METHOD OF DIAGNOSING THE PRESENCE OF AN EXHAUST AFTER-TREATMENT COMPONENT AND A USE OF THE METHOD FOR VEHICLE ON-BOARD DIAGNOSIS
In a method for diagnosing the presence of an internal combustion engine exhaust aftertreatment component on a vehicle, the exhaust temperature is measured downstream the aftertreatment component continuously over a time period to provide a first temperature signal with fluctuating amplitude. The temperature signal is modified to provide a second modified temperature signal. The first and second temperature signals are compared to detect any significant difference between the signals.
Latest VOLVO LASTVAGNAR AB Patents:
- Process consisting in cooling at least one component, such as a sensor, arranged within a compartment of an exhaust after treatment system of a vehicle
- By-pass of air supply protection for electronic parking brake system and vehicle comprising such system
- Method consisting in using at least one vehicle camera to check whether certain elements of the vehicle are in a safe condition before starting off
- Vehicle camera system comprising an integrated lens cleaning mechanism, vehicle comprising such camera system and method
- Utilizing a park brake system to improve the deceleration of a vehicle in the event of failure of the service brake system
The present invention relates to a method for diagnosing the presence of an internal combustion engine exhaust aftertreatment component on a vehicle.
In recent years, statutory requirements pertaining to emissions from Diesel engines have been tightened up. For example, new legislation regarding on-board diagnosis requires that the presence of a so-called pre-catalyst is determined.
It is desirable to provide a method to determine whether an aftertreatment component in an aftertreatment system is present or not.
The invention will be described in greater detail below with reference to embodiments shown in the accompanying drawings.
In
A temperature sensor 16 is positioned at the second exhaust pipe segment 14 for measuring the temperature of the exhaust stream exiting the pre-catalyst 12. The temperature is measured continuously over a time period to provide a first temperature signal with fluctuating amplitude that is recorded by a data processor 17. A typical temperature/time graph is shown in
An example of a typical un-filtered temperature graph is shown in
The recorded temperature signal is modified by the data processor 17 to provide a second modified temperature signal. The first and second temperature signals are compared to detect any significant difference between the signals. The modified signal may be obtained by any type of analysis of the temperature signal that is based on signal frequency or signal derivative. For example, a low-pass filter in the data processor 17 may be used for removing signals with frequency over a certain level. By integrating the unfiltered and filtered temperature signals and calculating the difference between the two, it is possible to determine whether the catalyst reactor monolith is present. A large difference is the result when the monolith is missing and a small difference when the monolith is present.
If the pre-catalyst is not present in the aftertreatment system, the first signal will have a signature similar to the graph of
If the pre-catalyst is present, both first and second signals will have signatures similar to the graph of
The invention is not to be regarded as being limited to the illustrative embodiments described above, but a number of variants and modifications are possible within the scope of the following patent claims. For example, the method according to the invention can be applied to any type of aftertreatment component, as long as it comprises a thermic mass. The aftertreatment component may for example be a particle filter. It is preferable that the aftertreatment component being diagnosed with the method according to the invention has a larger thermic mass than any other aftertreatment component positioned upstream. The comparison of the two temperature signals can be performed in many different ways, both analogical and digital.
Claims
1. A method of diagnosing the presence of an internal combustion engine exhaust aftertreatment component on a vehicle using a single temperature signal source, wherin the aftertreatment component component comprises a thermic mass, comprising
- measuring the exhaust temperature downstream of the aftertreatment component continuously over a time period to provide a first temperature signal with fluctuating amplitude,
- modifying the temperature signal to provide a second modified temperature signal using a temperature signal analysis based on signal frequency or signal derivative, and
- comparing the first temperature signal and the second modified temperature signal to determine whether there is a difference between the signals.
2. A method according to claim 1, wherein the aftertreatment component is a catalyst reactor.
3. A method according to claim 2, wherein the aftertreatment component is positioned as a first aftertreatment component downstream of the engine.
4. A method according to claim 3, wherein modifying comprises filtering the temperature signal.
5. A method according to claim 4, wherein the first temperature signal is unfiltered, the method comprising integrating both the first temperature signal and the second modified filtered temperature signal and calculating a difference between the two integrals.
6. Use of a method according to claim 1 for on-board diagnosis of presence of a catalyst reactor in an exhaust aftertreatment system of a vehicle.
7. A method according to claim 1, wherein the aftertreatment component is positioned as a first aftertreatment component downstream of the engine.
8. A method according to claim 7, wherein modifying comprises filtering the temperature signal.
9. A method according to claim 8, wherein the first temperature signal is unfiltered, the method comprising integrating both the first temperature signal and the second modified temperature signal and calculating a difference between the two integrals.
10. A method according to claim 2, wherein modifying comprises filtering the temperature signal.
11. A method according to claim 10, wherein the first temperature signal is unfiltered, the method comprising integrating both the first temperature signal and the second modified temperature signal and calculating a difference between the two integrals.
Type: Application
Filed: Apr 14, 2005
Publication Date: Jul 1, 2010
Applicant: VOLVO LASTVAGNAR AB (Goteborg)
Inventor: Charlotte Holmen (Torslanda)
Application Number: 11/909,578
International Classification: F01N 3/10 (20060101); G01M 15/10 (20060101);