Fluid-Controlled Electronic Games and Measurement Devices
A device for estimating a stream of urine entering a toilet or urinal includes a measuring unit configured to estimate an amount of the stream of urine, and an indicator to provide an indication to an individual of the amount of the stream of urine.
This application claims the benefit of U.S. Patent Application Ser. No. 61/186,085 filed on Jun. 11, 2009, the entirety of which is hereby incorporated by reference.
BACKGROUNDDifferent games are used to entertain patrons at restaurants and bars, particularly during happy hour and “night life” activities. For example, many bars have karaoke nights to allow patrons to have fun as they socialize. Other popular bar activities include gambling and dancing. Entertainment has even made its way into the restrooms of the establishments. For example, many restrooms now are equipped with LCD panels that are positioned strategically around urinals and in stalls to entertain and advertise to patrons as they use the restroom facilities.
SUMMARYIn one aspect, a device for estimating a stream of urine entering a toilet or urinal includes a measuring unit configured to estimate an amount of the stream of urine, and an indicator to provide an indication to an individual of the amount of the stream of urine.
Examples described herein are directed to electronic games that can be provided in a restroom of a public establishment, such as a restaurant or bar. The games can be fluid-controlled, so that the games can be used to track or otherwise quantify an amount of urine that is produced by an individual or group of individuals. The games can be programmed to monitor and reward certain behaviors.
Referring now to
For example, the urine stream 105 breaks the beam 140, and the sensors 120, 130 sense when the beam is broken. In this example, the sensors 120, 130 monitor a time for which the beam 140 is broken by the urine stream 105. This can be used, for example, to estimate an amount of urination for the individual. The sensors 120, 130 can be reset, for example, each time the toilet is flushed.
Referring now to
For example, the system 200 can include a digital module 230 that is connected through wired or wireless mechanisms to the flow mechanism 220. The digital module 230 can estimate an amount of urine and display the estimate to the individual, as described below.
Referring now to
A score for the user can also be displayed, such as a total urine output score, or another score quantifying the individual's production as compared with others. In some examples, a total score can be produced that tracks an individual through multiple visits to the restroom. For example, the individual can provide a form of identification (e.g., a numeric identification number or simply the individual's name) so that the system 200 can track the individual's urine production over multiple trips to the restroom.
The interface 300 can also have interactive aspects, such as start and reset buttons. Other configurations are possible.
Various games can be associated with the systems 100, 200. For example, the bar or other establishment can create contests for the individual or individuals that generate the greatest amount of urine output in a particular time period. The contests can be based on individual output, or can be aggregated into groups. Other contest, as described below, can also be used.
For example, referring now to
For example, two individuals can use urinals 410, 420 in a direct competition. For example, the system 400 can be programmed to estimate which individual generates a certain quantity (e.g., 12 ounces) of urine output in the least amount of time. The progress and winner can be displayed on the read-out 430.
In other examples, the system can be configured to output results over a network to a centralized server. This can allow, for example, for competitions between groups located at different places. For example, different bars can compete against one another.
Various methods can be used to display the progress on the read-out 430. For example, in one embodiment, LED lights of various colors are used, such as red, yellow, and green, to indicate an individual's progress toward a goal. In another example, a race track is formed with representations of horses for each individual. The horses move around the track based on the urine output from each individual. The individual with either the greatest quantity in a given timeframe can move the individual's horse around the track the quickest to win the competition. Other configurations are possible.
In the example shown in
Referring now to
Various configurations can be used to form the flow mechanisms 220, as described below.
For example, in one embodiment shown in
In
For example, the strain gauge 730 can measure the amount of deflection at a given point in time. The flow mechanism 700 can be configured to estimate a particular flow rate at a given deflection. By measuring the deflection over time and estimating a flow rate at each measured deflection, a total estimate of the urine output can be calculated.
Referring now to
When the urine stream 108 is directed into the aperture 820, the urine contacts a strain gauge 840. This deflects the strain gauge 840 (see dashed line). The deflection is measured over time to estimate urine output. A module 850 can be connected to the strain gauge 840 to estimate time of deflection and/or amount of deflection. The module 850 can be configured to wirelessly transmit the information for display to the individual.
In yet another example shown in
In some examples, the amount of disruption can be measured to provide a better estimate of the amount of urine in the urine stream, or even a speed of the urine stream.
Other configurations are possible. For example, a motion sensor can be used to estimate the urine stream. In another embodiment, the flow mechanism is configured to collect the urine output and physically measure the urine through weight or volume measurements before discarding the urine.
In some embodiments, the systems are configured to minimize a back-splash of the urine stream as the urine stream enters the systems. For example, if placed in a urinal, the system can be optimized to minimize an amount of urine that splashes out of the system. In some examples, a target is provided to direct the user to aim at a particular spot so that splashing of the urine stream is minimized.
In alternative embodiments, the systems described herein can be used for other purposes as well. For example, the systems can be used to monitor the amount of urine produced by individuals over a period of time. If the establishment is a bar, the bar can use this information to estimate an intoxication level of the individual. Using this information, the bar can, for example, estimate when a patron is too intoxicated to drive and suggest alternative transportation. In another example, the individual or individuals with the highest outputs or scores can win a free ride home from the establishment.
In another embodiment, the systems can be used to assist in training children to use the toilet. The systems can make the process fun for a child, thereby increasing the chances that the child will use the toilet.
For example, a form of strain gauge apparatus 900 is shown in
In another example, the systems can be used to track water loss for an individual. For example, athletes or other individuals may need to, or simply want to monitor an amount of water loss to avoid dehydration. Such dehydration may present serious health risks during high performance athletic competitions, such as marathons or triathlons. Alternatively, because proper hydration is a general aim of healthful daily living, even non-athletic individuals may use the systems described herein to maintain hydration. The systems described herein can be used to estimate the amount of water lost through urination.
As with the household version of the strain gauge apparatus 900, an adult version used for physical health purposes may have an LCD display with a score representing estimated water loss or estimated water replacement need. This version of the device may be portable for use during travel or at competitive sports events. Medical care providers could use this adult version of the device with patients experiencing below or above-normal daily fluid loss. In the former instance, a low total daily score could indicate dehydration or some other physical problem resulting in low urine production (oliguria), such as a urinary tract obstruction, renal failure, or hypovolemic shock. In the latter instance, a very high total daily score could indicate diabetes or other medical condition resulting in polyuria.
The various embodiments described above are provided by way of illustration only and should not be construed to limiting. Various modifications and changes that may be made to the embodiments described above without departing from the true spirit and scope of the disclosure.
Claims
1. A device for estimating a stream of urine entering a toilet or urinal, the device comprising:
- a measuring unit configured to estimate an amount of the stream of urine; and
- an indicator to provide an indication to an individual of the amount of the stream of urine.
Type: Application
Filed: Jun 11, 2010
Publication Date: Dec 16, 2010
Inventors: Ernest W. Grumbles (Saint Paul, MN), Timothy A. Bachman (Saint Paul, MN), John W. Ahern (Saint Paul, MN)
Application Number: 12/813,975
International Classification: E03B 7/07 (20060101);