Decorative wind turbine having flame-like appearance
A wind turbine has a visual envelope suggestive of a flame. The turbine has a rotor adapted to rotate about an axis of rotation that is perpendicular to a direction of a prevailing wind. The visual envelope is curvilinear, generally wider toward the root end, and narrower near the tip. A power take off device converts rotation of the rotor into a useful and preferably transmissible form of energy.
Latest Natural Power Concepts, Inc. Patents:
This application claims priority to U.S. Provisional Patent Application 61/189,950 entitled, “Fine Arts Innovations,” and filed Aug. 22, 2008.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTNone.
NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENTNone.
BACKGROUNDAccording to the U.S. Department of Energy, modern, wind-driven electricity generators were born in the late 1970′s. See “20% Wind Energy by 2030,” U.S. Department of Energy, July 2008. Until the early 1970s, wind energy filled a small niche market supplying mechanical power for grinding grain and pumping water, as well as electricity for rural battery charging. With the exception of battery chargers and rare experiments with larger electricity-producing machines, the windmills of 1850 and even 1950 differed very little from the primitive devices from which they were derived. As of July 2008, wind energy provides approximately 1% of total U.S. electricity generation.
As illustrated in
In the 1980s, an approach of using low-cost parts from other industries produced machinery that usually worked, but was heavy, high-maintenance, and grid-unfriendly. Small-diameter machines were deployed in the California wind corridors, mostly in densely packed arrays that were not aesthetically pleasing in such a rural setting. These densely packed arrays also often blocked the wind from neighboring turbines, producing a great deal of turbulence for the downwind machines. Little was known about structural loads caused by turbulence, which led to the frequent and early failure of critical parts. Reliability and availability suffered as a result.
A dominant factor driving development of wind turbine technology is a desire for increased power production. Where wind turbines are intended to reduce carbon emissions that would otherwise occur from the burning of fossil fuel, high power output means a greater reduction in carbon emissions. Increasing power production typically reduces cost of generation of electricity by allowing fixed costs to be spread over a larger amount of variable power production.
One factor affecting the power output from a wind turbine is rotor size. In a typical, 3-bladed, horizontal axis wind turbine, the amount of energy available to be captured depends on the sweep area of the rotor blades. The greater the sweep area, the greater the potential amount of energy in the wind that could be captured. As of August 2009, rotor blades may exceed 100 meters in length.
Another factor affecting the power output from a wind turbine is efficiency, that is, the percentage of available power in a given cross section of wind that the turbine actually captures. It is generally believed that horizontal axis wind turbines that have their axis of rotation parallel to the direction of the prevailing wind have better efficiency than transverse-axis wind turbines. So-called “horizontal axis” wind turbines have rotors with an axis of rotation that is horizontal (i.e., parallel to the earth's surface) and typically parallel to the direction of the prevailing wind. So-called “vertical axis” wind turbines typically have rotors with an axis of rotation that is vertical (i.e., at right angles to the earth's surface) and typically perpendicular to the direction of the prevailing wind. Wind turbines that have rotors with an axis of rotation perpendicular to the direction of the prevailing wind are often called “transverse axis” wind turbines, regardless of the orientation of their axis of rotation.
SUMMARYAn object of the invention is to provide a wind turbine for deployment in high-visibility areas. Other objects of the invention include:
-
- 1. providing a transverse axis wind turbine; and
- 2. providing a wind turbine with integrated photovoltaic cells.
These and other objectives are achieved by providing a transverse axis wind turbine with a visual envelope suggestive of a flame. Blades of the wind turbine preferably have a curvilinear envelope that tapers near a tip end and wrap around the axis of rotation. The cross section of such a wind turbine typically would be smaller than that of a wind turbine with a rectangular cross section having the same maximum width and height. A preferred wind turbine includes an electric generator and may optionally include photovoltaic cells that store energy in a battery, capacitor, or other storage device. A preferred wind turbine also includes a connection for transmitting electrical power.
Reference will be made to the following drawings, which illustrate preferred embodiments of the invention as contemplated by the inventor(s).
Structurally, an exemplary turbine includes a rotating part (rotor) and a fixed part. The rotating part includes blades 20a, 20b, 20c, 20d and, optionally, a rotating housing 22. The blades 20a, 20b, 20c, 20d preferably attach at their root (base) ends to a rotational housing 22. The blades 20a, 20b, 20c, 20d may connect together at their tip ends through a cap or fineal 27. (The term “fineal” is used here to mean any structure—preferably but not necessarily decorative—used to join tips of blades. A fineal may alternately be a plate or other shape.)
Aerodynamically, the blades 20a, 20b, 20c, 20d are adapted to rotate about a central axis that extends from the cap or fineal 27 to a centroid of the housing 22. The blades 20a, 20b, 20c, 20d and cap or fineal 27 preferably provide sufficient structural strength that no central axel is required. Frequently, the axis of rotation will be perpendicular to the ground, and blades will be adapted to rotate in the presence of a wind traveling in a direction parallel to the ground, making it a so-called transverse axis wind turbine. In a preferred embodiment, the blades 20a, 20b, 20c, 20d, housing 22, and cap or fineal 27 are joined together and rotate as a single unit. Alternately, the blades may couple to a non-rotating housing or other structure through a bearing.
When viewed from the side as in
The term “leading edge” here is used here only as a convenient point of description to refer to the point of attachment. It is the side of the blade facing into the direction of the prevailing wind when on the downwind part of its rotational cycle. When the blade is on the downwind part of its rotational cycle, the “leading edge” would be facing opposite the direction of the blade's travel. The term is not intended to require the blade to operate at any particular velocity relative to the prevailing wind. Where the point of attachment of the tip is greater than 180 degrees, one portion of the blade may be on an upwind leg while another portion of the leg may be on the downwind leg of rotation. The leading edge may be identified by choosing any portion of the blade while on the downwind leg.
As can be seen in
In the embodiment of
The embodiments described above are intended to be illustrative but not limiting. Various modifications may be made without departing from the scope of the invention. The breadth and scope of the invention should not be limited by the description above, but should be defined only in accordance with the following claims and their equivalents.
Claims
1. A wind turbine comprising:
- a rotor adapted to rotate about an axis of rotation that is perpendicular to a direction of a prevailing wind, said rotor having blades characterized by having:
- (a) a root end,
- (b) a tip end remote from the root end along the axis of rotation, and
- (c) a curvilinear radial envelope that is generally wider toward the root end and narrower near the tip; and
- a fixed supporting structure.
2. A wind turbine as in claim 1 wherein the minimum envelope width is less than about fifty percent (50%) the maximum envelope width.
3. A wind turbine as in claim 1 wherein the minimum envelope width is less than about twenty five percent (25%) the maximum envelope tip.
4. A wind turbine as in claim 1 wherein the minimum envelope radius is less than about ten percent (10%) the maximum envelope radius.
5. A wind turbine as in claim 1 where the rotor comprises a plurality of blades oriented axially along the axis of rotation, each blade having a root end proximate to the rotor root end and a tip end proximate to the rotor tip end, each blade having a leading edge position at the tip end that is advanced circumferentially around the axis of rotation relative to the leading edge position at the root end.
6. A wind turbine as in claim 5 wherein a blade leading edge position at the tip end is advanced at least about sixty degrees (60 deg.) around the axis of rotation relative to the leading edge position at the root end.
7. A wind turbine as in claim 5 wherein a blade leading edge position at the tip end is advanced at least about ninety degrees (90 deg.) around the axis of rotation relative to the leading edge position at the root end.
8. A wind turbine as in claim 1 wherein the rotor is without a central axel along the axis of rotation.
9. A wind turbine as in claim 1 further including a housing at the root end enclosing an electric generator.
10. A wind turbine as in claim 1 wherein the rotor further includes a housing at the root end enclosing an electric generator.
11. A wind turbine as in claim 9 wherein the housing couples to the rotor of an electric generator.
12. A wind turbine as in claim 9 wherein the housing couples to the stator of an electric generator
13. A wind turbine as in claim 9 wherein the housing includes a first part coupled to rotate with the blades and a second part coupled to remain non-rotational.
14. A wind turbine as in claim 1 further including a power take off device.
15. A wind turbine as in claim 1 further including at least one photovoltaic cell.
16. A wind turbine as in claim 1 further including an attachment fixture for mounting to a post.
17. A wind turbine as in claim 1 further including a fineal coupling the blades at the tip ends.
18. A wind turbine as in claim 1 wherein:
- (a) the rotor has an envelope with a maximum width and height; and
- (b) the cross sectional area of the envelope is less than the area of a rectangle having the maximum height and width.
Type: Application
Filed: Aug 21, 2009
Publication Date: Jun 10, 2010
Applicant: Natural Power Concepts, Inc. (Honolulu, HI)
Inventor: John Pitre (Honolulu, HI)
Application Number: 12/461,718
International Classification: F03D 9/00 (20060101); F03D 3/06 (20060101); F03D 11/00 (20060101);