attaching the side panels of the double door 23 to the flanges of columns 56 and 58 with suitable hinges such as shown at 66 in
In the present invention the side walls 16 and 18 can be formed of one or more rectangular wall panels 68 and 70 (four such side wall panels are shown
These wall panels 68 and 70 are placed in a side-by-side relationship and are attached to inside surface of the vertical flanges of side floor railings 24 and 26 by suitable hinge means 72 and 74. These side wall panels are also positioned on the inside surface of the vertical flange of the roof framework sections 42 and 44. The tops and the open end portions of these joined-together side wall panels are also securely fastened to the inside of vertical flanges of the roof framework sections 42 and 44 and the inside of the side-facing flanges of the vertical columns 52, 54, 56, and 58 by secure but readily removable connecting means such as cam locks, spring-loaded clips, latches, or screws as generally shown at 78 in
The hinges 72 and 74 connecting the side-wall panels 68 and 70 to the upright flanges of the side floor railings 24 and 26 are of any suitable type which is of sufficient strength to maintain the panels in the selected position and which will provide an axis of rotation or pivot axis for the panels. Piano hinges, as shown, are satisfactory for this purpose but other types of hinges such as butt hinges or slip joint hinges may be used. The wall panels 68 and 70 can be attached to the hinges in any suitable manner such as by screws or the like. Also, hinge halves may be attached to the wall panels 68 and 70 and the hinge halves joined together during the installation of the wall panels. As shown in
For the purpose of folding the side walls 16 and 18 into container 12, the fasteners 78 attaching the panels 68 and 70 to the vertical flanges on the roof framework and the flanges on the vertical columns are disengaged or removed and these panels are then manually folded in a sequential manner (panel 68 first and then panel 70) about the hinge couplings 72 and 74 into the stacked horizontal positions overlying the floor 12. These side wall panels 68 and 70 are shown partially folded in
As best shown in
The lower end of the end wall 20 is positioned against the outside surface of the vertical flange floor railing 28 for enhancing the structural integrity of the unfolded container. For this purpose, the floor railing 28 is positioned sufficiently inwardly from the end of the floor so as to position the vertical flange of floor railing 28 inside of the end wall 20 a distance substantially corresponding to the thickness of the end wall 20.
A hinge mechanism about which end panels 20 and 22 can be satisfactorily pivoted as well as lifted in accordance with the requirements of the present invention is achieved by using a pin and slot arrangement as best illustrated in
The upward as well as the inward angular displacement of the end walls 20 and 22 provided by the hinging relationship of the pins 86 with the elongated slots 84 assures that the end wall 20 will be lifted sufficiently to be pivoted over the top of the flange of floor railing 28 when this end wall 20 is folded into desired horizontal positions during the container folding operation and returned to the vertical abutting relationship with the flange on railing 28 when the container is unfolded. Also, the elongated slots 84 allow the end walls 20 and 22 to be displaced or moved inwardly towards one another as the folding operation nears completion so that the lowermost ends of the end walls 20 and 22 do not extend beyond the ends of the container floor 12. This inward movement of end walls 20 and 22 near the completion of the folding operation assures that the eaves 38 on the roof cap 37 will overlap and cover the folded end walls as well as the folded side walls to provide a relatively weather tight and compact folded container package. To accomplished this desired vertical lifting of the end walls over the top of the floor railing 28 and the inward displacement of the nearly folded end walls, the elongated slots are preferably of a length slightly greater than the height of the vertical flange on floor railing 28 with the pins 86 positioned in the lowermost end of the slots 84 when the container is folded as in
While the preferred embodiment of foldable container 10 utilizes angle iron the construction of the floor railings, the vertical columns and the roof framework, it will appear clear that aluminum may be use in place of the steel in these components and that at least some of these structural components can be in the form of rectangular tubing, open-sided or c-channel iron, or any combination thereof including such combinations with angle iron.
The foldable container 10 of the present invention is provided with a self-contained or integral container folding and unfolding mechanism which enables the container to be folded or unfolded without the aid or an external lifting device as previously required of known foldable containers such as listed above. As best shown in
Movable connecting means 87 and 88 found to satisfactorily provide for the folding or unfolding of the end walls 20 and 22 along with the simultaneous displacement of the attached roof each include a hinge means which are coupled to and move or slide along slide means 92 and 94 attached to the roof. The slide means are provided by elongated U-shaped channel irons 92 and 94 that are attached at the base thereof to the lower surface of the horizontal flanges on the angle-iron side sections 42 and 44 of the roof framework 40. These channel irons 92 and 94 are parallel with one another and the sides of the container along the fold line for the end walls 20 and 22 and are of a length substantially corresponding to the spacing between the end walls 20 and 22. The opening into each of the channel irons 92 and 94 faces downwardly so as to receive therein round or rectangular end portions 96 and 98 of the movable hinge means or movable hinged slides 100 and 102. These end portions 96 and 98 comprise support blocks joined by relatively thin neck regions 104 and 106 to further round or rectangular portions or slide support blocks 108 and 110 that are positioned outside of U-shaped channel irons 92 and 94. As shown in
The hinging action of the hinged slides 100 and 102 is achieved by attaching horizontally extending arms 116 and 118 projecting from the slide blocks 108 and 110 of the hinged slides to the cross plates 60 and 62 of end walls 20 and 22 with a suitable hinge arrangement. A satisfactory hinge arrangement is a simple pivot hinge provided by attaching horizontally bored metal support blocks 120 and 122 to the cross plates 60 and 62 and then connecting the arms 116 and 118 to these hinge support blocks 120 and 122 by inserting dowels 124 and 126 in bores in the hinge support blocks and ends of the arms 116 and 118.
The folding of the container is achieved when the hinged slides 100 and 102 coupled to end wall 20 are displaced or moved towards simultaneously moving similar hinged slides (hinged slide 100a in
The folding and unfolding of the end walls 20 and 22 is achieved by utilizing the integral or self-contained and reversible linear motion drive mechanism of the present invention as generally shown at 132 in
The traveling-nut assemblies 136 and 138 comprise internally threaded nuts 144 and 146 which are supported on and threadedly engage opposite end regions of the worm gear 134 and which are linearly displaced in opposite directions upon rotation of the worm gear 134. The threaded nuts 144 and 146 are connected to the cross plates 60 and 62 of end walls 20 and 22 by hinges 148 and 150. These hinges 148 and 150 may be satisfactorily constructed similarly to the hinge arrangement used for the hinged slides 100 and 102 described above. The oppositely threaded ends on the worm gear 134 are each of a length adequate to assure that the traveling-nut assemblies 136 and 138 will be sufficiently displaced thereon to effect complete folding and unfolding of the container end walls 20 and 22.
In order to rotate the worm gear 134 in either direction to effect the desired directional displacement of the traveling nut assemblies 136 and 138 for the selected folding or unfolding of the end walls 20 and 22, an end section of the worm gear at the door end 22 of the container projects through the bearing mount 142 and through a bore in the flange of section 48 of the roof framework 40. This end of the worm gear 134 is fitted with a nut-like appendage or structure 153 which can be readily engaged via a socket attached to a rotating drive mechanism (not shown) such as described above. The mechanical advantage afforded by the gear reduction relationship between the worm gear 134 and the threaded nuts 146 and 148 along with the torque afforded by well known electric and pneumatic rotary drivers is sufficient to the effect the desired folding and unfolding of the container 10 end walls 20 and 22 as described above without requiring any assistance from an external lifting device such as a crane or fork lift. Preferably, the particular rotary drive mechanism selected to rotate the lead screw 134 should have sufficient levels of torque and rotational speed to fold or unfold the end walls of the container 10 within a few minutes.
Stabilizing means may be used during the folding and unfolding of the container to assure that the end walls and the attached roof are substantially uniformly displaced toward and away from the base and thereby minimizing any binding or adverse loadings on the hinges or moving components. Satisfactory stabilization means such purposes may be achieved by affixing a scissoring assembly (not shown) at horizontally spaced apart locations on each of the vertical flanges of the roof framework sections 42 and 44 and to each of the vertical flanges of the floor railings 24 and 26. The folding and unfolding of this scissoring assembly is concurrent with the vertical displacement of the roof 14 and helps maintain the latter in a substantially horizontal plane parallel to the base 12 so as to help assure the uniform angular displacement of the end walls 20 and 22 and the vertical displacement of the roof 14. A scissor-like mechanism suitable for such stabilization purposes is generally shown in
In a container unfolding operation, as the reversible drive mechanism 132 initially moves the traveling nut assemblies 136 and 138 towards the ends of the container to pivot or angularly lift the end walls 20 and 22 and the roof 14 attached thereto, a substantial load or strain is placed on the drive mechanism 132. This load on the drive mechanism 132 can be substantially reduced by using roof lift assist means to assist the integral drive mechanism 132 in initially lifting the roof 14 and placing the end walls 20 and 22 on a slight incline during the initial stages of a container unfolding operation.
Roof lift assist means suitable for assisting in the initial lifting of the roof and the tilting or uplifting of the folded end walls 20 and 22 comprises a cantilever leaf spring assembly coupled to each vertical column 52, 54, 56 and 58 or to the roof brace 49. Each spring assembly has an elongated and curved leaf segment that is positionable between the upper surface of the folded side wall 18 and the folding columns or the descending roof prior to container folding so that contact is established between the springs and the side wall during final stages of container folding to place a roof-lifting bias or load upon each spring segment. This loading of these spring segments is provided by the reversible drive mechanism 132 as it pulls the roof 14 down and fully pivots the ends walls 20 and 22 into the final folded positions shown in
One embodiment of a suitable cantilever spring assembly is shown at 162 in
In as much as the side walls 16 and 18 can not be pivoted into the container during the folding thereof with the cantilever spring assemblies 162 in place on the columns, the cantilever spring assemblies 162 are attached to the columns after the side walls are folded. A satisfactory easily removable attaching means for this purpose is provided by a bayonet-type coupling wherein capped pins 168 engage keyhole-shaped slots 170 in the flanges of the vertical columns. When the container is unfolded for use the cantilever spring assemblies 162 may be readily stored in any suitable place within or outside of the container 10.
A further embodiment of a cantilever spring structure suitable for assisting the drive mechanism 132 in lifting the roof 14 and upwardly tilting the end walls 20 and 22 is shown in
In this embodiment, like the previously described embodiment of
Additionally, as shown in FIGS. 5and 9, coil springs 184 and 186 are shown placed about the worm gear 134 with the brace 49 and bearing 50 positioned therebetween. These coil springs 184 and 186 will be loaded or compressed by contact with the traveling nut means 136 and 138 as they are driven towards one another by the reversible drive means the during the final stages of the container folding operation. During the container unfolding operation the energy instilled in the compressed coil springs significantly assists the reversible drive means and the cantilever spring assemblies, if used, in the initial angular displacement of the end walls 20 and 22.
In a typical container folding operation, the side wall panel fastening devices 78 are removed or released. The side walls 16 and 18 are then sequentially folded about the hinges 72 and 74 into stacked parallel positions overlying the floor deck 32 (
The unfolding of the folded container is accomplished by reversing the above described container folding steps. During the initial container unfolding steps the loaded curved leaf springs 162 or 174 and the coil springs 184 and 186 initially assist the reversible drive means 132 in angularly upwardly displacing the end walls 20 and 22 and lifting the roof 14. With the container unfolded and the fasteners 78 engaged, the resulting container has sufficient structural integrity and is sufficiently weather tight to be satisfactorily used in the envisioned applications.
Claims
1. A foldable container comprising elongate base means, elongate roof means oriented in a plane substantially parallel to and vertically spaced from said base means, first and second elongate opposing and vertically oriented side wall means disposed between said base means and said roof means, first and second elongate vertically oriented and opposing end wall means disposed between said base means and said roof means and oriented in vertical planes substantially normal to said first and second side wall means, hinge means connecting an end section of each of the first and the second side wall means to said base means for the pivotable sequential displacement of the first side wall means and the second side wall means towards said base means and into folded locations adjacent to and overlying the base means, further hinge means connecting a lower end section of each of the first and second end wall means to said base means for providing rotational axes for the angular displacement of the first and second end wall means in a first direction towards one another during container folding, movable connecting means coupling an upper end section of each of the first and second end wall means to said roof means and movable with respect thereto for the simultaneous angular displacement of the first and second end wall means and the connected roof means in said first direction towards said base means and into substantially parallel locations overlying and adjacent to the first and second side wall means, and reversible drive means supported by said roof means and connected to an upper end section of each of said first and second end wall means for simultaneously angularly displacing the first and second end wall means along said movable connecting means in said first direction.
2. A foldable container as claimed in claim 1, wherein said reversible drive means drive the movable means during container unfolding in a second direction opposite to said first direction for simultaneously angularly displacing the first and second end wall means away from said substantially parallel locations overlying said base means to position the first and second end wall means in said vertical orientation and said roof means in said plane vertically spaced from the base means.
3. A foldable container as claimed in claim 2, wherein each of said first and second end wall means include frame means disposed at peripheral edge regions thereof with first and second side portions of each of said frame means being located adjacent to said first and second side wall means and extending between said base means and said roof means for supporting said roof means and with a third portion of each of said frame means being located adjacent to the roof means and extending between the first and second portions of the frame means, wherein said further hinge means connect a lower end region of each of the first and second portions of said frame means to the base means, and wherein said movable connecting means and said reversible drive means are connected to the third portion of each of said frame means.
4. A foldable container as claimed in claim 3, wherein elongated guide means are supported by said roof means and extend substantially between the first and the second end wall means, wherein the movable connecting means are supported by and movable along said guide means, and wherein said movable connecting means includes additional hinge means connecting each said third portion of said frame means to said guide means for providing the angular displacement of the first and second end wall means while maintaining the connection thereof to said roof means.
5. A foldable container as claimed in claim 4, wherein said roof means has framework means disposed at peripheral edge regions thereof, wherein the elongated guide means are supported by said framework means, and wherein said movable connecting means further includes slide means coupled to said additional hinge means and to said guide means and are movably supported by said guide means for linear displacement thereon.
6. A foldable container as claimed in claim 3, wherein said roof means has framework means disposed at peripheral edge regions thereof with end sections of the framework means disposed adjacent to the third portion of the frame means of each said first and second end wall means, wherein the reversible drive means comprise traveling-nut means disposed between and supported by said end sections of the framework means, and wherein said traveling nut means includes still further hinge means connecting traveling nut means to each end section of the framework means for providing for the angular displacement of the first and second end wall means.
7. A foldable container as claimed in claim 6, wherein said traveling-nut means comprises an elongated externally threaded lead screw mean and internally threaded nut means attached to each of said still further hinge means and threadedly engaging the external threads on said lead screw means, wherein said lead screw means is connected to and rotatably supported by said end sections of the framework means, and wherein each traveling-nut means and opposite end regions of the elongated screw means are directionally threaded for providing said simultaneous angular displacement of the first and second end wall means upon the rotation of the lead screw means in said first and second directions.
8. A foldable container as claimed in claim 7, wherein bearing means are disposed between the end sections of the framework means and the opposite ends of the lead screw means for providing relative rotational movement of the lead screw means with respect to the framework means.
9. A foldable container as claimed in claim 8, wherein one end of said lead screw means extends through one of end sections of the framework means, and wherein coupling means are attached to said one end of the lead screw means for coupling with a lead screw rotating means.
10. A foldable container as claimed in claim 5, wherein the said framework means includes side sections substantially overlying and inwardly spaced from upper end regions of the first and second side wall means, wherein the elongated guide means comprises an elongated substantially u-shaped open-sided channel member attached to each of the side sections of the framework means and extending substantially between the first and second end wall means, wherein a portion of each said slide means is disposed within the u-shaped channel member, and wherein said u-shaped channel has reentrant wall portions at the opening thereinto for supporting the slide means.
11. A foldable container as claimed in claim 10, wherein the reversible drive means is positioned substantially between and parallel with the first and second side wall means.
12. A foldable container as claimed in claim 3, wherein the frame means has corner regions located adjacent to corner regions of said base means, wherein said further hinge means connecting the end region of each of the first and second portions of the frame means to the base means comprise slidable means for the vertical displacement of the first and second end wall means relative to the end regions of the base means during the angular displacement of the first and second end wall means in said first direction for positioning lower end regions of the frame means contiguous to the further hinge means at locations substantially underlying peripheral edge regions of roof means when said first an second end wall means are in said substantially parallel locations.
13. A foldable container as claimed in claim 12, wherein said base means includes elongated upright flange means disposed along side regions thereof adjacent to each of said first and second side wall means and with end portions of each upright flange means being located in each corner region of the base means, wherein said slidable means comprises substantially vertically oriented elongated slots located in the lower end regions of the first and second portions of the frame means and pin means projecting from the end portions of said upright flange means and engaging the slot means, and wherein the movable connecting means displace the frame means relative to the end regions of the base means by moving the slotted frame means relative to the pin means during the angular displacement of the first and second end wall means.
14. A foldable container as claimed in claim 3, wherein said base means includes further upright flange means disposed at a location substantially parallel to and inwardly spaced from one of said first and second end wall means with upper end regions of end portions on said further flange means substantially underlying and outwardly spaced from said pin means, wherein said further upright flange means abuts against and supports the frame means of said one of the first and second end wall means when the latter are vertically oriented, and wherein the displacing of the frame means relative to the base means provides for the positioning of said one end wall means at a location overlying the further upright flange means when said first and second end wall means are in said parallel locations.
15. A foldable container as claimed in claim 3, wherein the first and second end wall means comprises at least one end panel means attached at peripheral edge regions thereof to the frame means of each of the first and second end wall means, wherein the first and second side wall means comprise at least one side panel means having peripheral edge regions disposed contiguous to said base means and said roof means and to said frame means of each of the first and second end wall means, and wherein selectively engagable fastening means attach the at least one side panel means to the roof means and frame means of each of the first and second end wall means.
16. A foldable container as claimed in claim 15, wherein said at least one side panel means comprises a plurality of rectangular panels disposed in a side-by-side relationship, and wherein adjacent panels are secured together by selectively engagable fastening means.
17. A foldable container as claimed in claim 3, including stabilizing means for maintaining the roof means in a plane substantially parallel with said base means during the displacement of the first and second end wall means in said first and said second direction.
18. A foldable container as claimed in claim 3, including means for assisting said reversible drive means in the initial angular separation of said first and second end wall means away from said substantially parallel locations overlying the base means and in said second direction during container unfolding.
19. A foldable container as claimed in claim 18, wherein said means for assisting the initial separation of said first and second end wall means separation of said first and second end wall means away from said substantially parallel locations overlying the base means during container unfolding comprise spring means located intermediate an upper surface on one of the folded first and second side wall means and one of said roof means and said end wall means, and wherein said spring means bear against said upper surface of one of the folded side wall means and one of said roof means and said end wall means during the displacement of the end wall means in said first direction by said reversible drive means for loading said spring means with sufficient energy for the assisting of the reversible drive means in said initial angular separation of said first and second end wall means.
20. A foldable container as claimed in claim 8, including coil spring means disposed about said lead screw means and compressible during final stages of the angular displacement of the end wall means in said first direction, and wherein the compressed coil springs means bear against the first and second end wall and assist the reversible drive means in displacing the first and second end wall mean is said second direction.
Type: Application
Filed: Jul 30, 2008
Publication Date: Feb 4, 2010
Patent Grant number: 7882973
Inventor: Christopher G. Krohn (Knoxville, TN)
Application Number: 12/220,935
International Classification: B65D 88/52 (20060101); B65D 8/14 (20060101);