Composite Sealing Gasket and Process for Belling Plastic Pipe
An sealing gasket is shown for use in forming joints of plastic pipe. The gasket is formed as a composite elastomeric body with a leading region formed of a thermoplastic elastomer material and with a trailing region formed of a synthetic plastic material. The gasket body has an outer circumferential region provided with a series of recessed pocket which give it a scallop-like appearance. The relatively harder plastic region of the gasket body deforms the associated pipe socket end during manufacture of the pipe end, whereby the gasket is integrally locked within an internal pipe groove in the pipe socket end upon completion of the pipe belling operation.
1. Field of the Invention
The present invention relates generally to sealing systems for thermoplastic pipes and, more specifically, to an improved pipe gasket and to an improved belling process for installing a gasket in a socket end of a thermoplastic pipe.
2. Description of the Prior Art
Pipes formed from thermoplastic materials including polyethylene and PVC are used in a variety of industries. In forming a joint between sections of pipe, the spigot or male pipe end is inserted within the female or socket pipe end. An annular, elastomeric ring or gasket is typically seated within a groove formed in the socket end of the thermoplastic pipe. As the spigot is inserted within the socket, the gasket provides the major seal capacity for the joint. It is critical, during the installation process, that the gasket not be able to twist, flip or be displaced, since a displaced or dislocated gasket will adversely affect the ultimate sealing capacity of the joint.
In the early 1970's, a new technology was developed by Rieber & Son of Bergen, Norway, referred to in the industry as the “Rieber Joint.” The Rieber system employed a combined mold element and sealing ring for sealing a joint between the socket end and spigot end of two cooperating pipes formed from thermoplastic materials. In the Rieber process, the elastomeric gasket was inserted within an internal groove in the socket end of the female pipe as the female or belling end was simultaneously being formed. The provision of a prestressed and anchored elastomeric gasket during the belling process at the pipe factory provided an improved socket end for a pipe joint with a sealing gasket which would not twist or flip or otherwise allow impurities to enter the sealing zones of the joint. These features increased the reliability of the joint and decreased the risk of leaks or possible failure due to abrasion or other factors. The Rieber process is described in the following issued U.S. Pat. Nos. 4,120,521; 4,061,459; 4,030,872; 3,965,715; 3,929,958; 3,887,992; 3,884,612; and 3,776,682.
In the Rieber process, the gasket is installed in a circumferential groove provided upon the working surface of a mandrel and abuts a backup collar which helps to position and retain the gasket during the subsequent belling operation. The associated thermoplastic pipe was then heated and the heated thermoplastic pipe end was forced over the mandrel and gasket. The pipe socket end was deformed by the gasket and an internal retention groove was formed in the interior of the pipe end. The pipe end was then cooled so that it would retain its shape and the mandrel was retracted, leaving the sealing gasket fixed within the retention groove.
In the Rieber process, the gasket always included an internal metal reinforcing component which circumscribed the gasket body and gave it additional rigidity. The metal component, either a band or wire, was bonded to the rubber and acted as the structural member to keep the gasket engaged in the pipe socket after the belling operation was complete. As such, although the pipe wall was formed over the Rieber gasket, the two components were discrete.
Other commercial gaskets available in the industry, for example the Forsheda POWER LOCK® and the Vassallo EPSMI®, did not utilize a bonded metal component, but instead used a hard polymer component for the trailing region (ramp). The hard polymer component acted in the same structural manner as the metal component in the original Rieber belling operation. As such, the hard polymer portion of the gasket was necessarily heavy with a relatively thick cross section. The pipe wall was formed over the gasket and these two components again remained discrete in the final assembly. In those cases where material was removed from the trailing region of the gasket, as in the Vassallo gasket, it was removed to reduce mass while retaining structural integrity.
A need exists, therefore, for an improved sealing gasket for use in a Rieber type manufacturing process, which sealing gasket would be even more positively and “integrally locked” within the retention groove of the socket pipe end during the belling operation.
A need also exists for such a sealing gasket which would be simple in design and simple to manufacture and which could also be used without the necessity of modifying the design of existing belling machines.
A need also exists for such a sealing gasket which, because of its composite construction, would eliminate the need for an internal reinforcing ring, thereby reducing the cost of the gasket and simplifying the belling operation and improving the cycle time of the manufacturing operation.
A need also exists for such a sealing gasket which, due to its composition, would eliminate the need for the use of a lubricant during the belling operation.
A need also exists for such a gasket which could be color coded so that, for example, the gasket could be coded according to size or end use.
A need also exists for such a gasket which, due to its composition, could utilize recycled scrap, thereby eliminating much of the scrap waste present in conventional belling operations.
SUMMARY OF THE INVENTIONThe present invention has as its object to provide an improved sealing gasket, an improved pipe belling process, and an improved pipe assembly method, all of which meet the needs described in the prior art and which meet the previous objectives. The belling process and pipe joint of the invention uses a special “scallop” design in a hard polymer region of the gasket body to integrate the gasket and the pipe wall. As compared to the previously described Rieber and Forsheda processes, the pipe wall and the trailing region (ramp) interface of the gasket body is no longer two smooth mating surfaces. Now the pipe wall is formed over the gasket at a temperature above its glass transition temperature. Then, either using vacuum or pressure, the pipe wall is forced to flow into cavities formed by the scalloped regions of the gasket. Now integrated with the pipe wall, the hard polymer component of the subject gasket is no longer required to act as the discrete structural member seen in the previous gasket designs described in the prior art. The structural integration apparent in the new design provides for optimal design of the trailing region of the gasket body.
The improved pipe sealing gasket of the invention is designed for receipt within a groove provided within a socket end of a thermoplastic pipe. The gasket has a ring shaped composite elastomeric body which, when viewed in cross section, has a leading region formed of a thermoplastic elastomer material (TPE) and which has a trailing region formed of a synthetic plastic material. The leading region has an outer surface and an inner primary compression sealing surface which forms a compression seal with the exterior surface of the mating male pipe when the mating male pipe is inserted within the socket end of the thermoplastic pipe to form a pipe joint. The trailing body region of the gasket has a series of recessed pockets formed on an outer surface thereof which provide a scallop-like pattern on the outer surface of the trailing region of the gasket body.
Preferably, the thermoplastic elastomer material is selected from the group consisting of thermoplastic elastomers (TPE's) and thermoplastic vulcanizable elastomers (TPV's). The preferred material for the synthetic plastic material is preferably a polyolefin material, such as polypropylene. The recessed pockets which provide the scallop-like pattern on the outer surface of the trailing region of the gasket body are preferably located at evenly spaced locations about an outer circumferential region of the gasket body. The resulting outer circumferential region of the gasket body contacts and deforms the groove provided within the socket end of a thermoplastic pipe during pipe belling operations as the heated pipe end is flowed, to thereby integrally lock the gasket body within the pipe bell during the belling operation.
In the method of forming a pipe joint of the invention, a sealing gasket of the type previously described is pre-located within a groove provided within a female socket end of a first section of pipe in a Rieber style manufacturing process. The spigot end of one section of thermoplastic pipe is then inserted within the socket end of a second pipe section to form a pipe joint. The socket end of the thermoplastic pipe terminates in a mouth region with the groove being located adjacent the mouth region. Upon assembly of the joint, the primary compression seal region of the gasket body forms a compression seal with the mating spigot pipe end.
In the improved pipe belling method of the invention, a forming mandrel is provided with an inner end and an outer end, the mandrel also having an outer working surface. An improved gasket of the type previously described is installed at a first circumferential position on the outer working surface of the mandrel. The first circumferential region preferably comprises a circumferential groove having opposing sidewalls, and wherein the gasket body is seated within the circumferential groove so that the thermoplastic pipe is forced over the trailing region of the gasket body and then over the leading region thereof. Heating the thermoplastic pipe end above the glass transition temperature allows the resulting rubbery polymer to flow about the gasket body, including the scalloped regions. This action of the heated socket end of the thermoplastic pipe flowing over the gasket also forms the retention groove which ultimately retains the sealing gasket. The heated socket end of the thermoplastic pipe is then cooled and the socket end is retracted from the mandrel, whereby the gasket is retained within an internal groove which is formed in the interior of the female, belled pipe end. The unique composition and geometry of the gasket of the invention insures that the gasket body is integrally locked into position within the retention groove provided in the socket pipe end.
Additional objects, features and advantages will be apparent in the written description which follows.
The embodiments herein and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known components and processes and manufacturing techniques are omitted so as to not unnecessarily obscure the embodiments herein. The examples used herein are intended merely to facilitate an understanding of ways in which the invention herein may be practiced and to further enable those of skill in the art to practice the embodiments herein. Accordingly, the examples should not be construed as limiting the scope of the claimed invention.
The primary advantages of the present invention can perhaps be best understood with reference to a simplified discussion of the prior art Rieber pipe belling process and with reference first to
In the first step of the Rieber pipe belling process, the composite gasket 11 is placed onto the working surface of the mandrel 17 and pushed to a position against the back-up or forming collar 23. In this position, the gasket is anchored to the mandrel surface.
In the second step of the manufacturing process, the socket end 33 of the thermoplastic pipe 31 (
In the next step of the pipe belling process (
In the final step of the process (
The above described Rieber process has been in commercial use since the early 1970's and is described in the above referenced issued United States patents, among other sources. It will thus be well familiar to those skilled in the thermoplastic pipe sealing arts. However, it is the particular geometry and composition of the improved sealing gasket 11 of the invention which results in an improved pipe product. These features of the gasket 11 will now be described in greater detail.
As can be seen in
With further reference to
As best seen in
As has been briefly explained, the outer circumferential region 61 of the gasket body contacts the groove (43 in
The terms “thermoplastic elastomer material” and “synthetic plastic material” are intended to be terms of art, as will be explained in greater detail in the paragraphs which follow. The nature of the materials used in forming the gasket body are significant due to that fact that, unlike the standard prior art gasket formed totally of a traditional elastomer, such as natural or synthetic rubber, the “composite gasket” of the invention has a leading region of a relatively softer (lower durometer) thermoplastic elastomer material (TPE) and a trailing region of a relatively harder (higher durometer) synthetic plastic material.
Turning first to the trailing region of the gasket body, the relatively harder synthetic plastic material is preferably a polyolefin, such as polypropylene, polypropylene, polyvinylchloride, etc. A preferred material for the synthetic plastic region of the gasket is polypropylene. The preferred polypropylene material is a high performance impact copolymer showing an appropriate stiffness for the application at hand. The material can be of higher durometer than the remaining portion of the gasket body since it does not participate in the sealing function of the gasket to any significant extent.
Turning now to the material used to form the leading region of the gasket body, the term “thermoplastic elastomer material” (referred to herein by the shorthand term “TPE”) is a relatively newer family of materials known in the industry, as will be explained with reference to the previously used materials. The term “elastomer” as used herein will be intended to mean “any of various polymers having the elastic properties of natural rubber.” Similarly, the term “plastic” will be used herein to mean “any of various organic compounds produced by polymerization, capable of being molded, extruded, cast into various shapes and films, or drawn into filaments.”
Applicant's use of the term “thermoplastic elastomer material” or TPE is intended to encompass a special type of recently developed “engineered” elastomer. The members of this subset include, for example:
Thermoplastic elastomers (TPE), for example Elastron®, etc.
Thermoplastic Vulcanizates (TPV), for example Sarlink®, Santoprene® TPV or Exxon Mobil's Geoplast® TPV
The preferred thermoplastic elastomer material used for Applicant's leading region is a TPE “vulcanizate.” These materials are polypropylene based elastomers that exhibit excellent compression set, flex fatigue and low/high temperature performance. They show very good chemical resistance quite appropriate for conveying the fluids found in sewer/waste water systems. Unlike the traditional elastomers used in sealing gasket manufacture, these products can be recycled and reprocessed since the physical and chemical properties of the materials are not degraded. The material can also be thermally bonded to form high strength bonds and in the present application, both the TPV and the PP are perfectly bonded due to their excellent compatibility.
An invention has been provided with several advantages. The improved sealing gasket is simple in design and economical to manufacture. The gasket features a “dual durometer” aspect in that the polypropylene trailing region is more rigid than the remainder of the leading region of the gasket body. The polypropylene planar, angled region of the gasket replaces rubber at neutral locations for sealing purposes. The polypropylene material provides the gasket with a very low coefficient of friction between the gasket and the PVC material of the pipe socket end. The polypropylene portion of the gasket has enough stiffness and rigidity to retain the gasket in the proper position on the belling mandrel during the belling process without deformation. The new shape enforces a more stable bell shape during subsequent belling operations and improves quality control. The new gasket is compatible with existing belling machines. The improved sealing gasket can be used in a Rieber type manufacturing process, but is more positively “integrally locked” within the retention groove of the socket pipe end during the belling operation. Because of the composite nature of the gasket body, the need for an internal metal reinforcing band is eliminated, thereby simplifying the belling operation and improving the cycle time of the manufacturing operation. The plastic portion of the gasket prevents “pivoting” the whole body of the gasket during belling, thus making the gasket more tolerant of off-center assemblies on the forming mandrel. Possibilities of “fish mounting” are minimized. The material make-up of the gasket body also eliminates the need for a lubricant during the belling operation. The materials of the gasket body make it suitable for color coding so that, for example, the gasket could be coded according to size or end use, e.g., as a sewer gasket or as a pressure gasket. Because of the plastic-like nature of the materials used to form the gasket body, any scrap material can be reused or recycled, thereby eliminating much of the scrap waste present in conventional belling operations. The sealing region of the gasket is formed of a suitable TPE material which allows bonding to the polypropylene (plastic) region of the gasket.
The gasket of the invention provides an ideal solution for PVC pipe joints. It can be used for applications in sewer, pressure and telephone or optic duct, as well as with PVC pipe.
While the invention has been shown in only one of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit thereof.
Claims
1. A pipe sealing gasket designed for receipt within a groove provided within a socket end of a thermoplastic pipe for sealing engagement and forming a pipe joint with a mating male pipe having an exterior pipe surface, the gasket comprising:
- a ring shaped composite elastomeric body which, when viewed in cross section, has a leading region formed of a thermoplastic elastomer material and which has a trailing region formed of a synthetic plastic material, the leading region having an outer surface and an inner primary sealing surface which forms a seal with the exterior surface of the mating male pipe when the mating male pipe is inserted within the socket end of the thermoplastic pipe to form a pipe joint; and
- wherein the trailing body region of the gasket has a series of recessed pockets formed therein which provide a scallop-like pattern on the outer surface of the trailing region of the gasket body, the recessed pockets being located at evenly spaced locations about an outer circumferential region of the gasket body, and wherein the outer circumferential region of the gasket body contacts the groove provided within the socket end of a thermoplastic pipe during pipe belling operations as the socket end is heated to thereby deform the socket end and integrally lock the gasket body within the socket end during the belling operation.
2. The gasket of claim 1, wherein the contact between the gasket body and the socket end of the thermoplastic pipe during the belling operation structurally integrates the gasket body with the pipe socket end so that the trailing region of the gasket body is no longer required to act as a discrete structural member in the resulting pipe joint.
3. The gasket of claim 1, wherein the thermoplastic elastomer material is selected from the group consisting of TPE's and TPV's.
4. The gasket of claim 1, wherein the synthetic plastic material is a polyolefin material.
5. The gasket of claim 1, wherein the leading region of the ring shaped composite elastomeric body has an outer surface and an inner primary compression sealing surface which forms a compression seal with the exterior surface of the mating male pipe when the mating male pipe is inserted within the socket end of the thermoplastic pipe to form a pipe joint.
6. A method of forming a pipe joint using a pipe sealing gasket designed for receipt within a groove provided within a female socket end of a first section of pipe for forming a seal between an internal surface of the female socket end and a male spigot end of a mating second pipe section, the method comprising the steps of:
- installing a sealing gasket within the groove provided within the female socket end of the first pipe section, the sealing gasket being formed as a ring shaped composite elastomeric body which, when viewed in cross section, has a leading region formed of a thermoplastic elastomer material and which has a trailing region formed of a synthetic plastic material, the leading region having an outer surface and an inner primary compression sealing surface which forms a compression seal with the exterior surface of the mating male pipe when the mating male pipe is inserted within the socket end of the thermoplastic pipe to form a pipe joint;
- wherein the trailing body region of the gasket has a series of recessed pockets formed therein which provide a scallop-like pattern on the outer surface of the trailing region of the gasket body, and wherein the outer circumferential region of the gasket body contacts the groove provided within the socket end of a thermoplastic pipe during pipe belling operations as the socket end is heated to thereby deform the socket end and integrally lock the gasket body within the socket end during the belling operation, wherein the contact between the gasket body and the socket end of the thermoplastic pipe during the belling operation structurally integrates the gasket body with the pipe socket end so that the trailing region of the gasket body is no longer required to act as a discrete structural member in the resulting pipe joint;
- installing the spigot end of one thermoplastic pipe section within the socket end of a second pipe section to form a pipe joint.
7. The method of claim 6, wherein the thermoplastic elastomer material is selected from the group consisting of TPE's and TPV's.
8. The method of claim 7, wherein the synthetic plastic material is a polyolefin material.
9. A method of installing a gasket in a socket end of a thermoplastic pipe which is used to form a pipe joint, the method comprising the steps of:
- providing a mandrel with an inner end and an outer end and having an outer working surface;
- installing a gasket at a first circumferential position on the outer working surface;
- heating a socket end of the thermoplastic pipe; forcing the heated socket end of the thermoplastic pipe over the working surface of the mandrel and over the gasket and backup collar, whereby the heated socket end of the thermoplastic pipe flows over the gasket to form a retention groove for retaining the gasket;
- cooling the heated socket end of the thermoplastic pipe;
- retracting the cooled socket end of the thermoplastic pipe and the retained gasket from the working surface of the mandrel;
- the sealing gasket being formed as a ring shaped composite elastomeric body which, when viewed in cross section, has a leading region formed of a thermoplastic elastomer material and which has a trailing region formed of a synthetic plastic material, the leading region having an outer surface and an inner primary compression sealing surface which forms a compression seal with the exterior surface of the mating male pipe when the mating male pipe is inserted within the socket end of the thermoplastic pipe to form a pipe joint;
- wherein the first circumferential region provided on the working surface of the mandrel comprises a circumferential groove having opposing sidewalls, and wherein the gasket body is seated within the circumferential groove so that the thermoplastic pipe is forced over the trailing region of the gasket body and then over the leading region thereof, contact with the trailing region of the gasket body acting to deform the bell pipe end and integrally lock the gasket body within the subsequently formed retention groove in the pipe socket end.
10. The method of claim 9, further comprising the steps of:
- providing a backup collar at a second circumferential location on the mandrel, the backup collar having an exposed lip portion which initially abuts the gasket;
- wherein the backup collar is retracted once the heated thermoplastic pipe end is forced over the forming mandrel and the gasket.
11. The method of claim 10, further comprising the step of applying a vacuum or positive external pressure to the heated, socket end of the thermoplastic pipe after the pipe has been forced over the working surface of the gasket and mandrel to thereby force the heated, socket end to contract about the mandrel and gasket.
12. The method of claim 11, wherein the heated thermoplastic pipe is cooled by water or air after the mandrel is retracted.
Type: Application
Filed: Sep 10, 2008
Publication Date: Mar 11, 2010
Inventor: Guillermo Monteil (San Jose)
Application Number: 12/207,555
International Classification: F16L 21/03 (20060101); F16J 15/10 (20060101); B23P 11/00 (20060101);