BROADBAND AND WAVELENGTH-SELECTIVE BIDIRECTIONAL 3-WAY OPTICAL SPLITTER
Embodiments of a bidirectional 3-way optical splitter are described. This bidirectional 3-way optical splitter includes an optical splitter having: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
Latest SUN MICROSYSTEMS, INC. Patents:
This application is related to U.S. patent application Ser. No. “______”, entitled “Optical-Signal-Path Routing in a Multi-Chip System,” filed Dec. ______, 2007; U.S. patent application Ser. No. “11/863,815”, entitled “Wavelength-Division Multiplexing for Use in Multi-Chip Systems,” filed Sep. 28, 2007; U.S. patent application Ser. No. “11/853,316”, entitled “Multi-Chip Systems with Optical Bypass,” filed Sep. 11, 2007; U.S. patent application Ser. No. 11/728,845, entitled “Multi-Chip Systems Using On-Chip Photonics,” filed Mar. 26, 2007; U.S. patent application Ser. No. 11/728,844, entitled “Low-Latency Switch Using Optical and Electrical Proximity Communication,” filed Mar. 26, 2007; U.S. patent application Ser. No. 11/728,843, entitled “Transparent Switch Using Optical and Electrical Proximity Communication,” filed Mar. 26, 2007; U.S. patent application Ser. No. 11/515,085, entitled “Resonator System for Optical Proximity Communication,” filed Aug. 31, 2006; U.S. patent application Ser. No. 11/515,207, entitled “Optical Imaging Device for Optical Proximity Communication,” filed Aug. 31, 2006; U.S. patent application Ser. No. 11/165,996, entitled “Proximity Active Connector and Cable,” filed on Jun. 24, 2005; U.S. patent application Ser. No. 11/165,917, entitled “Integrated Proximity-to-Optical Transceiver Chip,” filed on Jun. 24, 2005; and U.S. patent application Ser. No. 11/084,656, entitled “Method and Apparatus for Optimizing Computer Program Performance Using Steered Execution,” filed on Mar. 18, 2005, the contents of each of which are herein incorporated by reference.
GOVERNMENT LICENSE RIGHTSThis invention was made with United States Government support under Contract No. NBCH3039002 awarded by the Defense Advanced Research Projects Administration. The United States Government has certain rights in the invention.
BACKGROUND1. Field of the Invention
The present invention relates to techniques for communicating optical signals. More specifically, the present invention relates to a bidirectional, 3-way optical splitter, which may be used in a multi-chip system that includes semiconductor dies that communicate signals using electrical proximity communication and/or optical communication.
2. Related Art
Advances in semiconductor technology have led to significant increases in microprocessor performance. For example, the clock frequency of a typical microprocessor increased from 16 MHz in 1985 to 3600 MHz by 2005, an improvement of 230 times, which represents an annual growth rate of nearly 30%. These performance gains have allowed computers to perform increasingly complicated operations across a wide variety of applications.
Unfortunately, several issues are beginning to constrain further increases in the clock frequency. In particular, the latency of global on-chip wires is increasing as technological trends reduce their thickness but not their length. In contrast, many local wires do not suffer from this delay penalty because their lengths shrink along with their thickness.
Moreover, as integration densities and clock frequencies continue to increase, the power consumption of high-performance microprocessors also increases. Consequently, many existing microprocessors consume over 100 W of power, which strains the capabilities of air cooling systems. In fact, many microprocessors have become power-limited, which means they could be operated at higher clock frequencies at the cost of significant increases in power consumption, and thus, in required cooling.
These design constraints have led designers to change microprocessor designs. In particular, many microprocessors now include multiple processor cores. These multiple processor cores keep computation and associated communication operations local, which reduces global delays in critical paths. Additionally, individual processor cores can be selectively enabled, thereby allowing unused processor cores to be put into a sleep mode to conserve power and then awakened when they are needed. Moreover, the use of smaller processor cores with shared logical blocks reduces the cost of developing and debugging microprocessors.
Furthermore, many multiple-core microprocessors support chip multi-threading (CMT). This technique helps address the increasing gap between microprocessor performance and the latency associated with fetching instructions and data from main memory, which has grown from a few clock cycles to hundreds of clock cycles over the past two decades. This gap often limits system performance because the microprocessor spends an increasing amount of time waiting for memory accesses instead of executing code. In a microprocessor that uses CMT, a thread can be quickly swapped in and out of execution. This rapid thread switching improves overall system throughput because instead of waiting for a memory request to return when the current thread accesses memory, the microprocessor can put the current thread to sleep and reactivate another thread. Consequently, utilization and throughput in such multi-threaded microprocessors is much higher than in single-threaded microprocessors.
However, microprocessors that include multiple cores and support multiple threads executing on each core have significantly higher communication requirements than single-core, single-threaded microprocessors. In particular, these microprocessors use high-bandwidth communication to maintain coherence; pass messages; and/or perform simultaneous memory accesses. Moreover, as microprocessor throughput continues to increase, corresponding bandwidth requirements are expected to increase to terabits-per-second and beyond. Given the aforementioned latency problems, it may be difficult to meet these requirements using conventional conductive wires.
Optical communication can provide high-bandwidth and low-latency communication, for example, via on-chip optical signal paths (such as waveguides). Unfortunately, in multi-chip systems, data conflicts on optical signal paths can occur at boundaries between chips. One solution to this challenge is to utilize a different optical routing or layout in different chips in the multi-chip system. However, this can significantly increase the number of different types of chips in such a system, with a commensurate impact on the complexity and cost of the multi-chip system.
Hence, what is needed is a method and an apparatus which provide improved communication bandwidth without the problems listed above.
SUMMARYOne embodiment of the present invention provides a bidirectional 3-way optical splitter, which includes an optical splitter having: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
In some embodiments, the power ratios of each of the external output optical signals to the external input optical signal are approximately equal.
In some embodiments, the optical splitter includes a 2×2 optical splitter having four internal nodes (where a first internal node of the 2×2 optical splitter is optically coupled to the first external node) and a 2×1 optical coupler having another internal node. This 2×1 optical coupler may be optically coupled to a second internal node and a fourth internal node of the 2×2 optical splitter, and the other internal node may be optically coupled to the second external node. Moreover, the optical splitter may include another 2×2 optical splitter having four internal nodes, where a first internal node of the other 2×2 optical splitter may be optically coupled to the third internal node of the 2×2 optical splitter, and a third internal node of the other 2×2 optical splitter may be optically coupled to the third external node. Additionally, the optical splitter may include another 2×1 optical coupler having an additional internal node, where the other 2×1 optical coupler may be optically coupled to a second internal node and a fourth internal node of the other 2×2 optical splitter, and the additional internal node may be optically coupled to the fourth external node.
Note that in the one mode of operation, the given 2×2 optical splitter may be configured: to receive an internal input optical signal on the first internal node of the given 2×2 optical splitter; to provide an internal output optical signal on the fourth internal node of the given 2×2 optical splitter; and to provide another internal output optical signal on the third internal node of the given 2×2 optical splitter. Moreover, in the other mode of operation the given 2×2 optical splitter may be configured: to receive the internal input optical signal on the third internal node of the given 2×2 optical splitter; to provide the internal output optical signal on the second internal node of the given 2×2 optical splitter; and to provide the other internal output optical signal on the first internal node of the given 2×2 optical splitter.
In some embodiments, the internal input optical signal for the given 2×2 optical splitter is split into the internal output optical signal and the other internal output optical signal with a given power ratio of X/Y between the internal output optical signal and the other internal output optical signal.
In some embodiments, the internal input optical signal for the 2×2 optical splitter is split into the internal output optical signal and the other internal output optical signal with a power ratio of 1/3 between the internal output optical signal and the other internal output optical signal. Moreover, for the other 2×2 optical splitter, the internal input optical signal may be split into the internal output optical signal and the other internal output optical signal with a power ratio of 1/1 between the internal output optical signal and the other internal output optical signal.
In some embodiments, the external output optical signals include the same range of wavelengths as the external input optical signal.
In other embodiments, the optical splitter includes a 2×2 optical switch having four internal nodes, where a first internal node of the 2×2 optical switch is optically coupled to the first external node, and a second internal node of the 2×2 optical switch is optically coupled to the third external node. Moreover, the optical splitter may include a 2×1 unidirectional optical coupler having an internal input node and two internal output nodes, where the internal input node of the 2×1 unidirectional optical coupler may be optically coupled to a third internal node of the 2×2 optical switch, and a first internal output node of the 2×1 unidirectional optical coupler may be optically coupled to a fourth internal node of the 2×2 optical switch. Additionally, the optical splitter may include another 2×1 unidirectional optical coupler having an internal input node and two internal output nodes. Note that: the internal input node of the other 2×1 unidirectional optical coupler may be optically coupled to a second internal output node of the 2×1 unidirectional optical coupler; a first internal output node of the other 2×1 unidirectional optical coupler may be optically coupled to the second external node; and a second internal output node of the other 2×1 unidirectional optical coupler may be optically coupled to the fourth external node.
Furthermore, the optical splitter may include control logic coupled to the 2×2 optical switch, where in the one mode of operation the control logic may configure the 2×2 optical switch to optically couple the first internal node to the third internal node and the second internal node to the fourth internal node. Additionally, in the other mode of operation the control logic may configure the 2×2 optical switch to optically couple the first internal node to the fourth internal node and the second internal node to the third internal node.
In some embodiments, for a given 2×1 unidirectional optical coupler, an internal input optical signal received at the internal input node is split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a given power ratio of X/Y between the internal output optical signal and the other internal output optical signal.
In some embodiments, for the 2×1 unidirectional optical splitter, an internal input optical signal received at the internal input node is split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a power ratio of 1/3 between the internal output optical signal and the other internal output optical signal. Moreover, for the other 2×1 unidirectional optical splitter, an internal input optical signal received at the internal input node may be split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a power ratio of 1/1 between the internal output optical signal and the other internal output optical signal.
In other embodiments, the optical splitter includes: an interferometer having a first internal node, a first arm optically coupled to the first internal node, a second arm optically coupled to the first internal node, and a second internal node optically coupled to the first arm and the second arm. Note that the first internal node may be optically coupled to the first external node and the second internal node may be optically coupled to the third external node. Moreover, an internal input optical signal on a given internal node, which can be the first internal node or the second internal node, may be split between the first arm and the second arm, and optical signals on the first arm and the second arm may be combined and provided on the other internal node than the given internal node. Additionally, the optical splitter may include an add/drop filter optically coupled to the first arm, where an output from the add/drop filter may be optically coupled to the second external node, and the add/drop filter may be configured to selectively couple wavelengths from the first arm to the second external node. Furthermore, the optical splitter may include another add/drop filter optically coupled to the second arm, where an output from the other add/drop filter may be optically coupled to the fourth external node, and the other add/drop filter may be configured to selectively couple wavelengths from the second arm to the fourth external node.
In some embodiments, a given add/drop filter includes a ring resonator. Moreover, the interferometer may include a Mach-Zehnder interferometer.
In some embodiments, the internal input optical signal is split approximately equally between the first arm and the second arm.
In some embodiments, the optical splitter includes an optical waveguide optically coupled to the add/drop filter, where one end of the optical waveguide is optically coupled to a fifth external node and another end of the optical waveguide is optically coupled to the second external node. Note that, in a third mode of operation, the one end of the optical waveguide may be configured to provide another external output optical signal and the other end of the optical waveguide may be configured to receive another external input optical signal.
Moreover, the optical splitter may include another optical waveguide optically coupled to the other add/drop filter, where one end of the other optical waveguide may be optically coupled to the fourth external node and another end of the other optical waveguide may be optically coupled to a sixth external node. Note that, in a fourth mode of operation, the one end of the other optical waveguide may be configured to receive an additional external input optical signal and the other end of the other optical waveguide may be configured to provide an additional external output optical signal.
In some embodiments, at least one of the add/drop filter and the other add/drop filter include two or more ring resonators which are optically coupled in series. Moreover, the optical splitter may include an additional optical waveguide optically coupled to the add/drop filter, wherein one end of the additional optical waveguide may be optically coupled to the fourth external node and another end of the additional optical waveguide may be optically coupled to the sixth external node of the optical splitter. Note that, in a fifth mode of operation, the one end of the additional optical waveguide may be configured to provide another external output optical signal and, in a sixth mode of operation, the one end of the additional optical waveguide may configured to receive another external input optical signal. Additionally, in the fifth mode of operation, the other end of the additional optical waveguide may be configured to receive the other external input optical signal and, in the sixth mode of operation, the other end of the additional optical waveguide may be configured to provide the other external output optical signal.
In some embodiments, the optical splitter includes yet another optical waveguide optically coupled to the other add/drop filter, where one end of this other optical waveguide may be optically coupled to the fifth external node of the optical splitter and another end of this other optical waveguide may be optically coupled to the second external node. Note that, in a seventh mode of operation, the one end of this other optical waveguide may be configured to receive an additional external input optical signal and, in an eighth mode of operation, the one end of this other optical waveguide may be configured to provide an additional external output optical signal. Moreover, in the seventh mode of operation, the other end of this other optical waveguide may be configured to provide the additional external output optical signal and, in the eighth mode of operation, the other end of this other optical waveguide may be configured to receive the additional external input optical signal.
Another embodiment of the present invention provides an array of chip modules that include one or more instance of the 3-way, bidirectional optical splitter.
Another embodiment of the present invention provides a computer system that includes the array.
Another embodiment of the present invention provides a method for 3-way splitting an optical signal, which may be performed by an optical splitter. During operation, the optical splitter receives the optical signal on a given node in a first node and a fourth node of the optical splitter. Next, the optical splitter provides output optical signals on three other nodes of the optical splitter, where the three other nodes include a second node, a third node, and the other of the given node in the first node and the fourth node. Note that the capability to receive the optical signal on either the first node or the fourth node provides bidirectional splitting.
Note that like reference numerals refer to corresponding parts throughout the drawings.
DETAILED DESCRIPTIONThe following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Embodiments of a bidirectional 3-way optical splitter and a method for 3-way splitting an optical signal are described. This bidirectional 3-way
optical splitter may include: an optical splitter that has: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
In some embodiments, the optical splitter includes: a 2×2 optical splitter, a 2×1 optical coupler, another 2×2 optical splitter, and/or another 2×1 optical coupler.
In some embodiments the optical splitter includes: a 2×2 optical switch, a 2×1 unidirectional optical coupler, and/or another 2×1 unidirectional optical coupler. Additionally, the optical splitter may include control logic that is coupled to the 2×2 optical switch, and which configures selective coupling of nodes in the 2×2 optical switch.
In some embodiments the optical splitter includes: an interferometer, an add/drop filter, and/or another add/drop filter. For example, the interferometer may include a Mach-Zehnder interferometer and/or a given add/drop filter may include one or more ring resonators. Additionally, the optical splitter may include one or more waveguides.
Note that the bidirectional 3-way optical splitter may be included in a multi-chip module (MCM) (such as a switch or a processor) and/or in a system that include the MCM. This MCM includes an array of chip modules (CMs) or single-chip modules (SCMs), and a given SCM includes at least one semiconductor die. Note that the MCM is sometimes referred to as a ‘macro-chip.’ Furthermore, the semiconductor die communicates with other semiconductor dies, CMs, SCMs, and/or devices in the MCM using proximity communication of electromagnetically coupled signals (which is referred to as ‘electromagnetic proximity communication’), such as capacitively coupled signals and/or proximity communication of optical signals (which are, respectively, referred to as ‘electrical proximity communication’ and ‘optical proximity communication’). In some embodiments, the electromagnetic proximity communication includes inductively coupled signals and/or conductively coupled signals.
Note that the bidirectional 3-way optical splitter may facilitate arrays in which, in a given CM module, optical signal paths, such as waveguides, are routed in the same way as in the other CMs in the array. In this way, a common optical design in the CMs may be used in the system to prevent data conflicts during the optical communication, thereby reducing the complexity and expense of the system. Consequently, the bidirectional 3-way optical splitter may facilitate the creation of large arrays with very high performance.
Embodiments of the MCM may be used in a variety of applications, including: VLSI circuits, telephony, storage area networks, data centers, networks (such as local area networks), and/or computer systems (such as multiple-core processor computer systems). For example, the MCM may be included in a backplane that is coupled to multiple processor blades, or the MCM may couple different types of components (such as processors, memory, I/O devices, and/or peripheral devices). In some embodiments, the MCM performs the functions of: a switch, a hub, a bridge, and/or a router. Note that the electrical signals and/or optical signals may include analog signals, data packets, and/or data streams. These signals may include binary symbols, un-encoded signals, and/or encoded symbols (for example, using multiple-pulse amplitude modulation and/or WDM, where different sub-channels are used to communicate information). Moreover, communication in the optical signal path may be: unidirectional or bidirectional (including half-duplex and/or full-duplex operation).
We now describe embodiments of a macro-chip or MCM.
In an exemplary embodiment, MCM 100 includes a computer system, including one or more processors and/or memories. In some embodiments, MCM 100 includes a switch. In these embodiments, one or more of the semiconductor dies 110 and 112 implement some or all of the functionality of a switch. Such semiconductor dies are sometimes referred to as ‘switch chips’ or ‘logic chips.’ Therefore, one or more of the semiconductor dies 110 and 112 may include I/O ports to communicate input signals and output signals, as well as multiple switching elements that selectively couple the input and output ports.
Furthermore, in some embodiments at least one of the semiconductor dies 110 and 112 includes a flow-control mechanism or logic that provides flow-control information that configures the switching elements or determines routing of data. This flow-control information may be communicated in the electrical domain and/or in the optical domain, and may be communicated along with the data and/or separately from the data (for example, in a separate flow-control communication channel, i.e., out-of-band control). Moreover, flow-control logic may be internal or external to MCM 100 (or MCM 130 in
Note that the bridge chips 116 may include one or more waveguides and/or multiple signal lines that couple signals from receive proximity connectors on one end of the bridge chips 116 to transmit proximity connectors on the other end. Such communication across the bridge chips 116 may be synchronous and/or asynchronous. In some embodiments bridge chips 116 include active electronics and/or optical components to transmit and receive signals, to amplify signals, and/or to resynchronize phases of signals on at least two of the signal lines. For example, the bridge chips can include a pipeline circuit that includes flip-flops and/or synchronization circuitry that are latched by clock signals to correct for an accumulated phase error. In these embodiments, the bridge chips 116 may be implemented using semiconductor dies, however, these dies may include different circuits and functionality than the semiconductor dies 114. In other embodiments, the bridge chips 116 are manufactured from a material other than a semiconductor.
As described below with reference to
In an exemplary embodiment, MCM 130 includes a 6×6 array of semiconductor dies 114 and a 5×5 array of bridge chips 116. In another exemplary embodiment, MCM 130 includes a 4×4 array of semiconductor dies 114 and a 3×3 array of bridge chips 116. Furthermore, electric and optical information in MCMs 100 (
In another exemplary embodiment of MCMs 100 (
Note that because of the use of proximity communication in the MCMs 100 (
In some embodiments, proximity communication transfers information between components in the MCMs 100 (
Optical routing (in an optical control path and/or an optical signal path) on a given component in MCMs 100 (
Although MCMs 100 (
We now described embodiments of devices (such as SCMs and MCMs) and systems that include proximity communication.
In one embodiment, the proximity connectors 212 may be on or proximate to at least one surface of the semiconductor die 210, the SCM and/or the MCM. In other embodiments, the semiconductor die 210, the SCM and/or the MCM may be coupled to the proximity connectors 212. In an exemplary embodiment, the plurality of proximity connectors 212 are substantially located at or near one or more corners (proximity connectors 212-1 and 212-2) and/or edges (proximity connectors 212-3) of the semiconductor die 210. In other embodiments, proximity connectors 212 may be situated at one or more arbitrary locations on, or proximate to, the surface of the semiconductor die 210.
As illustrated for the proximity connectors 212-1, there is a first pitch 214-1 between adjacent connectors or pads in a first direction (X) 216 of the surface and a second pitch 214-2 between adjacent connectors or pads in a second direction (Y) 218 of the surface. In some embodiments, the first pitch 214-1 and the second pitch 214-2 are approximately equal.
In order to communicate data signals using proximity communication, transmit and receive proximity connectors 212 on adjacent semiconductor dies 210 may have, at worst, only limited misalignment, i.e., substantially accurate alignment. For densely packed proximity connectors, i.e., proximity connectors 212 having a small spacing or pitch 214 (
In some embodiments, the proximity connectors 212 may be aligned in six degrees of freedom, including: the first direction (X) 216 (
In some embodiments, allowed misalignment in the first direction (X) 216 (
Solutions, such as self-alignment and/or self-adjustment of relative positions of the proximity connectors 212 on adjacent semiconductor dies 210 and/or in a component (such as one of the bridge chips 116 in
Reducing or eliminating the misalignment 314, in turn, may lead to at least partial overlap of one or more proximity connectors 212 on the adjacent semiconductor dies 210 and increase a magnitude of the capacitively coupled data signals. In addition, the solutions may reduce misalignment in the first plane, i.e., the plane including at least some of the proximity connectors 212, when used in conjunction with techniques such as electronic steering (where data signals are routed to respective proximity connectors 212 based on the alignment in the first plane). Consequently, these solutions may facilitate proximity communication between the semiconductor dies 210, SCMs and/or MCMs. The solutions may also reduce and/or eliminate a need for narrow tolerances, precise manufacturing, and/or precise assembly of the semiconductor dies 210, the SCM and/or the MCM. In addition, improved alignment of the proximity connectors 212 may reduce power consumption in MCMs 100 (
In the embodiments described above and below, the proximity connectors 212 on the adjacent semiconductor dies 210 utilize capacitive coupling and/or optical coupling for inter-chip communication. In other embodiments, different connectors may be overlapped on adjacent semiconductor dies 210. For example, one embodiment of the present invention uses inductive proximity connectors and/or magnetic proximity connectors, where data signals are communicated inductively and/or magnetically between terminals on closely adjacent semiconductor dies 210. Another embodiment conductively couples connectors in adjacent semiconductor dies 210 using an array of solder balls.
While the device 200 (
We now describe embodiments of optical components on semiconductor dies that may be included in the MCMs 100 (
In general, long wire latencies do not restrict the operating frequency in a system. Instead, these latencies may increase the cost of communication within the system. For example, when there are long wire latencies, memories that maintain coherency by snooping on other memories or that operate by casting out scatter or gather requests may be restricted to use a limited set of neighboring memories. In another example, architectures that pipeline communication requests may maintain queues of outstanding requests until these queues are fulfilled. Unfortunately, as communication distances and delays increase, the queues may become larger and larger, increasing the size, the power consumption, and the complexity of the system.
In some embodiments, these problems may be reduced and/or eliminated through the use of on-chip and/or inter-chip optical communication. For example, as discussed previously semiconductor dies 110, 112, and 114 (
Note that the speed of light in an optical waveguide is determined by the effective refractive index of the waveguide that is used to confine and communicate the light across the chip or a series of chips. In particular, the speed of light is inversely proportional to this effective refractive index and is essentially c/n, where c is the speed of light in vacuum and n is the effective refractive index of the medium. In general, n has real and imaginary components that depend on wavelength, but for many materials n is a real, non-negative number. For example, for silicon n is approximately 3.5.
In some embodiments, the effective index of a waveguide is reduced by using a so-called ‘slotted’ waveguide, while still strongly confining and guiding the light. Consequently, the speed of optical signal transmission in these waveguides is in the range of 1-1.8×108 cm/s or up to 10 times the speed of corresponding electrical signals. Furthermore, in some embodiments the delay or latency associated with the waveguides is further reduced using photonic-crystal techniques.
Therefore, in this embodiment proximity communication has been generalized to communication of arbitrary electro-magnetic waves across the gap between the semiconductor dies 410. By increasing the frequency of the electro-magnetic waves, optical frequencies are reached, and the electro-magnetic waves are none other than light. Thus, optical proximity communication may be used to communicate information between the semiconductor dies 410, and optical transmission across the semiconductor dies 410 may occur via the waveguides 412. Note that MCM 400 includes an optical signal path or optical control path that spans multiple semiconductor dies 410 without optical-to-electrical conversions or electrical-to-optical conversions at intermediate points.
As noted previously, it may be difficult to perform logical computations (such as determining local flow-control information) in the optical domain. Therefore, in some embodiments the semiconductor dies 410 include conversion elements 414, which convert optical signals to electrical signals (and vice versa). These electrical signals may be coupled to logic circuits 416, such as a local flow-control mechanism or logic that determines local flow-control information based on information from adjacent semiconductor dies 410 and/or flow-control information communicated within a switch. After determining the local flow-control information, the resulting electrical signals may be converted into optical signals using a conversion element (such as conversion element 414-1) and the optical signals may be communicated to other semiconductor dies 410. Alternatively, optical signals corresponding to flow-control information may be received and converted into electrical signals by the conversion element 414-1 prior to setting switching elements on semiconductor die 410-1. Note that the conversion elements 414 may include wavelength combiners and splitters, or may simply tap a percentage of the light as it passes by in the waveguides 412, thereby facilitating conversion from the optical to the electrical domain.
While MCM 400 uses optical proximity communication between the semiconductor dies 410, in other embodiments electrical proximity communication is used in conjunction with on-chip optical communication. This is shown in
Note that MCM 400 (
There are several techniques in which electrical signals can be used to create modulated optical signals in conversion element 510. For example, electrically modulated signals (such as amplitude modulated signals corresponding to a logical ‘1’ and a logical ‘0’) can be fed directly to an appropriately biased optical source, such as an LED or laser. Via so-called ‘direct” modulation of the optical source, the electrical information can be imposed on the optical output as an optical intensity modulation. Alternatively, electrical modulated signals may be sent to an optical modulator, which has a constant intensity optical beam as an input, and which outputs a modulated intensity optical beam based on the electrically modulated signals. Note that this technique uses two inputs: an electrical modulation signal and an un-modulated optical source.
While these examples illustrate direct and indirect intensity modulation, in other embodiments other types of direct and/or indirect modulation may be used, including: pulse-width modulation, pulse-frequency modulation, pulse-phase modulation, quadrature amplitude modulation, and/or quadrature phase modulation.
Note that the conversion element 510 may include fewer components or additional components. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
Note that in addition to carrying data and/or flow-control information the semiconductor dies 610 and 640 may also include circuits 612 and 642. For example, these circuits may include a switch or a computer, including a computation core (such as a processor) and/or a storage core (such as memory). Consequently, the photonic networks on each of the semiconductor dies 610 and 640 may also interact with routing points or conversion elements 616 to convert signals from the optical domain to the electrical domain prior to coupling to the circuits 612 and 642 (via signal lines 618), and back again after processing and/or storage.
In some embodiments, the on-chip photonic networks carry one or more synchronization signals in addition to data and/or flow-control information. For example, clock signals may be communicated in an MCM (such as MCM 100 in
In an exemplary embodiment, data, flow-control information, and/or clock signals are communicated on the waveguides 614 using WDM signaling. Such signaling may be accomplished using optical multiplexers and demultiplexers that are integrated on chip using silicon-on-insulator technology. In addition, the semiconductor dies 610 and 640 may include: arrayed waveguide gratings, ring resonators, and/or Mach-Zander phase modulators.
Note that the semiconductor dies 610 and 640 may include fewer components or additional components. For example, additional components that provide at least some of the previously described functionality may be coupled to semiconductor dies 610 and 640 using flip-chip binding. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
We now described embodiments of devices (such as SCMs and MCMs) and systems with reduced inter-chip communication latency.
A given semiconductor die in MCM 700, such as semiconductor die 714-1, may include a conversion element (such as a laser or a diode) to convert electrical signals to optical signals, which are transmitted on the optical-bypass waveguides. Similarly, the given semiconductor die may include another conversion element (such as a detector or a diode) to convert the optical signals to the electrical signals (if the given semiconductor die is the destination of the optical signals). More generally, the given semiconductor die may include one or more add-drop elements (such as add or drop waveguides) which are configured: to insert the optical signals onto the optical waveguide(s) 712 (for example, using the conversion element); to remove the optical signals from the optical waveguide(s) 712 (for example, using the other conversion element), and/or to allow the optical signals to pass through the given semiconductor die on the optical waveguide(s) 712.
In some embodiments, the one or more add-drop elements convert a portion of the optical signals in the waveguides 712 to determine if the given semiconductor die is the destination of the optical signals (for example, based on routing information or a header associated with data packets in the optical signals). If yes, the remainder of the optical signals may be converted to electrical signals, and if no, the remainder of the optical signals may pass through the given semiconductor die without processing.
However, in some embodiments the optical signals are encoded (for example, using frequency-division multiplexing and/or WDM) and one or more sub-channels correspond to the given semiconductor die. In these embodiments, the one or more add-drop elements convert the optical signals corresponding to the one or more sub-channels (such as those associated with one or more carrier wavelengths) to electrical signals and the remainder of the optical signals pass through the given semiconductor die without processing.
By using all-optical bypass channels, MCM 700 may facilitate low-latency optical communication between semiconductor dies 714. In particular, signal propagation in optical waveguides may be 5-10× faster than signal propagation on existing on-chip metal wires. Moreover, optical waveguides may not require repeaters (i.e., optical-to-electrical signal conversion and back) on the semiconductor dies 714 and at every coupling between the semiconductor dies 714. Instead, electrically driven optical amplifiers and/or erbium amplifiers may be used to compensate for optical losses without conversion to the electrical signal domain. Moreover, multiple optical signals traversing one or more of the waveguides 712 on separate wavelengths may be simultaneously amplified so long as the wavelengths fall within the amplification band of the amplifier(s). In an exemplary embodiment, such amplifiers occur every few cm along the length of the waveguides 712 (or an associated optical signal path) and/or at every few couplings between semiconductor dies 714.
In some embodiments, optical signals on the all-optical bypass channels are encoded using WDM. Consequently, in some embodiments, a single waveguide provides bandwidth densities that are an order of magnitude greater than in existing electrical interconnects. In an exemplary embodiment, a single waveguide carries up to Terabits per second of bandwidth and the use of all-optical bypass channels between semiconductor dies 714 facilitates inter-chip communication at these bandwidths with: reduced power dissipation, reduced area utilization, and reduced latency.
Note that MCM 700 may include fewer components or additional components. For example, in addition to the full-row waveguides MCM 700 may include full-column waveguides, and these waveguides may support bidirectional communication. In some embodiments, semiconductor dies 714 are interconnected by linear or mesh-like arrays of all-optical bypass channels. Furthermore, in some embodiments, the MCM 700 includes a 1-dimensional chain of semiconductor dies 714 (or CMs) and/or a 2-dimensional array of semiconductor dies 714 (or CMs). Note that two or more components in MCM 700 may be combined into a single component and/or a position of one or more components may be changed.
Note that MCM 800 may include fewer components or additional components. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
Note that MCM 900 may include fewer components or additional components. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
Note that MCM 1000 may include fewer components or additional components. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
We now described embodiments of one or more optical signal paths, and in particular, optical signal paths that communicate optical signals which are encoded using WDM. These techniques may facilitate low latency inter-chip communication using a limited number of waveguides, as well as a limited number of sources (such as lasers), and detectors, thereby reducing power consumption.
Coding, such as WDM, may be used to determine where an optical signal has come from and/or where an optical signal is going to, thereby eliminating electrical processing of flow-control information or packet headers at intermediate chips in an optical signal path. For example, a given column (or subset) of the chips may be associated with a given sub-channel (such as a range of wavelengths centered on a carrier wavelength or a group of wavelengths each centered on associated carrier wavelengths) and chips within this column may communicate using this sub-channel. Thus, in MCM 1100 a set of N carrier wavelengths may be used, and a given column (such as chips 1110) may utilize a sub-channel associated with a given carrier wavelength in this set.
In an exemplary embodiment, N is 6, i.e., the set of carrier wavelengths includes λi, λ2, λ3, λ4, λ5 and λ6. An optical signal may be first communicated in a horizontal direction via waveguide 1122 to reach a target column within the MCM 1100. Then, the optical signal may be sent to its destination(s) within the target column. In particular, because a different carrier wavelength is used to send optical signals to different columns, splitters or filters at each chip along the waveguide 1122 can remove optical signals having the appropriate wavelengths while other optical signals are unaffected. Thus, if a transmission targeting chips 1110 uses carrier wavelength λ1, the corresponding optical signals can be tapped out of the waveguide 1122 at chip 1110-1. Similarly, if transmissions targeting chips 1112 use carrier wavelength λ2, the corresponding optical signals can be tapped out at chip 1112-1.
Note that if the linear dimension of the array exceeds the number of carrier wavelengths that can be used in waveguide 1122, multiple waveguides may be used. For example, if a single waveguide can concurrently carry eight carrier wavelengths, a 16×16 array may use at least two horizontal waveguides to couple the columns or subsets of chips.
An extension of this approach allows multiple chips to be specified during transmission while using a common waveguide. This is shown in
In an exemplary embodiment, N is 6, i.e., the set of carrier wavelengths includes λ1, λ2, λ3, λ4, λ5 and λ6. Moreover, chips in the MCM 1200 may be associated with carrier wavelengths based on the following array of circular permutations
Thus, in row 1 or column 1, chip 1110-1 may be uniquely specified using carrier wavelength λ1, and in row 2 or column 3 chip 1114-2 may be uniquely specified using carrier wavelength λ2, etc.
More generally, an array of chips (such as the MCM 1200) may include N subsets, each of which includes M chips. For a given chip in the MCM 1200, a first optical signal path (such as a waveguide) may be coupled to the other chips within a given subset. Communication with a particular one of these chips may utilize a carrier wavelength in a set of M carrier wavelengths. Moreover, the given chip may also be coupled to other subsets via a second optical signal path (such as another waveguide). Communication with a particular one of these subsets may utilize a carrier wavelength in a set of N carrier wavelengths.
Further generalizing this approach, each chip in an array may be specified by a unique carrier wavelength. Thus, each row and each column may have a unique set of carrier wavelengths. This is shown in
In a variation on this embodiment, each column in MCM 1300 may be coupled to each row by a separate waveguide. This may reduce the total number of carrier wavelengths at the cost of additional waveguides. For example, a waveguide may couple column 1 with row 4. Similar, but independent waveguides may couple optical signals from column 1 to the other rows. In general, in this embodiment, for an N×N array, a given chip has N outgoing waveguides each communicating optical signals using N carrier wavelengths. The specific choice of waveguide and carrier wavelength, respectively, determines the row and column of the recipient chip. In some embodiments, there are also N incoming waveguides to the given chip.
In a further variation, a given chip in the array is coupled to different subsets of chips using separate waveguides. This is shown in
In an exemplary embodiment, chip 1110-1 communicates optical signals to other chips in row 1 using carrier wavelength λ1 and communicates optical signals to other chips in row 2 using carrier wavelength λ2, etc. Thus, optical signals to chip 1112-1 may be communicated using a first waveguide in the waveguides 1410 via a sub-channel associated with carrier wavelength λ1. Similarly, optical signals to chip 1114-1 may be communicated using a second waveguide in the waveguides 1410 via the sub-channel associated with carrier wavelength λ1.
In the general case, an array includes N subsets of chips, each of which includes M chips. Chips within a given subset are coupled by a separate optical signal path, such as a waveguide. Moreover, a give chip communicates with a particular chip in the given subset using optical signals in a sub-channel on the separate optical signal path, which is associated with a given wavelength in a set of M wavelengths.
Inter-chip communication using optical signal paths to communicate optical signals that are, at least in part, encoded using WDM have several advantages. In particular, these techniques facilitate minimum-distance, point-to-point communication between chips with a manageable number of optical signal paths (such as waveguides) per chip. For example, there may be N outgoing and/or N coming waveguides for each chip in a N×N array, and N carrier wavelengths may be sent and/or received at each chip. By using such dedicated optical signal paths to communicate optical signals between any pair of chips, flow-control and collision-detection control logic may be reduced or eliminated because the sender and/or destination chip is determined by the waveguide and/or carrier wavelength used. This arrangement may ensure that the incoming/outgoing data bandwidth is balanced and that an array of chips is isomorphic (symmetric) at any location, which may reduce the number of components in the array. Note that these techniques and configurations can coexist with other communication techniques and/or networks in the same MCM, for example, a tree network can be embedded in the array of chips to support global operations, such as broadcasts or barriers.
Note that MCM 1100 (
Optical signals that are encoded using WDM may be multiplexed onto and/or de-multiplexed from the optical signal paths (such as the waveguides) using a variety of techniques and optical coupling elements, including: a lens, a diffraction grating, a mirror, and/or an arrayed-waveguide grating. Arrayed-waveguide gratings are capable of precise multiplexing/de-multiplexing of multiple sub-channels traveling in a waveguide with relatively low losses. For example, the multiple sub-channels can be de-multiplexed into separate waveguides, each of which carries a sub-channel associated with a single carrier wavelength.
However, if an input wavelength is detuned from this central carrier wavelength, a phase changes will occur in the different waveguides 1514. Because of the constant path length difference between adjacent waveguides in the waveguides 1514, this phase change will increase linearly from the inner waveguide to the outer waveguide in the waveguides 1541. Consequently, the resulting wavefront will be tilted at the output aperture and the focal point in the image plane will be shifted away from the center. By appropriately positioning output waveguides 1516 in the image plane, different carrier wavelengths (or spatial frequencies) can be spatially separated. Note that by reversing the direction of propagation of the light, i.e., by reversing the input and output, the arrayed-waveguide grating 1500 may be used as a multiplexer.
Arrayed-waveguide grating have additional properties that may be of use in the interconnect topologies described above. For example, if additional wavelengths are available for use in an MCM, then the wrap-around property of the arrayed-waveguide grating can be used. In particular, the free spectral range of an arrayed-waveguide grating is defined as the frequency shift for which the phase-shift, ΔΦ, equals 2π. Two frequencies separated by the free spectral range that are input into an arrayed-waveguide-grating de-multiplexer will focus and leave though the same output waveguide, because their phase at the output waveguides 1516 is the same. Thus, if additional sub-channels are available in an MCM, multiple carrier wavelengths separated by the free spectral range can be assigned to the same waveguide destined for a particular chip. Moreover, because these carrier wavelengths are widely spaced, it may be easier to distinguish between these carrier wavelengths on the particular chip with less sensitivity to crosstalk and/or temperature.
Another useful property of arrayed-waveguide gratings is the ability to automatically shuffle the carrier wavelengths, as described above with reference to
Note arrayed-waveguide grating 1500 may include fewer components or additional components. For example, in embodiments that utilize dense wavelength-division multiplexing, there may be a temperature controller that stabilizes the temperature of the arrayed-waveguide grating 1500 to within a few C. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed.
In exemplary embodiments, combinations of encoding techniques and communication channels may be used to achieve a target bandwidth capacity. Each configuration may have unique advantages for a given application. For example, 2.5 Gbps channel data rates can be extended to 40 Gbps using time-domain multiplexing (such as encoding using time-division-multiple-access) of electrical signals and data rates greater than 100 Gbps may be achieved using time-domain multiplexing of optical signals. As noted previously, data rates greater than 1 Tbps may be achieved by wavelength multiplexing several such channels using dense wavelength-division multiplexing and/or coarse wavelength-division multiplexing. Alternatively, a data rate of 1 Tbps may be achieved by multiplexing 1 Gbps time-domain multiplexed channels to a moderate number of SCM channels (e.g. 32) and then either multiplexing these channels onto parallel fibers (or waveguides) or using dense wavelength-division multiplexing.
To match the high bandwidth of an MCM that uses proximity communication, a high bandwidth I/O technology may be used to communicate data (such as data units) to and/or from the MCM. Fiber optic links are one such technology.
In some embodiments, one or more of the optical transceivers 1614 may convert optical signals received using one or more of the optical links 1616 into electrical signals. These signals may be communicated within the MCM 1600 using electrical proximity communication. In addition, one or more of the optical transceivers 1614 may convert electrical signals from the MCM 1600 into optical signals that are transmitted on one or more of the optical links 1616. Note that the transceivers 1614 may include conversion elements, such as conversion elements 440 (
In some embodiments, an MCM includes a semiconductor die and one or more optical transceivers. This shown in
Note that MCMs 1600 (
We now describe another embodiment of an MCM. A broadcast network is a technique for coupling an array of chips (such as CMs or SCMs) so that each chip has can communicate with any other chip in the array. As illustrated in
To implement a broadcast architecture for an MCM arranged in a 2-dimensional grid, a simplified ‘tree’ structure can be used. As shown in
In order for each chip, such as chip 1810-1, to communicate with all the chips 1810 in an N×N MCM, one of the optical signal paths 1812 and N optical signal paths 1816 may be needed. Note that optical signal paths for one row of chips are shown in
One problem associated with such a broadcast architecture is that many different optical layouts may be needed when chips are directly coupled, as shown in
Moreover, the locations of the 3-way optical splitters may also vary from chip to chip. As described previously, because each row in MCM 1800 is associated with N optical waveguides 1812, there are N groups of N optical signal paths 1812 on each chip associated with N rows of chips in the array. For chips in different rows, the physical locations of the 3-way optical splitters may be different to avoid data conflicts between the optical signal paths 1816, so that optical signals from different rows do not run into each other.
However, an MCM with many different types of chips (e.g., many different part numbers) may not be desirable. In particular, to reduce expense and improve manufacturability, the chips in an MCM may be identical. Unfortunately, a generic chip layout may result in optical-signal-path conflicts when chips are coupled directly to each other. This is shown in
Consequently, a special optical layout may be used to avoid data conflicts between the optical signal paths and to provide a generic chip design. In this optical layout, permutations of the optical signal paths in both the row direction and the column direction are used to enable a broadcast architecture with a generic chip design for a 2-dimensional array. In particular, each of the optical signal paths (such as a waveguide) on a given chip has two ends that are coupled to different neighboring chips. By permuting the order of the optical signal paths at one of the boundaries (in a given direction) between neighboring chips, data conflicts between the optical signal paths can be avoided.
This is shown in
If the row-direction optical signal paths are labeled a, b, c, and d from top to bottom, data conflicts at boundaries between the chips 1960 may be avoided by sequentially changing the order of the optical signal paths 1964 at the right-hand side of the chips 1960 relative to the order at the left-hand side. For example, the order at the right-hand side may be {b, c, d, e} and the order at the left-hand side may be {a, b, c, d}. Using this configuration, a given one of the optical signal paths 1964 in a given row in the array can communicate unidirectional optical signals from a given chip in the array.
This permutation technique can also be applied to the optical signal paths 1962 (which are sometimes referred to as secondary optical signal paths). In order for a given chip to communicate data to the remaining chips 1960 in the array, optical signals on each of the optical signal paths 1964 are split at appropriate column-direction optical signal paths 1962 by 3-way optical splitters (over the entire array, unidirectional optical signals on all of the optical signal paths 1964 are ultimately split at all of the column-direction optical signal paths 1962). Note that a given 3-way optical splitter is configured to receive an input optical signal on an input node and to provide output optical signals on three output nodes.
For an N×N array, optical signal paths 1964 from a given row are associated with N column-direction optical signal paths 1962. Taking all the rows into account, each chip will end up with N groups of N optical signal paths 1962 for a total of N2 optical signal paths 1962. Note that the optical signals propagating on the optical signal paths 1962 are bidirectional optical signals. Consequently, the 3-way optical splitters may be bidirectional optical splitters.
By applying the permutation technique to the optical signal paths 1962, data collisions at boundaries between the chips 1960 can also be avoided in the column direction. MCM 1950 provides an illustration of the routing permutation of 4 groups of 4 optical signal paths 1962 for each column in a 4×4 array. Note that by using this technique, the 3-way optical splitters (such as 3-way splitter 1814-3) on each of the chips 1960 can be at the same locations, thereby facilitating a common or identical chip design.
Thus, with permutations applied on both optical signal paths 1962 and 1964, a broadcast architecture can be implemented for an optically interconnected MCM, such as MCM 1950, using chips 1960 that have an identical optical layout. Additionally, this configuration limits cross-talk between optical signal paths. Note that this technique can be scaled to larger arrays and/or to higher bandwidths per chip (e.g., more than 1 transmitter per chip).
While unidirectional optical signals in the row direction and bidirectional optical signals in the column direction have been used as an illustrative example, in other embodiments either unidirectional and/or bidirectional optical signals may be communicated along either of these directions. Moreover, the optical signals communicated between chips 1960 in MCM 1950 may be communicated from a source chip to a destination chip without intervening processing as electrical signals.
In some embodiments, adjacent chips in the array communicate optical signals at their mutual boundary using optical proximity communication. For example, adjacent chips in the array may be optically coupled via optical coupling elements. Moreover, adjacent chips in the array may be optically coupled via evanescent optical signals. Additionally, in some embodiments adjacent chips in the array communicate additional data signals via electrical proximity communication. Note that the electrical proximity communication may include capacitively coupled proximity communication.
In some embodiments, MCMs 1800 (
Additionally, in some embodiment: different permutations of the optical signal paths 1962 and 1964 may be used; there may be N column-direction optical signal paths 1962 and N2 row-direction optical signal paths 1964; and/or the permutations may be applied at the left-hand side and/or the top of the given chip (as opposed to the right-hand side and/or the bottom of the given chip).
We now described embodiments of a bidirectional 3-way optical splitter, which may facilitate identical optical layout in the chips 1960. In the broadcast architecture shown in MCM 1950, 3-way splitters 1814 are used to split an optical signal on either of the waveguides 1962 and 1964, while further propagating the original input optical signal. Consequently, these components handle bidirectional optical signals (i.e., optical signals that are propagating in either direction on waveguides 1962 and 1964), which is henceforth referred to as a bidirectional 3-way optical splitter.
One existing device, which can be implemented using silicon photonic on-chip waveguide technology, is a unidirectional optical splitter (which is sometimes referred to as an X/Y optical splitter). This is shown in
As shown in
However, the existing optical splitter 2050 typically can only handle optical signals coming from a particular direction. Consequently, if this type of 3-way optical splitter is used in MCM 1950 (
This 3-way optical splitter may include: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the bidirectional 3-way optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
Note that the power ratios of each of the external output optical signals to the external input optical signal may be approximately equal. Moreover, note that this bidirectional 3-way optical splitter may be used for broadband and/or wavelength-selective applications.
In one embodiment of the bidirectional 3-way optical splitter, 2×2 optical splitters (which are also referred to as 2×2 X/Y optical splitters) are used.
In some embodiments, the optical signal input to 2×2 optical splitter 2110-2 is split with a power ratio of 1/3, and the optical signal input to 2×2 optical splitter 2110-3 is split with a power ratio of 1/1. In this way, the power of each of the output optical signals from optical splitter 2150 may be the same (or approximately the same).
Note that in some embodiments, the range of wavelengths associated with the output optical signals from the optical splitter 2150 may be the same as the range of wavelengths associated with the input optical signal. Consequently, optical splitter 2150 may be used in broadband applications.
In another embodiment of the bidirectional 3-way optical splitter, an optical switch is used to flip the input/output direction so that the input optical signal is always incident from the same side.
In some embodiments, the optical signal input to unidirectional optical splitter 2010-4 is split with a power ratio of 1/3, and the optical signal input to unidirectional optical splitter 2010-5 is split with a power ratio of 1/1. In this way, the power of each of the output optical signals from optical splitter 2250 may be the same (or approximately the same).
Note that in some embodiments, the range of wavelengths associated with the output optical signals from the optical splitter 2250 may be the same as the range of wavelengths associated with the input optical signal. Consequently, optical splitter 2250 may be used in broadband applications.
The preceding embodiments of the bidirectional 3-way optical splitter are broadband approaches. In particular, the output optical signals convey the same information as the input optical signal. This information may be communicated to all the chips in a 2-dimensional array. However, note that while the row-direction optical signal paths, such as optical signal paths 1964 (
In some embodiments, the optical signal paths in an MCM may be more effectively used, and the bisection bandwidth may be increased, by using a wavelength-selective broadcast network. As shown in
Note that in order to avoid wavelength conflict, 3-way splitters 1814 optically couple different wavelengths from optical signal paths in different rows 2312 to the given optical signal path in the columns 2310. For example, 3-way splitters 1814 (such as 3-way splitter 1814-2) at the intersection of row 2312-1 and column 2310-1 may couple wavelength λA, 3-way splitters 1814 at the intersection of row 2312-1 and column 2310-2 may couple wavelength λB, and 3-way splitters 1814 at the intersection of row 2312-1 and column 2310-3 may couple wavelength λC. Similarly, 3-way splitters 1814 at the intersection of row 2312-2 and column 2310-1 may couple wavelength λC, 3-way splitters 1814 at the intersection of row 2312-2 and column 2310-2 may couple wavelength λA, and 3-way splitters 1814 at the intersection of row 2312-2 and column 2310-3 may couple wavelength λB. Moreover, 3-way splitters 1814 at the intersection of row 2312-3 and column 2310-1 may couple wavelength λB, 3-way splitters 1814 at the intersection of row 2312-3 and column 2310-2 may couple wavelength λC, and 3-way splitters 1814 at the intersection of row 2312-3 and column 2310-3 may couple wavelength λA.
Note that each chip communicates with chips in different columns 2310 using different carrier wavelengths, and that each chip can communicate with different columns 2310 at the same time. Moreover, not only is the data traffic on different rows 2312 different at any given time, but the data traffic on different columns 2310 is different at any given time. Consequently, the bi-section bandwidth can be N times larger (where N is 3 in this example) compared to a broadband broadcast network in which each of the 3-way splitters 1814 in the chips conveys the same carrier wavelengths.
In order to implement this wavelength-selective broadcast architecture and to have a common optical layout for the chips in an array, a wavelength-selective, bidirectional 3-way optical splitter may be used. This optical splitter optically couples a given carrier wavelength in optical signals on a given row-direction optical signal path in an MCM to column-direction optical signal paths. Additionally, this optical splitter may optically couple the given carrier wavelength and/or other carrier wavelengths (from other row-direction optical signal paths) on the column-direction optical signal paths to the given row-direction optical signal path.
In some embodiments, a wavelength-selective, the bidirectional 3-way optical splitter may include an add/drop filter, which is based on a ring resonator.
Note that the size of the ring resonator 2412 determines the free spectral range (FSR) of the ring resonator 2412. During operation, an optical signal that includes a group of wavelengths within the FSR of the ring resonator 2412 may be received on an input port or node. A given carrier wavelength (λi) can be selectively coupled or dropped to a drop port or node by tuning the ring resonator 2412 (for example, using thermally tuning) Moreover, the remaining carrier wavelengths will be output at the through port or node with very small loss. Additionally, if an optical signal is injected at the add port or node, a component having the carrier wavelength λi will be coupled or added to the optical signal at the through node, and the remaining carrier wavelengths in the optical signal injected at the add node will pass through to the drop node.
Moreover, the remaining carrier wavelengths propagate through the interferometer 2460 and are re-combined at node 2464-6. Note that when the two arms of the MZI have exact the same optical length, these ‘through’ carrier wavelengths experience very little loss.
Similarly, node 2464-6 can receive an optical signal that includes the given carrier wavelength λi. In this case, the given carrier wavelength λi is output on nodes 2464-3 and 2464-4, and the remaining carrier wavelengths in the optical signal are output on node 2464-1.
In some embodiments, the add ports or nodes of optical splitter 2450, such as nodes 2464-3 and 2464-4, can also receive input optical signals. For example, in an MCM, these optical signals may be provided by chips associated with other row-direction optical signal paths. In a wavelength-selective broadcast network, chips associated with other row-direction optical signal paths will transmit data using different carrier wavelengths. Consequently, the optical signals input at these two nodes will have carrier wavelengths that are different from the given carrier wavelength λi, and will propagate straight through the optical splitter 2450 (i.e., to nodes 2464-2 and 2464-5). In some embodiments, wavelength-selective bidirectional 3-way optical splitters, such as optical splitter 2450, can be used in MCMs, such as MCM 1950 (
In some embodiments, one or more additional add/drop filters 2462, which are optically coupled in series, are included in an optical splitter. This is shown in
Note that optical splitters 2150 (
We now describe embodiments of a process for 3-way splitting an optical signal.
In some embodiments of the process 2600 there may be additional or fewer operations. Moreover, the order of the operations may be changed, and two or more operations may be combined into a single operation.
Note that the present invention may include systems that contain one or more MCMs and/or switches, which include components (such as one or more semiconductor dies) that communicate signals using electromagnetically coupled proximity connectors, such as capacitively coupled proximity connectors and/or optical proximity connectors. For example,
Computer system 2700 may include memory 2724, which may include high speed random access memory and/or non-volatile memory. More specifically, memory 2724 may include: ROM, RAM, EPROM, EEPROM, FLASH, one or more smart cards, one or more magnetic disc storage devices, and/or one or more optical storage devices. Memory 2724 may store an operating system 2726, such as SOLARIS, LINUX, UNIX, OS X, or WINDOWS, that includes procedures (or a set of instructions) for handling various basic system services for performing hardware dependent tasks. Memory 2724 may also store procedures (or a set of instructions) in a communication module 2728. The communication procedures may be used for communicating with one or more computers and/or servers, including computers and/or servers that are remotely located with respect to the computer system 2700.
Memory 2724 may also include the one or more program modules (or sets of instructions) 2730. Instructions in the program modules 2730 in the memory 2724 may be implemented in a high-level procedural language, an object-oriented programming language, and/or in an assembly or machine language. The programming language may be compiled or interpreted, i.e., configurable or configured to be executed by the one or more processing units 2710.
Computer system 2700 may include one or more macro-chips 2708 (such as one or more MCMs) that include electrical proximity communication and/or optical proximity communication as described in the previous embodiments. While not shown in the computer system 2700, in some embodiments the one or more macro-chips 2708 may be coupled to one or more network interface circuits (such as one or more optical transceivers).
Computer system 2700 may include fewer components or additional components. Moreover, two or more components may be combined into a single component and/or a position of one or more components may be changed. In some embodiments, the functionality of the computer system 2700 may be implemented more in hardware and less in software, or less in hardware and more in software, as is known in the art.
Although the computer system 2700 is illustrated as having a number of discrete items,
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Claims
1. A bidirectional 3-way optical splitter, comprising an optical splitter having a first external node, a second external node, a third external node, and a fourth external node, wherein in one mode of operation the optical splitter is configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes; and
- wherein in another mode of operation the optical splitter is configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
2. The bidirectional 3-way optical splitter of claim 1, wherein the power ratios of each of the external output optical signals to the external input optical signal are approximately equal.
3. The bidirectional 3-way optical splitter of claim 1, wherein the optical splitter includes:
- a 2×2 optical splitter having four internal nodes, wherein a first internal node of the 2×2 optical splitter is optically coupled to the first external node;
- a 2×1 optical coupler having another internal node, wherein the 2×1 optical coupler is optically coupled to a second internal node and a fourth internal node of the 2×2 optical splitter, and wherein the other internal node is optically coupled to the second external node;
- another 2×2 optical splitter having four internal nodes, wherein a first internal node of the other 2×2 optical splitter is optically coupled to the third internal node of the 2×2 optical splitter, and wherein a third internal node of the other 2×2 optical splitter is optically coupled to the third external node; and
- another 2×1 optical coupler having an additional internal node, wherein the other 2×1 optical coupler is optically coupled to a second internal node and a fourth internal node of the other 2×2 optical splitter;
- wherein the additional internal node is optically coupled to the fourth external node;
- wherein in the one mode of operation the given 2×2 optical splitter is configured to receive an internal input optical signal on the first internal node of the given 2×2 optical splitter and to provide an internal output optical signal on the fourth internal node of the given 2×2 optical splitter and to provide another internal output optical signal on the third internal node of the given 2×2 optical splitter; and
- wherein in the other mode of operation the given 2×2 optical splitter is configured to receive the internal input optical signal on the third internal node of the given 2×2 optical splitter and to provide the internal output optical signal on the second internal node of the given 2×2 optical splitter and to provide the other internal output optical signal on the first internal node of the given 2×2 optical splitter.
4. The bidirectional 3-way optical splitter of claim 3, wherein, for the given 2×2 optical splitter, the internal input optical signal is split into the internal output optical signal and the other internal output optical signal with a given power ratio of X/Y between the internal output optical signal and the other internal output optical signal.
5. The bidirectional 3-way optical splitter of claim 3, wherein, for the 2×2 optical splitter, the internal input optical signal is split into the internal output optical signal and the other internal output optical signal with a power ratio of 1/3 between the internal output optical signal and the other internal output optical signal; and
- wherein, for the other 2×2 optical splitter, the internal input optical signal is split into the internal output optical signal and the other internal output optical signal with a power ratio of 1/1 between the internal output optical signal and the other internal output optical signal.
6. The bidirectional 3-way optical splitter of claim 3, wherein the external output optical signals include the same range of wavelengths as the external input optical signal.
7. The bidirectional 3-way optical splitter of claim 1, wherein the optical splitter includes:
- a 2×2 optical switch having four internal nodes, wherein a first internal node of the 2×2 optical switch is optically coupled to the first external node, and wherein a second internal node of the 2×2 optical switch is optically coupled to the third external node;
- a 2×1 unidirectional optical coupler having an internal input node and two internal output nodes, wherein the internal input node of the 2×1 unidirectional optical coupler is optically coupled to a third internal node of the 2×2 optical switch, and wherein a first internal output node of the 2×1 unidirectional optical coupler is optically coupled to a fourth internal node of the 2×2 optical switch;
- another 2×1 unidirectional optical coupler having an internal input node and two internal output nodes, wherein the internal input node of the other 2×1 unidirectional optical coupler is optically coupled to a second internal output node of the 2×1 unidirectional optical coupler, wherein a first internal output node of the other 2×1 unidirectional optical coupler is optically coupled to the second external node, and wherein a second internal output node of the other 2×1 unidirectional optical coupler is optically coupled to the fourth external node; and
- control logic coupled to the 2×2 optical switch, wherein in the one mode of operation the control logic configures the 2×2 optical switch to optically couple the first internal node to the third internal node and the second internal node to the fourth internal node; and
- wherein in the other mode of operation the control logic configures the 2×2 optical switch to optically couple the first internal node to the fourth internal node and the second internal node to the third internal node.
8. The bidirectional 3-way optical splitter of claim 7, wherein, for a given 2×1 unidirectional optical coupler, an internal input optical signal received at the internal input node is split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a given power ratio of X/Y between the internal output optical signal and the other internal output optical signal.
9. The bidirectional 3-way optical splitter of claim 7, wherein, for the 2×1 unidirectional optical splitter, an internal input optical signal received at the internal input node is split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a power ratio of 1/3 between the internal output optical signal and the other internal output optical signal; and
- wherein, for the other 2×1 unidirectional optical splitter, an internal input optical signal received at the internal input node is split into an internal output optical signal on the second output node and another internal output optical signal on the first output node with a power ratio of 1/1 between the internal output optical signal and the other internal output optical signal.
10. The bidirectional 3-way optical splitter of claim 7, wherein the external output optical signals include the same range of wavelengths as the external input optical signal.
11. The bidirectional 3-way optical splitter of claim 1, wherein the optical splitter includes:
- an interferometer having a first internal node, a first arm optically coupled to the first internal node, a second arm optically coupled to the first internal node, and a second internal node optically coupled to the first arm and the second arm, wherein the first internal node is optically coupled to the first external node, wherein the second internal node is optically coupled to the third external node, wherein an internal input optical signal on a given internal node, which can be the first internal node or the second internal node, is split between the first arm and the second arm, and wherein optical signals on the first arm and the second arm are combined and provided on the other internal node than the given internal node;
- an add/drop filter optically coupled to the first arm, wherein an output from the add/drop filter is optically coupled to the second external node, and wherein the add/drop filter is configured to selectively couple wavelengths from the first arm to the second external node; and
- another add/drop filter optically coupled to the second arm, wherein an output from the other add/drop filter is optically coupled to the fourth external node, and wherein the other add/drop filter is configured to selectively couple wavelengths from the second arm to the fourth external node.
12. The bidirectional 3-way optical splitter of claim 11, wherein a given add/drop filter includes a ring resonator.
13. The bidirectional 3-way optical splitter of claim 11, wherein the interferometer includes a Mach-Zehnder interferometer.
14. The bidirectional 3-way optical splitter of claim 11, wherein the internal input optical signal is split approximately equally between the first arm and the second arm.
15. The bidirectional 3-way optical splitter of claim 11, further comprising an optical waveguide optically coupled to the add/drop filter, wherein one end of the optical waveguide is optically coupled to a fifth node and another end of the optical waveguide is optically coupled to the second external node; and
- wherein, in a third mode of operation, the one end of the optical waveguide is configured to provide another external output optical signal and the other end of the optical waveguide is configured to receive another external input optical signal.
16. The bidirectional 3-way optical splitter of claim 15, further comprising another optical waveguide optically coupled to the other add/drop filter, wherein one end of the other optical waveguide is optically coupled to the fourth external node and another end of the other optical waveguide is optically coupled to a sixth external node; and
- wherein, in a fourth mode of operation, the one end of the other optical waveguide is configured to receive an additional external input optical signal and the other end of the other optical waveguide is configured to provide an additional external output optical signal.
17. The bidirectional 3-way optical splitter of claim 11, wherein at least one of the add/drop filter and the other add/drop filter include two or more ring resonators which are optically coupled in series.
18. The bidirectional 3-way optical splitter of claim 17, further comprising an optical waveguide optically coupled to the add/drop filter, wherein one end of the optical waveguide is optically coupled to the fourth external node and another end of the optical waveguide is optically coupled to a sixth external node of the optical splitter;
- wherein, in a third mode of operation, the one end of the optical waveguide is configured to provide another external output optical signal and, in a fourth mode of operation, the one end of the optical waveguide is configured to receive another external input optical signal; and
- wherein, in the third mode of operation, the other end of the optical waveguide is configured to receive the other external input optical signal and, in the fourth mode of operation, the other end of the optical waveguide is configured to provide the other external output optical signal.
19. The bidirectional 3-way optical splitter of claim 18, further comprising another optical waveguide optically coupled to the other add/drop filter, wherein one end of the other optical waveguide is optically coupled to a fifth external node of the optical splitter and another end of the other optical waveguide is optically coupled to the second external node;
- wherein, in a fifth mode of operation, the one end of the other optical waveguide is configured to receive an additional external input optical signal and, in a sixth mode of operation, the one end of the other optical waveguide is configured to provide an additional external output optical signal; and
- wherein, in the fifth mode of operation, the other end of the other optical waveguide is configured to provide the additional external output optical signal and, in the sixth mode of operation, the other end of the other optical waveguide is configured to receive the additional external input optical signal.
20. A method for 3-way splitting an optical signal, comprising:
- receiving the optical signal on a given node in the first node and a third node of an optical splitter; and
- providing output optical signals on three other nodes of the optical splitter, wherein the three other nodes include-e a second node, a fourth node, and the other of the given node in the first node and the third node; and
- wherein the capability to receive the optical signal on either the first node or the third node provides bidirectional splitting.
Type: Application
Filed: Dec 21, 2007
Publication Date: Oct 21, 2010
Patent Grant number: 8320761
Applicant: SUN MICROSYSTEMS, INC. (Santa Clara, CA)
Inventors: Xuehze Zheng (San Diego, CA), Brian W. O'Krafka (Austin, TX), Ashok V. Krishnamoorthy (San Diego, CA), John E. Cunningham (San Diego, CA)
Application Number: 11/962,426