SPINE DISTRACTION AND COMPRESSION INSTRUMENT
A surgical instrument for moving tissue, such as bone segments, and more specifically vertebrae of a spinal column, is provided. In particular, a spine compression and/or distraction instrument that can be used to reposition vertebrae is provided. Further, methods for using the surgical instrument to compress and/or distract vertebrae of a spinal column are also provided.
Latest PARADIGM SPINE LLC Patents:
This application claims priority to U.S. Provisional Patent Application No. 61/222,068, filed Jun. 30, 2009, and entitled “SPINE DISTRACTION AND COMPRESSION INSTRUMENT,” which is hereby incorporated by reference in its entirety.
FIELDThe present invention relates generally to surgical instruments that are used to move tissue, and particularly bone segments, such as surgical instruments for distracting and/or compressing the spine. In particular, the present invention relates to a surgical instrument for repositioning vertebrae of a spinal column.
BACKGROUNDThe spine includes a series of joints known as motion segment units. Each unit represents the smallest component of the spine that exhibits a kinematic behavior characteristic of the entire spine. The motion segment unit is capable of flexion, extension, lateral bending, and translation. The components of each motion segment unit include two adjacent vertebrae, the corresponding apophyseal joints, an intervertebral disc, and connecting ligamentous tissue, with each component of the motion segment unit contributing to the mechanical stability of the joint. For example, the intervertebral discs that separate adjacent vertebrae provide stiffness that helps to restrain relative motion of the vertebrae in flexion, extension, axial rotation, and lateral bending.
When the components of a motion segment unit move out of position or become damaged due to trauma, mechanical injury or disease, severe pain and further destabilizing injury to other components of the spine may result. In a patient with degenerative disc disease (DDD), a damaged disc may provide inadequate stiffness, which may result in excessive relative vertebral motion when the spine is under a given load, causing pain and further damage to the disc.
Depending upon the severity of the structural changes present, currently known treatment options may include fusion, discectomy, and/or a laminectomy. Most often, these surgical treatments will also involve the use of mechanical devices such as stabilization rods or plates which are placed adjacent to the spine to secure the motion segment units in a fixed, rigid relationship. These mechanical stabilization devices can promote the natural healing of the spine in a straight spatial disposition, restore alignment to misaligned motion segment units, and enhance straightening of the spinal column in cases of disease such as scoliosis.
In some situations, the spinal rods are placed along the spinal column and various implants, such as, hooks, spacers or plates, are mounted along the rods to maintain the rods in the desired position and orientation relative to the spine. Usually, pedicle screws having rod hooks are placed onto the vertebrae, and thereafter, the rod is urged onto the hooks to straighten out the spine. In other situations, the rods can be short enough to be positioned between adjacent motion segment units using bone anchors such as pedicle screws. Here, the rod acts primarily to prevent and/or limit movement between the pairs of vertebra, thereby stabilizing these motion segment units.
Distraction and/or compression of vertebrae may be necessary prior to implantation of any spinal implant, but especially for rod-based systems. Often during the implantation process, the surgeon may need to either distract bone by pulling it away from the work site or compress bone to pull it together if broken, for example. Such would be the case where spondylolisthesis is present, a condition where adjacent vertebrae, most usually the sacrum and the lower or lumbar vertebrae, are not properly aligned or connected, such that adjacent vertebrae are displaced or the lumbar vertebrae are displaced anteriorly from the upper base of the sacrum. In a spondylolisthesis reduction, the surgeon properly repositions the vertebrae and sacrum, and then permanently joins the vertebrae and sacrum using mechanical fixation devices. The reduction may require manipulation of the vertebrae and the sacrum in one or more directions, i.e., translation in the anterior/ventral or posterior/dorsal direction, compression or distraction in the longitudinal direction of the vertebral axis, and rotation about the vertebral axis, as well as pivotal flexion of the sacrum in the ventral direction or pivotal extension of the sacrum in the dorsal direction.
The positioning of the motion segment units prior to implantation is important in order to fix the correct position of the rods and/or the implants while providing the surgeon the best visualization of the work site. It would thus be desirable to provide a surgical instrument that can either compress or distract vertebrae of a spinal column easily and effectively, while providing optimal access to the work site.
SUMMARYThe present disclosure provides a surgical instrument for moving apart tissue, and more particularly bone segments, with respect to one another. Specifically, the surgical instrument repositions vertebrae of a spinal column by either compressing or distracting one vertebra with respect to another vertebra. The surgical instrument is configured to enable compression and/or distraction using the same instrument.
In accordance with one exemplary embodiment, a surgical instrument for moving vertebrae is provided. The instrument may include a platform comprising a pair of tracks connected together by a wall at one end and a first carrier at an opposite end, a second carrier translatable across the pair of tracks, and a pair of legs. Each of the legs is removably attachable at one end to one of the first and second carriers. At the opposite end, the legs include an anchor engaging end for engaging a bone anchor. By translating the second carrier across the platform, the user effects movement of the legs with respect to one another, and consequently, movement of the vertebrae to which the anchors are connected.
In accordance with another exemplary embodiment, a surgical instrument for repositioning tissue is provided. The instrument may include a platform comprising a pair of tracks connected together by a wall at one end and a first carrier at an opposite end, a second carrier translatable across the pair of tracks, and a pair of legs. Each of the legs is removably attachable at one end to one of the first and second carriers and includes a flattened portion for placement against tissue to be repositioned. By translating the second carrier across the platform, the user effects movement of the legs with respect to one another, and consequently urges tissue together or apart, depending on the configuration of the legs.
Also provided is a method of repositioning vertebrae of a spinal column using the disclosed surgical instrument. The method comprises providing a surgical instrument that comprises a platform including a pair of tracks connected together by a wall at one end and a first carrier at an opposite end, a second carrier translatable across the pair of tracks, and a pair of legs, each leg being removably attachable at one end to one of the first and second carriers, and having an anchor engaging end at an opposite end for engaging a bone anchor. Each leg is then attached to one of the first and second carriers, and the gripping end of each leg is placed around a bone anchor secured to a vertebra. The second carrier may be translated across the pair of tracks effects movement of one vertebra with respect to another vertebra. The translation may move the second carrier towards the first carrier, resulting in compression of the vertebrae. Alternatively, the translation may move the second carrier away from the first carrier, resulting in distraction of the vertebrae.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
Additional features of the disclosure will be set forth in part in the description which follows or may be learned by practice of the disclosure. The features of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure. In the figures:
The present disclosure provides a surgical instrument for moving bone segments, and more specifically, vertebrae of a spinal column. In particular, the present disclosure provides a spine compression and/or distraction instrument that can be used to reposition vertebrae. In some embodiments, the instrument is configurable to allow for switching between compression or distraction based on interchangeable components. The present disclosure further provides methods for using the surgical instrument to compress and/or distract vertebrae of a spinal column. In addition, various embodiments of the instrument may be configured to compress or distract during surgery.
Referring now to
Each of carriers 60, 70 is attached to a hinged arm 100 that is configured to allow pivoting and interchangeable connectivity with one of legs 40, 50. As shown, each one of legs 40, 50 comprises an L-shaped shaft portion 42, 52 which terminates at one end into a gripping end 46, 56 configured as, for example, a hook or claw, for engaging a bone anchor or screw 200. The shaft portion 42, 52 terminates at an opposite end at a connecting end 44, 54 configured for interchangeable attachment with the hinged arm 100.
For purposes of illustration,
In contrast,
The combination of locking unit 90 and translation unit 80 on the movable carrier 60 provides the instrument 10 with simple, effective and easy to use mechanisms for controlling and regulating the amount of movement that can be achieved. Further, as previously described, the legs 40, 50 are interchangeable and can be attached to either the movable carrier 60 or the fixed carrier 70.
Referring now to
Turning now to
A pair of sleeves 32, 34 can also be provided with movable carrier 60 to serve as additional support for the tracks 22, 24. First and second sleeves 32, 34 can be configured as hollow cylinders to allow the first and second tracks 22, 24 to pass through. As further described below,
Movable carrier 60 includes a translation unit opening 128 for the translation unit 80. This translation unit 80 comprises a ratcheting pin 140 having a shaft 142 around which there is a belt of teeth 146. At both ends of the shaft 142 are pin holes 144A, 144B. The ratcheting pin 140 resides within the opening 128 of the movable carrier 60. First sleeve 32 is provided with a cutaway portion 36 to accommodate the belt of teeth 146, which engages with the ratcheting teeth 36 of first track 22 in use. To keep the ratcheting pin 140 secured in place, a cap 150 with a pin hole 152 can be provided below the movable carrier 60. Pin 154 can then be placed through pin hole 152 and pin hole 144B to secure the ratcheting pin 140 below the carrier body 62. Knob 86 with pin hole 82 can also be provided along with pin 84 that can be placed through pin hole 144A of the ratcheting pin 140 to secure the ratcheting pin 140 above the carrier body 62. Turning the knob 86 will cause the ratcheting pin 140 to move along the ratcheting teeth 26 of first track, thereby allowing the user to move the carrier 60 in controlled incremental steps.
Carrier body 62 also includes a locking unit opening 124 on one of its ends for accommodating the locking unit 90. As shown, locking unit 90 can comprise a locking cap 96 attached to a stem 92 having diametrically opposed tabs 94 extending therefrom. Also provided is a plunger 170 having a shaft 174 with a pin hole 176, the shaft 174 extending into a widened portion 178 that ends at a bevel edged tip 172. The plunger 170 is secured to locking cap 96 by pin 182 which extends through holes 176 and 98. A spring 180 can be positioned between the plunger 170 and the locking cap 96 to provide a biasing force against the locking cap 96.
As further shown in
The locking unit 90 can be assembled by placing the spring 180 inside the hub 160, and inserting the shaft 174 of the plunger 170 through the opening 164 of the hub 160. Next, the locking cap 96 is secured to the plunger 170 by placing pin 182 through openings 176 and 98 on the plunger 170 and the locking cap 96, respectively. The hub 160 can then be placed inside locking unit opening 124 of the movable carrier body 62. The locking unit 90 should be positioned such that the bevel edged tip 172 of the plunger 170 can engage the row of grooves or indents 28 of the second track 24. Once the locking unit 90 is properly aligned, the hub 160 can be secured in place with, for example, an adhesive. A complete locking unit 90 is also shown with reference to
In use, a surgeon may rotate the locking cap 96 such that the tabs 94 reside within the cutaway portions 166 (as also shown in
When translation is desired, the surgeon may rotate the knob 86 to effect a stepwise, incremental movement of the carrier 60 forward. When the instrument 10 is in compression mode, locking the instrument 10 prevents distraction. When the instrument 10 is in distraction mode, locking the instrument 10 prevents compression.
To unlock the cap 96, the locking cap 96 may be turned 90 degrees such that the tabs 94 rest on top of the hub body 162 (as also shown in
Both movable carrier 60 and fixed carrier 70 can include a tabbed end 64, 74 having a hole therethrough 68, 78. In the embodiment shown, the tabbed end 64, 74 fits within U-shaped head 102 of hinged arm 100. The head 102 attaches to carrier 60, 70 with a bolt 120 that extends through hole 104 and hole 68, 78. This head 102 extends into a stem 106 on which resides two unique and distinct pegs (as also shown in
The first peg 110 resides in first hole 108 and is configured as a spring peg. The first peg 110 is spring deployable and engages opening 114, 116 of legs 50, 40. The second peg 112 resides in second hole 118 of the stem 106 and acts as an anti-rotation mechanism. The second peg 112 engages with the notched opening 48, 58 of leg 40, 50.
As previously described, the legs 40, 50 are interchangeable and can be attached to the hinged arm 100 of either the movable carrier 60 or the fixed carrier 70. By pulling on the legs 40, 50, the user can dislodge the spring peg 110 from opening 116, 114 and thereby loosen the arm 50, 40 off the hinged arm 100. Attachment of the legs 40, 50 is similarly easy. The user slides the notched opening 48, 58 of the leg 40, 50 over the first and second pegs 110, 112 until the first peg 110 engages opening 116, 114 and the notch of the opening 48, 58 engages the second peg 112. Since hinged arm 100 is freely pivotable with respect to the carriers 60, 70, the legs 40, 50 are able to also pivot with respect to the carriers 60, 70. If desired, a mechanism may be provided to enable the user to control the amount of pivoting between the legs 40, 50 and the carriers 60, 70.
Providing the instrument user with the ability to readily interchange the position of the legs 40, 50 allows the surgeon to adapt the instrument 10 to the patient's anatomy or needs quickly and easily.
During surgery, the user can determine whether the instrument 10 is to be used for compression or distraction. The user can then configure the instrument 10 for compression mode or distraction mode by attaching each leg 40, 50 to one of the first and second carriers for that desired configuration. After the instrument 10 has been configured to the appropriate mode, the gripping ends 46, 56 of the legs 40, 50 are placed around a bone anchor, usually a bone screw, secured to a vertebra. The user can then effect movement of the vertebrae by translating the second carrier 60 across the pair of tracks 22, 24, which results in movement of one vertebra with respect to another vertebra.
In general, movement of the second carrier 60 towards the first carrier 70 will typically result in compression of the bone screws 200 and attached vertebrae (not shown). Conversely, moving the second carrier 60 away from the first carrier 70 typically results in distraction of the bone screws 200 and attached vertebrae (not shown). Since the legs 40, 50 are freely pivotable, the user can easily manipulate the instrument 10 relative to the patient's anatomy in the direction and orientation desired, while still being able to effectively reconfigure and realign the bone segments in an atraumatic manner.
Referring now to
Referring now to
While the present embodiments have been described with pins, it is contemplated that any comparable mechanical fastening device, such as for example, screws, bolts, rivets, etc. can be substituted without departing from the spirit of the invention. Likewise, while the present embodiments are described with adhesive, other suitable mechanisms for securing the structural elements together can be utilized, such as for example, soldering, welding, or creating an interference fit between elements.
Referring now to
Referring now to
Although
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure provided herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
Claims
1. A surgical instrument for moving vertebrae, comprising:
- a platform including a pair of tracks connected together by a wall at one end and a first carrier at an opposite end;
- a second carrier translatable across the pair of tracks;
- a pair of legs, each leg being removably attachable at one end to one of the first and second carriers, and having an anchor engaging end at an opposite end for engaging a bone anchor; and
- wherein translation of the second carrier effects movement of one vertebra with respect to another vertebra.
2. The instrument of claim 1, wherein the first carrier is rigidly fixed to the pair of tracks.
3. The instrument of claim 1, wherein the anchor engaging end is configured as a hook.
4. The instrument of claim 1, wherein the anchor engaging end is configured as an open end.
5. The instrument of claim 1, further including a translating unit for controlling the movement of the second carrier.
6. The instrument of claim 1, further including a locking unit for controlling the movement of the second carrier.
7. The instrument of claim 1, wherein the legs are pivotable with respect to the carriers.
8. The instrument of claim 1, wherein each leg is L-shaped.
9. A surgical instrument for repositioning tissue, comprising:
- a platform including a pair of tracks connected together by a wall at one end and a first carrier at an opposite end;
- a second carrier translatable across the pair of tracks;
- a pair of legs, each leg being removably attachable at one end to one of the first and second carriers, and having a flattened portion for placement against tissue; and
- wherein translation of the second carrier effects movement of tissue.
10. The instrument of claim 8, wherein each leg further includes a tissue-gripping end.
11. The instrument of claim 8, wherein each leg is L-shaped.
12. A method for moving vertebrae, comprising the steps of:
- providing a surgical instrument including a platform including a pair of tracks connected together by a wall at one end and a first carrier at an opposite end, a second carrier translatable across the pair of tracks, and a pair of legs, each leg being removably attachable at one end to one of the first and second carriers, and having an anchor engaging end at an opposite end for engaging a bone anchor;
- attaching each leg to one of the first and second carriers;
- engaging the anchor engaging end of each leg with a bone anchor secured to a vertebra; and
- translating the second carrier across the pair of tracks.
13. The method of claim 12, wherein the anchor engaging end comprises a hook, and the step of engaging comprises placing the hook around the bone anchor.
14. The method of claim 12, wherein the anchor engaging end comprises an open end, and the step of engaging comprises placing the open end over a portion of the bone anchor.
15. The method of claim 12, wherein the step of translating effects movement of one vertebra with respect to another vertebra.
15. The method of claim 12, wherein the step of translating comprises moving the second carrier towards the first carrier.
16. The method of claim 15, wherein the step of moving the second carrier results in compression of the vertebrae.
17. The method of claim 12, wherein the step of translating comprises moving the second carrier away from the first carrier.
18. The method of claim 17, wherein the step of moving the second carrier results in distraction of the vertebrae.
Type: Application
Filed: Jun 30, 2010
Publication Date: Dec 30, 2010
Applicant: PARADIGM SPINE LLC (NEW YORK, NY)
Inventors: RALF RIESINGER (WURMLINGEN), GUNTMAR EISEN (TUTTLINGEN)
Application Number: 12/826,784