CONDENSATION PLANT

- GEA ENERGIETECHNIK GMBH

The invention relates to a condensation system comprising heat exchanger elements arranged above fans which are held in fan sections (1) arranged as a frame carried by a supporting framework (2). The supporting framework (2) comprises a plurality of supports (3), at least one support (3) comprising a column (5) extending vertically in relation to the fan sections (1), and head struts (6) connecting above the column (5) and extending obliquely in relation to the fan section (1) and the column (5), said struts extending towards the corners (7) of a fan section (1).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The invention relates to a condensation plant with the features set forth in the preamble of patent claim 1.

Condensation plants for cooling turbine or process exhaust steams are used of very large dimensions for many years in the field of power engineering. The constructions known for example from DE-199 37 800 B4 include fans to draw cooling air from below and push it through heat exchanger elements arranged in the shape of a roof. The heated cooling air flows off upwards. As sufficient free space must be made available below the fans, the fans are elevated for example to a height of 20 meters upon a carrying support frame. A steel construction of supports and coupling rods to connect the supports is hereby involved. The coupling rods are required because the supports are fairly slender and an inadmissible buckling length would be created without transversal support. In addition, the coupling rods also deflect horizontal forces, caused by wind and earthquake, into the foundations.

It has been shown that the coupling rods can be caused to vibrate when exposed to wind, even at relatively small wind speeds of 4-5 m/sec. Coupling rods of such plants have lengths of above 10 m and are manufactured from tubes or I sections.

The width of a fan field corresponds approximately to the length of the coupling rods which have a length of, e.g., 11-13 m. The loads to be absorbed by the supports at the corners of such a fan field are correspondingly great so that a condensation plant with 5×7 square fan fields must be provided with a total of 6×8 rows of supports, i.e. overall 48 supports. Each of these supports is to be connected via coupling rods with neighboring supports. The material consumption for such support frames is significant. Also assembly becomes very complex.

Against this background, the invention is based on the object to provide a condensation plant with the features of the preamble of patent claim 1, which condensation plant permits the implementation of a support frame with reduced material consumption and less complexity of assembly.

This object is solved by a condensation plant having the features of patent claim 1.

Advantageous refinements of the inventive ideas are subject matter of the sub-claims.

The condensation plant according to the invention makes use of a completely novel support construction by which the vertical supports are placed outside the corners of the fan fields. This becomes possible by providing at least one support with a column, which extend in vertical relationship to the fan fields, and head struts, which are connected atop the column and extend obliquely in relation to the fan field and the column and which extend towards the corners of a fan field. Loads introduced by the corners into the support construction are thus not deflected directly vertically downwards but rather initially introduced into the obliquely extending head struts which in turn are supported on the column which forms the lower height section of each strut. Each column absorbs the load of at least two corners of a fan field. In this way, it is possible to significantly reduce the number of columns.

For example, an arrangement of 2×3 fan fields required heretofore 3×4=12 supports. Upon placement of a support in midsection of each fan field and four head struts which extend respectively towards the four corners of a fan field, a total of only six supports and thus only six foundations are required in this case. The reduction in the number of supports can also be accompanied by a reduction of the horizontal coupling rods required heretofore. As material consumption is reduced, assembly becomes also simplified. At the same time, a larger free space is made available below the fan fields, thereby contributing to the improvement of the air entry into the fans.

In order to absorb a load as evenly as possible, it is suitable to arrange the column in midsection of a fan field, i.e. at a point where the diagonals intersect between two opposing corners of a fan field. In this configuration, the four head struts of a column have the same length. Basically, it is also possible to move the columns effectively closer together. In an arrangement of 2×2 fan fields, it is, for example, conceivable to place the four columns off-center of the respective fan field, whereby the mutual distance of the columns may either be reduced or also increased in the event a more centered or more peripheral support is desired.

In the afore-described configuration, the columns are located at a distance to the side struts, interconnecting the corners of a fan field, or the length edges of a fan field. It is, however, also conceivable to arrange a single column below a side strut of a fan field, when the column has only two head struts which extend respectively towards the ends of the side strut below which the column is arranged. The support is in this case virtually of Y-shaped configuration. Such a Y-shaped support is viewed by itself as a swinging support and can thus be used only in combination with further supports in order to impart the support frame with the necessary stiffness. Preferably, such Y-shaped supports are used only when further supports are provided with four head struts.

At least one corner of a fan field is preferably supported via four head struts. In other words, this corner represents the center of a fan field arrangement of 2×2 fan fields, wherein each fan field is supported via a support where the column is arranged in midsection of a fan field and wherein each column has four head struts which extend towards the four corners of the respective fan field. As the common corner of the four fan fields is supported via four head struts, i.e. all head struts are interconnected indirectly, the support construction receives the necessary stiffness. In particular, when large condensation plants are involved with, for example, 5×7 fan fields, at least the respective fan fields at the corners are to be supported in the afore-described manner, i.e. provided with four supports, each having four head struts.

To reduce the buckling length of the head struts, the latter may be interconnected via coupling struts. The coupling struts are significantly shorter in the area of the head struts than the coupling rods between two neighboring columns.

In order to be able to absorb horizontal loads, in particular wind loads, it is provided to connect neighboring columns with one another via transverse struts. The transverse struts may extend preferably diagonally between two neighboring columns. It is hereby basically possible to extend the transverse struts from the lower end of the columns, i.e. from the foundation-proximal region, up to the beginning of the head struts, without adversely affecting the accessibility of the condensation plant below the fan fields. The reason for that is the interconnection of only neighboring columns via transverse struts, wherein neighboring columns is to be understood typically as the columns of a foursome arrangement by which four fan fields are supported in 2×2 formation.

Exemplary embodiments of the invention will now be described in greater detail with reference to the drawings, in which:

FIG. 1 shows a perspective illustration of a support construction of a condensation plant;

FIG. 2 shows a top view of the fan fields of the condensation plant of FIG. 1;

FIG. 3 shows the support construction of FIG. 2 in viewing direction of the arrow III;

FIG. 4 shows the support construction of FIG. 2 in viewing direction of the arrow IV;

FIG. 5 shows a perspective illustration of a support with a fan field; and

FIGS. 6a)-f) show differently configured fan field arrangements with theoretically possible variations of support frames.

FIGS. 1 and 2 show by way of perspective view and top view an arrangement of 5×7 rectangular fan fields 1 which form a platform for receiving fans not shown in greater detail. Placed above this platform are heat exchanger elements, arranged in the shape of a roof, in several rows in side-by-side relationship in correspondence to the width of the fan fields for cooling turbine or process exhaust steams. For ease of illustration, the heat exchanger elements are not shown.

It can be seen that the fan fields 1 are carried by a support frame 2 having several supports 3 which respectively are supported on foundations 4. As clearly shown in FIGS. 3-5, the supports 3 are nor formed by a straight pillar or post extending vertically from bottom to top but have each a lower and an upper height section, with the height sections having configurations which deviate from one another. Each lower height section is represented by a column 5 which extends in vertical relationship to the fan fields 1 and spans about more than 50% of the entire length of the support 3. Adjacent to the upper end of the column 5 are four head struts 6 which extend towards the corners 7 of a fan field 1. Thus, the head struts 6 extend obliquely or at an angle to the column 5 and also obliquely or at an angle to the fan field 1. As a result of the slanted disposition of the head struts 6, the column 5 is situated at a distance to the main carriers 8 of the platform which interconnect the corners 7 of a fan field 1. As can be seen from FIG. 2, the columns 5 are respectively located in the middle of a fan field 1. As a result, the columns 3 are formed of rotationally symmetric shape or doubly symmetrical with respect to their vertical axis which extends through the column 5, because the fan field 1 is rectangular.

The head struts 6 are stiffened by horizontal coupling struts 9 which extend in horizontal direction, i.e. in parallel relationship to the fan field 1, approximately in the middle between two neighboring head struts 6. As a result, the buckling length of the head struts is reduced so that the head struts can be designed more slender.

As can be seen from FIGS. 3 and 4, not only the head struts 6 are additionally connected to one another but also neighboring columns 5 between which diagonally extending transverse struts 10 are arranged. The transverse struts 10 extend respectively from the lower end of a column 5 to the upper end of the neighboring column 5 so as to establish a cross-shaped reinforcement.

FIG. 2 shows that not every fan field 1 has arranged therebelow a column 3. The illustrated fan field arrangement is sized large enough sufficient to provide the four fan fields 1, respectively arranged at the corners, with a central support 3. The corner 7 of adjoining fan fields and enclosed by the supports 3 is hereby supported by four head struts 6. As a result, each of the corner regions of the platform receives a particularly solid and stiff support construction. Therefore, it is possible to attain significant savings in the inner regions of the condensation plant, i.e. in the region of the fan fields situated distal to the corners. It can be seen that the inner regions have a total of only four columns 3. Located between these pairs of columns 3 are fan fields 1 which do not have their own support 3. As the fan fields 1 are, however, all connected to one another, an indirect support is established via the adjacent fan fields 1. Care must be taken when dimensioning the support construction to arrange at least one head strut 6 of a column 3 at each corner 7 of the fan fields. It is hereby irrelevant under which of the adjoining fan fields 1 the carrying support 5 is arranged.

As can be seen more clearly in FIGS. 3 and 4, the free space underneath the fan fields is significantly greater than in comparable arrangements which have underneath each corner 7 of the fan fields 1 a vertical support extending to the bottom. Instead of 6×8=48 of conventional supports, the fan field shown by way of example uses only 20 supports. Correspondingly small is the number of foundations 4.

FIG. 6 shows by way of example six selected embodiments of fan field arrangements. In general, the fan fields 1 are arranged in two rows to be able to ensure a sufficient stability of the support construction. The smallest unit of a fan field arrangement includes thus 2×2 fan fields (FIG. 6a)). This arrangement can be randomly expanded. All embodiments observe the basic principle that at least four neighboring fan fields 1 should be supported via central supports 3. As a result of this requirement, all fan fields 1 are provided with a support in FIG. 6b), even though both middle supports 3 may theoretically be omitted.

In contrast thereto, as a result of the afore-stated construction rule, there is now for the first time the possibility to omit supports 3 in the third column of fan fields 1 and to transmit loads emanating therefrom onto the supports 3 of neighboring fan fields 1. The same holds true for the embodiments of FIGS. 6d) and f).

The embodiment of FIG. 6e) represents a particularity. This variation includes in the region of the middle four fan fields 1 a support 11 which is not arranged at a distance to the main carrier 8 but arranged underneath the main carrier 8 of a fan field 1. The support 11 thus includes only two head struts 6 which extend towards the ends 7 of the main carrier 8 or the corners 7 of the fan fields 1. This support 11 constitutes thus a Y-shaped swinging support. Oscillating movements of this support construction can, however, be precluded because two foursome arrangements of supports 3 are provided in addition.

LIST OF REFERENCE SYMBOLS

  • 1—fan field
  • 2—support frame
  • 3—support
  • 4—foundation
  • 5—column
  • 6—head strut
  • 7—corner
  • 8—main carrier
  • 9—coupling strut
  • 10—transverse strut
  • 11—support

Claims

1.-10. (canceled)

11. A condensation plant, comprising:

a framework having a plurality of fan fields for accepting fans;
plural heat exchanger elements arranged above the fans;
a support frame supporting the framework of fan fields, said support frame having a plurality of supports, at least one support including a column, which extends in vertical relationship to the fan fields, and head struts, which are connected atop the column and extend obliquely in relation to a fan field and the column and which extend towards corners of the fan field.

12. The condensation plant of claim 11, wherein the framework has main carriers to connect the corners of the fan field with one another, said column being arranged at a distance to the main carriers.

13. The condensation plant of claim 11, wherein the column is arranged in midsection of the fan field.

14. The condensation plant of claim 11, wherein the column has four of the head struts which extend towards four corners of the fan field.

15. The condensation plant of claim 11, wherein the framework has a main carrier to demarcate the fan field, said column being arranged underneath the main carrier for the fan field.

16. The condensation plant of claim 15, wherein the column has two of the head struts which extend towards opposite ends of the main carrier.

17. The condensation plant of claim 11, wherein at least one corner of the fan field is supported by one of the head struts and in addition by three head struts extending from neighboring three supports towards the at least one corner of the fan field.

18. The condensation plant of claim 11, wherein the support has coupling struts for connecting neighboring head struts of the support with one another.

19. The condensation plant of claim 11, wherein columns of neighboring supports are connected with one another by transverse struts.

20. The condensation plant of claim 19, wherein the transverse struts extend diagonally between the neighboring columns.

21. The condensation plant of claim 11, wherein the support has a Y-shaped configuration.

Patent History
Publication number: 20100147487
Type: Application
Filed: Mar 11, 2008
Publication Date: Jun 17, 2010
Applicant: GEA ENERGIETECHNIK GMBH (Bochum)
Inventors: Dirk Lewandowski (Wuppertal), Heinz-Dieter Bensing (Herne)
Application Number: 12/530,918
Classifications
Current U.S. Class: Structural Installation (165/47)
International Classification: F25B 39/04 (20060101);