Rack System And Method Of Determining A Climate Condition Thereof

- Knurr AG

A rack system (100) comprises a plurality of racks (105) arranged to form at least one aisle (120) between them. The aisle (120) is sealed such that essentially all of a cooling medium supplied to the aisle (120) passes through the racks (105). A sensor arrangement (195) is provided to compare the medium pressure inside and outside the aisle (120). In one embodiment, a signal generated by the sensor arrangement (195) is used to control at least one parameter of the cooling medium supplied to the aisle (120). As an example, the flow rate of the cooling medium may be controlled.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This invention relates to a rack system to which a cooling medium such as cooled air is supplied. The invention further relates to a method for determining a climate condition of the rack system. The climate condition of the rack system may, for example, be determined in context with controlling one or more climate parameters within the rack system.

BACKGROUND

Electrically powered equipment, including electronic devices such as computers, mass storage devices and switches, are often aggregated in so-called data centres. In the data centres, it has become common to store such equipment in racks. To allow for an easy servicing of the racks, the racks are often arranged in rows. Between two adjacent rows, an aisle is thus defined permitting servicing personal access to the equipment for installation, maintenance and removal purposes.

Most of the equipment housed inside the racks consumes enough electrical power to heat up the ambience. As there is often a thermal limit at which the equipment can be operated, steps for keeping the operational temperature underneath a critical level have to be taken. For example, many electrical devices such as computers are equipped with fans or other internal cooling mechanisms. These mechanisms generate a flow of a cooling medium such as ambient air through the devices for cooling the internal electronic components.

However, and in particular when the electrical devices are packed tightly in the racks, the cooling effect of ambient air is often not sufficient. Moreover, ambient air tends to heat up in data centres, and this fact additionally decreases the cooling efficiency. One approach to combat the heating up of ambient air is the installation of climate control systems in data centres. The climate control systems are configured to control ambient parameters such as the temperature and the humidity of the air inside the data centres.

It has been observed that in many data centres the flow around and into the racks of cooled and/or de-humidified air generated by the climate control systems is more or less arbitrary. This results in a poor cooling efficiency. In other words, the climate control systems consume more electrical power than actually necessary.

In order to increase the cooling efficiency, various techniques for concentrating and directing a flow of a cooling medium towards the racks have been proposed. In this regard, U.S. Pat. No. 6,672,955 B2 teaches an air flow management system wherein the aisles defined by two adjacent rows of racks are covered at a top end. This covering approach prevents cooling medium supplied through a floor of the aisle from exiting the aisle in an upward direction. It is further suggested controlling the volume of cooling medium supplied to the aisle via openings in the floor, whereby the static pressure in the aisle can be controlled also. As another example, WO 2006/124240 A2 proposes baffles and doors to prevent an ambient medium from laterally entering the aisle. Thus, a mixing of the ambient medium with the cooling medium (which is again supplied through a floor of the aisle) can be prevented, and the cooling efficiency is thus increased. As a still further example, US 2005/0099770 A1 teaches to fully enclose the aisle and to supply the cooling medium from the outside through the racks. According to this approach, the heated-up cooling medium is then collected in the enclosed aisle and can be easily removed without mixing with the cooling medium.

SUMMARY

There is a need for an improved rack system and for a technique of determining a prevailing climate condition inside an aisle defined by a plurality of racks constituting the rack system. Further, there is a need for efficiently controlling parameters of the cooling medium dependent on the determined climate condition.

According to one aspect, a rack system is provided comprising a plurality of racks arranged to form at least one aisle between them, wherein the aisle is sealed such that essentially all of a cooling medium supplied to the aisle passes through the racks; and a sensor arrangement allowing to compare the medium pressure inside and outside the aisle. The result of the pressure comparison (e.g., a pressure difference) may be regarded as being indicative or representative of a climate condition of the rack system.

The cooling medium may be a gaseous medium. For example, air or nitrogen may be used in this regard. However, other cooling media known in the art may be used as well.

According to a first variant, the racks conform to an applicable industry standard. An exemplary industry standard specifies a rack width of 19 inch and a rack height of a certain number of predefined height units, with one height unit equalling 1.75 inches. In other variants, the racks may have customized dimensions. The plurality of racks in the rack system may each have the same height, width and depth. Each of the racks may have a supply side for supplying the cooling medium to the rack and a removal side opposite the supply side for removing the cooling medium from the rack. In one variation, the supply sides of the racks are arranged to face the interior of the aisle. The racks forming the aisle may be housed in one or more cabinets.

The sensor arrangement may comprise a first pressure sensor located inside the aisle and a second pressure sensor located outside the aisle. In certain situations, the sensor arrangement may comprise multiple first sensors arranged in different locations inside the aisle and/or multiple second sensors arranged in different locations outside the aisle.

The outside of the aisle as understood herein may be in fluid communication with the inside of the aisle. In one variation, this fluid communication may be part of a flow path of the cooling medium. The flow path may be closed to form a circulation path, and the first sensor and the second sensor may be located along the circulation path.

At least a part of the sensor arrangement (such as the first sensor and/or the second sensor) may be located at a top end of the aisle. The sensor arrangement or a part thereof may, for example, be arranged above the racks or above any electrically powered equipment situated in the racks.

The system may comprise a control mechanism (such as a control unit) adapted to control at least one parameter of the cooling medium supplied to the aisle dependent on a signal generated by the sensor arrangement. The at least one parameter of the cooling medium controlled by the control mechanism may be selected from the set comprising a temperature, a humidity and a flow rate of the cooling medium. In some cases, it may be useful to control at least two or all three of these parameters. Moreover, one or more of these parameters could also be controlled independently from a signal generated by the sensor arrangement (e.g., responsive to a signal generated by a further sensor not belonging to the sensor arrangement). As there exists a physical relationship between temperature and humidity of the cooling medium, controlling one parameter (such as the temperature) may at the same time result in an accompanying control of the second parameter (such as the humidity).

The control mechanism may be responsive to a result of the pressure comparison (e.g., to a pressure difference between the inside and the outside of the aisle as determined by the sensor arrangement). In one example the control mechanism is adapted to at least maintain a predefined positive pressure inside the aisle with respect to the outside of the aisle. For example, the control mechanism may operate on a predefined pressure set point for the positive pressure, or the control mechanism ensure that a positive pressure limit is not undershot. The pressure set point or pressure limit for the positive pressure may be selected to lie approximately between 1 and 20 Pa (e.g., between 2 and 10 Pa or at approximately 5 Pa).

In the following, various realizations and components of the control mechanism for controlling one or more parameters of the cooling medium will be described in more detail. For example, at least one conveyor may be provided for conveying the cooling medium into the aisle. The at least conveyor may be located in a flow direction of the cooling medium upstream or downstream of the aisle. In an upstream scenario the conveyor will thus push the cooling medium into the aisle, and in a downstream scenario the conveyor will suck the cooling medium out of the aisle.

The conveyor may be adapted to influence (e.g., to control) a flow rate of the cooling medium supplied to the aisle dependent on a signal generated by the sensor arrangement. The conveyor may further be adapted to influence the flow rate dependent on signals of one or more further sensors other than the pressure sensors of the sensor arrangement (e.g., temperature, humidity or flow rate sensors). The conveyor may, for example, comprise a fan having an adjustable speed. The speed may be controlled by the control mechanism dependent on a signal generated by the sensor arrangement.

The system may additionally comprise at least one climate control unit for influenceing (e.g., for controlling) at least one of a temperature and a humidity of the cooling medium supplied to the aisle. According to a first variant, the conveyor is co-located with the climate control unit (e.g. in a single housing). According to a second variant, the conveyor is located remotely from the climate control unit.

The at least one climate control unit may be adapted to control at least one of the temperature and the humidity of the cooling medium dependent on a signal generated by the dependent on a signal generated by the sensor arrangement. Additionally, or in the alternative, such a change or control my be based on signals generated by one or more further sensors other than the pressure sensors of the sensor arrangement (e.g., temperature, humidity or flow rate sensors).

As mentioned above, at least one further sensor may be provided in addition to the sensor arrangement configured to compare the medium pressure inside and outside the aisle. Accordingly, at least one of the control mechanism, the conveyor and the climate control unit may additionally, or alternatively, be controlled dependent on a signal generated by the further sensor. The further sensor may be located at a distance from the sensor arrangement. In one variation, the further sensor is located far away from the plurality of racks. For example, the further sensor may be located in the vicinity of the climate control unit and/or the conveyor. In such a situation, the further sensor may be configured to determine medium parameters before the medium enters the climate control unit and/or the conveyor.

In one implementation, the sensor arrangement comprises a plurality of first sensors and/or a plurality of second sensors as well as a master control unit connected to at least one of the plurality of first sensors and the plurality of second sensors. The master control unit is configured to control at least one of the conveyor (e.g., responsive to the signals of the plurality of first and second sensors) and the climate control unit (e.g., responsive to the signals of the plurality of first and second sensors).

In the case a plurality of first and second sensors is provided, several first and second sensors may be associated with each aisle. Moreover, in the case where the plurality of racks is arranged to form several aisles, at least one first and second sensor may be associated with each aisle. The control operation of the master unit may in such configurations be responsive to a signal provided by the pair of first sensor and second sensor sensing the least favourable climate condition (e.g., pressure difference).

The at least one climate control unit and the at least on conveyor may each comprise a slave control unit connected to the master control unit. The slave control unit may be adapted to communicate with the master control unit and to accept control commands from the master control unit. In one realization, the slave control units are configured to control at least one of the cooling medium temperature (via the at least one climate control unit) and the flow rate of the cooling medium (via the at least one conveyor).

The aisle may further comprise at least one bleeding opening for enabling bleeding of the cooling medium out of the aisle (and, optionally, for entering or ambient medium into the aisle). The sensor arrangement may be located close to the bleeding opening or spaced apart from it (e.g., spaced apart along the circulation path of the cooling medium). Generally, the bleeding opening may be arranged in arbitrary positions with respect to the aisle. For example, the bleeding opening may be located at a top end, at a bottom end or somewhere between the top end and the bottom end of the aisle. The bleeding opening may be located essentially opposite to the location at which the cooling medium is supplied to the aisle. If, for example, the cooling medium is supplied from the bottom of the aisle, the bleeding opening may be located at the top end of the aisle, and vice versa.

In certain situations, the bleeding opening may be sized to prevent heated-up cooling medium from collecting at a top end of the aisle (i.e., to allow the heated-up cooling medium leave the aisle via the bleeding opening). Further, at least one of the climate control unit and the at least one conveyor may be controlled dependent on a medium flow direction through the bleeding opening. This control is based on the consideration that in certain situations (and depending on the size and location of the bleeding medium), the medium flow direction through the bleeding opening may be regarded as being indicative or representative of a climate condition of the rack system.

The system may further comprise a cover element sealing the aisle at a top end thereof. The cover element may be transparent so that light from an outside illumination may enter the aisle. Moreover, the cover element may include or be spaced apart from the racks by distance elements that are not permeable for the medium. In one implementation, the at least one bleeding opening is accommodated in at least one of the cover element and the distance elements.

The system may further comprise one or more terminating elements sealing the aisle at one or more lateral ends thereof. One or more of the lateral ends may also be closed by racks. The termination elements may comprise doors permitting servicing personal to enter and leave the aisle. The doors may be of transparent or opaque material and configured as sliding or swing doors. In one variant, the doors are swing doors that can be opened up to 180° to form part of an escape route for servicing personal.

In a still further implementation, the system comprises one or more grills for supplying the cooling medium to the aisle. The grills may, for example, be located at a top end if the cooling medium is supplied from above (e.g., within a cover element of the aisle) or at a floor of the aisle if the cooling medium is supplied from below. In order to increase the permeability of each grill for the cooling medium, at least 70%, and preferably more than 80% (e.g., 90% or more), of the surface area of the grill are permeable for the cooling medium. In one variant, the grill is located at a floor of the aisle and configured such that the servicing personal can walk on the grill.

The system may also comprise a duct configured to supply the cooling medium into the aisle. The duct may be situated essentially above or below the plurality of racks. The duct may be defined by a lower and an upper plane, wherein the upper plane defines a floor on which the racks are placed. The distance between the lower plane and the upper plane may lie for example between 150 mm and 1200 mm.

A portion of the space between the lower plane and the upper plane of the duct may be occupied by provisioning lines including power lines, communication lines (e.g. wire-based or fibre-optic lines) as well as supply and removal lines for fluid media such as liquids or gases. In the vicinity of the racks, the provisioning lines may extend through the upper plane and into the racks and/or the aisle. The locations where the provisioning lines pierce the upper plane may be sealed using, for example, brush strips or similar means.

The duct may be part of the medium circulation path. For example, the duct may essentially stretch between the least one climate control unit and/or the at least one conveyor on the one hand and the aisle on the other hand. Depending on whether the cooling medium is supplied to the aisle from above or from the bottom, the duct may either extend (at least partially) over the aisle or below the aisle. Moreover, the duct may be configured such that the cooling medium is supplied to a plurality of aisles simultaneously.

Each of the racks may comprise one or more mounting spaces for accommodating payload. Mounting spaces that are not occupied by payload may be sealed (e.g., by blanking panels) to prevent a significant flow of ambient medium into the aisle and/or a significant leakage of cooling medium out of the aisle. It should be noted that no 100% sealing is generally required, but any leaks will typically degrade the overall cooling efficiency of the system.

The payload situated in the mounting spaces may comprise electrically powered equipment. Such equipment may comprise computers (e.g. servers), mass storage devices, processing units, network elements such as switches, hubs, routers, and so on. The payload and in particular the electrically powered equipment may comprise a private medium conveyor (e.g., an internal fan) for conveying cooling medium from the supply side to the removal side of the rack. In one arrangement, all the payload inside a rack is arranged such that the supply sides of the private medium conveyors match the supply side of the rack, and the removal sides of the private medium conveyors match the removal side of the rack.

Each item of payload may comprise a controller for controlling the private medium conveyor (e.g., on the basis of payload parameters such as sensor readings or a determined state of the payload). Each item of payload may additionally comprise a communication mechanism for exchanging information about its internal state and the performance and current operating point of its private medium conveyor with other devices. Such other devices may include the master control unit, the at least one conveyor for conveying the cooling medium into the aisle and the at least one climate control unit.

The system may further comprise a housing in which the aisle is located. The housing can be adapted to close the circulation path of the cooling medium. The housing may comprise the floor, ceiling and walls of a data centre room. In one implementation, the at least one conveyor and/or the at least one climate control unit are situated inside or close to the housing. The climate control unit may, of course, also be situated outside the housing. In this case, further ducts may be provided to permit a flow of ambient medium from the housing to the climate control unit and a back flow of the cooling medium (e.g., of the cooled-down ambient medium). Similar to the climate control unit, the at least one conveyor for conveying the cooling medium into the aisle may likewise be located either within or outside the housing.

The climate control unit may be fed by the ambient medium (including, in the case of a closed circulation path, the heated-up cooling medium exiting the racks), perform climate control on the ambient medium so as to convert the ambient medium into the cooling medium, and then forward the cooling medium (with the help of the at least one conveyor) through the duct towards the aisle. In this way, the closed circulation path may be established.

According to a further aspect, a method for determining a climate condition of a rack system comprising a plurality of racks arranged to form an aisle between them is provided. The method comprises supplying a cooling medium into the aisle, wherein the aisle is sealed such that essentially all of the cooling medium supplied to the aisle passes to the racks, and comparing the medium pressure inside and outside the aisle to determine the climate condition. The result of the pressure comparison (e.g., a pressure difference) may be regarded as being indicative or representative of a climate condition pertaining to the rack system.

The method may further comprise controlling at least one parameter of the cooling medium supplied to the aisle dependent on the result of the comparison. The at least one parameter may be selected from a set comprising a temperature, a humidity and flow rate of the cooling medium. In one variation, the flow rate is controlled such that a predefined pressure difference in the aisle is at least maintained (e.g., is not exceeded and/or not undershot).

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, further advantages and details of the present invention will be discussed with reference to the drawings, wherein:

FIG. 1 shows a perspective view of a rack system embodiment;

FIG. 2 shows an embodiment of a rack system control layout;

FIG. 3 shows a schematic diagram of a first method embodiment.

FIG. 4 shows a schematic diagram of a second method embodiment;

FIG. 5 shows a top view of a data centre comprising a multi-aisle rack system;

FIGS. 6a and 6b show two exemplary server racks that can be used for realizing an embodiment of a rack system;

FIG. 7 shows a photograph of an aisle including a floor grill and two parallel rows of racks;

FIG. 8 shows a rack system layout without separation of cold and warm aisles; and

FIG. 9 shows another rack system layout without separation of cold and warm aisles.

DETAILED DESCRIPTION

FIG. 1 shows a perspective view of an embodiment of a rack system 100. The rack system 100 is housed in a data centre room (not shown) that may additionally contain further rack systems.

The rack system 100 comprises a plurality of individual racks 105. The racks 105 are arranged “front-to-front” in two parallel rows 110, 115 such that an aisle 120 is formed between them. In the embodiment shown in FIG. 1, each row 110, 115 of racks 105 is additionally enclosed by a respective cabinet 125, 130.

The individual racks 105 define mounting spaces for electrically powered equipment (not shown). In the present embodiment, the electrically powered equipment comprises computer servers and mass storage devices with internal private medium conveyors (such as fans) for propelling a cooling medium through a chassis thereof. The electrically powered equipment is arranged in the racks 105 such that a medium supply side of each item of electrically powered equipment faces the aisle 120, and a medium removal side faces the opposite direction. The media supply sides and the media removal sides of the electrically powered equipment thus define the medium supply sides and medium removal sides of the individual racks 105.

As shown in FIG. 1, the aisle 120 is sealed in such a manner that essentially all of a cooling medium supplied to the aisle 120 passes through the racks 105. In other words, the cooling medium is substantially prevented from exiting the aisle 120 in other directions than through the racks 105. Rack portions not occupied by electrically powered equipment requiring cooling may be sealed using, for example, blanking panels. It should be noted in this regard that no complete sealing of the aisle 120 is required (nor technically possible with reasonable technical efforts). In other words, a certain leakage of cooling medium will in many cases be tolerable as long as the leakage does not substantially degrade the cooling efficiency.

In the embodiment shown in FIG. 1, several sealing members are provided to enclose the aisle 120 in the aisle portions not limited by the rack cabinets 125, 130 housing the racks 105. Specifically, a cover element 135 is sealing the aisle 120 at a top end thereof. The cover element 120 is made from a transparent material such as acrylic glass and permits light from the data centre illumination enter the aisle 120. The cover element 135 comprises lateral distance elements 140, 145 so that the plane defined by the cover element 120 is spaced apart from the plane defined by the upper surfaces of the two cabinets 125, 130.

The sealing members enclosing the aisle 120 additionally comprise two lateral terminating elements 150, 155. The lateral terminating elements 150, 155 are configured as swing doors allowing servicing personal to enter and leave the aisle 120. It should be noted that one of the lateral terminating elements 150, 155 could be replaced by a cabinet housing one or more further racks 105. Moreover, alternative door constructions such as sliding doors could be used as well.

Cooling medium such as air is provided to the aisle 120 via a floor of the aisle, i.e. from the bottom. To this end, an elevated floor system 160 is provided. The elevated floor system 160 defines a duct 165 between a lower plane 170 and an upper plane 175 of the elevated floor system 160. As shown in FIG. 1, the rack cabinets 125, 130 and the aisle 120 defined between them are located on the upper plane 175.

The upper plane 175 of the elevated floor system 160 includes a plurality of openings (not shown in FIG. 1) for fluidically connecting the aisle 120 to the duct 165. A cooling medium fed into the duct 165 as illustrated by arrows 180 can thus enter aisle 120 through its floor. Due to the sealing members enclosing the aisle 120, the cooling medium entering the aisle 120 can leave the aisle 120 only through the racks 105 as indicated by arrows 185. Specifically, the private medium conveyors of the electrically powered equipment situated in mounting spaces of the racks 105 convey or propel the cooling medium entering the aisle 120 through the racks 105. The cooling medium thus transferred through the racks 105 is heated-up by the heat dissipated from the electronically powered equipment and leaves the racks 105 as indicated by arrows 190.

The path of the heated-up cooling medium exiting the racks 105 can be closed by cooling down (and, optionally, dehumidifying) the heated-up cooling medium leaving the racks 105 and by feeding the cooled-down (and, optionally, dehumidified) medium again into the duct 165. It should be noted that in other embodiments, the medium flow path need not be closed within the data centre. In such embodiments the heated-up cooling medium leaving the racks 105 may simply be conveyed out of the data centre into the environment.

It is evident that the parameters of the cooling medium supplied via the duct 165 to have to be tightly controlled to make sure that heat generated by the electrically powered equipment can be efficiently dissipated, preventing any undesirable heat build-up within the racks 105. On the other hand, it is apparent that an excessive adjustment of the cooling medium parameters (e.g., an excessive cooling down) should be avoided to increase energy efficiency.

To efficiently control one or more parameters of the cooling medium supplied to the aisle 120, a sensor arrangement 195 is provided at a top end of the aisle 120. The sensor arrangement 195 comprises two or more pressure sensors for comparing the medium pressure inside and outside the aisle 120.

In the following, one exemplary embodiment for controlling a parameter of the cooling medium based on signals received from the sensor arrangement 195 will be discussed in context with the schematic control diagram of FIG. 2. In the specific embodiment shown in FIG. 2, the same reference numerals as in FIG. 1 will be used to designate the same or similar elements.

The control embodiment as illustrated in FIG. 2 is based on a closed circulation path of the cooling medium. The closed circulation path comprises at least one down flow unit 205 located within the data centre room that also houses the aisle 120. In alternative embodiments, the down flow unit 205 could be located outside this room provided that it remains in fluid communication therewith in a similar manner as shown in FIG. 2.

The down flow unit 205 comprises two dedicated components in a single housing, namely a climate control unit 210 on the one hand and a cooling medium conveyor 215 on the other hand. The climate control unit 210 is a so-called chiller, which is attached to a cold water supply tube 220 and a warm water removal tube 225. The cold water supplied via the tube 220 may have a temperature of approximately 5 to 15° C. (e.g., between 11 and 13° C.). The warm water removed via tube 225 may have a temperature of approximately 12 to 22° C. (e.g., between 16 and 19° C.).

Ambient medium passing through the climate control unit 210 is brought into thermal contact with the cold water and thus cooled down. At the same time, the cold water is heated-up and removed from the climate control unit 210 via the warm water removal tube 225. Optionally, the ambient medium is additionally subjected to a dehumidifying step in the climate control unit 210.

The conveyor 215 conveys the cooled-down ambient medium as cooling medium into the duct 165. In the vicinity of where the cooling medium is fed into the duct 165, a temperature sensor 235 coupled to a control unit 240 is provided. The temperature sensor 235 is configured to sense the current temperature of the cooling medium. In the control unit 240, the current temperature of cooling medium is then compared with a temperature set point, and a cold water supply valve 245 located in the cold water supply tube 220 is controlled dependent on a result of this comparison.

The cold water supply valve 245 controls the flow of cold water through the climate control unit 210 such that the medium temperature sensed by the sensor 235 approaches or equals a specific temperature set point. As illustrated in FIG. 2, the temperature of the cooling medium entering the duct 165 will typically be set to a value in the range between approximately 18 and 26° C. (e.g. at 20, 21, 22, 23 or 24° C.).

In the embodiment illustrated in FIG. 2, control of the cooling medium temperature is performed autonomously. In other words, the control unit 240 operates solely on the signal generated by the temperature sensor 235. In other embodiments, the control unit 240 may additionally, or in the alternative, take into account the signals of one or more other sensors shown in FIG. 2 and discussed hereinafter.

As has been mentioned above, the ambient medium cooled down by the climate control unit 210 is propelled by the conveyor 215 into the duct 165. The conveyor 215 is configured as a fan the speed of which being controllable to adjust the flow rate (medium speed) of the cooling medium supplied into the duct 165 under control of a dedicated control unit 250. During normal operation, the conveyer 215 may propel the cooling medium at a speed of 1 to 3 m/s (e.g., at approximately 1.5 to 2.2 m/s).

In order to achieve a desired flow rate of the cooling medium, the required medium speed depends on the height of the duct 165 along which the cooling medium is propelled from the down flow unit 205 to the aisle 120. The medium speed values mentioned above correspond to a nominal duct height of approximately 400 to 600 mm. In cases of smaller duct heights (of, e.g., 150 mm), the speed may need to be increased, and in cases of larger duct heights (of, e.g., 800 mm), the speed may need to be reduced. Generally, the medium speed and the height of the duct 165 are selected such that the medium pressure inside the duct 165 is comparatively low, for instance no more than 20 Pa (e.g., no more than 10 Pa) over the medium pressure inside the data centre outside the aisle 120.

As illustrated in FIG. 2, the cooling medium propelled through the duct 165 (at a speed of approximately 1.7 m/s and at an increased pressure of less than approximately 10 Pa compared to the pressure inside the data centre) enters the aisle 120 via openings 255 in the upper floor plane 175. Inside the aisle 120, a medium temperature of typically 22 to 26° can thus be maintained, which is significantly lower than the ambient temperature of 32 to 38°. As indicated by the arrows in FIG. 2, the cooling medium entering the aisle 120 will be conveyed or propelled by the private medium conveyors of the electrically powered equipment to the outside of the aisle 120 and will at the same time be heated-up when taking up heat within the electrically powered equipment. The heated-up cooling medium leaving the racks becomes part of the ambient medium and will flow back to the down flow unit 205 thus establishing a closed circulation path.

Turning now to the sensor-based control of cooling medium parameters, and with continuing reference to FIG. 2, the sensor arrangement 195 comprises a first pressure sensor 195A located at the top inside the aisle 120 as well as a second pressure sensor 195B located outside the aisle. The sensor arrangement 195 including the two pressure sensors 195A and 195A is configured to compare the medium pressure inside and outside the aisle 120. To this end, the first pressure sensor 195A senses the medium pressure inside the aisle 120 and the second pressure sensor determines the medium pressure outside the aisle 120.

As becomes apparent from FIG. 2, the two pressure sensors 195A and 195B are located at positions that are in fluid communication with each other from the perspective of the flow path of the cooling medium through the racks. For this reason, the pressure difference determined as a result of a comparison of the medium pressures detected by the two pressure sensors 195A and 195B is indicative of a medium flow (e.g., an approximate flow direction or flow rate) through the racks. The pressure difference thus detected can therefore be evaluated and used for control purposes regarding one or more parameters of the cooling medium.

The pressure sensors 195A and 195B are connected to the control unit 250 associated with the conveyor 215. Via the connection, the pressure sensors 195A and 195B signal their respective pressure measurement to the control unit 150. The control unit 250 evaluates the pressure measurements by comparing the medium pressure inside and outside the aisle 120 to thus determine the pressure difference. The comparison routine applied by the control unit 250 can be regarded as being part of the sensor arrangement 195, but in other embodiments the comparison could also be performed by a dedicated comparison unit belonging to the sensor arrangement 195 and coupled to the control unit 250.

Based on the pressure difference, which is indicative of a medium flow through the racks, the control unit 250 controls the speed (and thus the flow rate) of the cooling medium propelled by the conveyor 215 such that the appropriate volume of cooling medium is fed to the aisle 120. In a further mode, the conveyor 215 may additionally be controlled dependent on the signal of one or more further sensors, such as an optional temperature sensor 260 located outside the aisle 120 and preferably close to an intake of the down flow unit 205.

In the following, the control of the conveyor 215 by the control unit 250 responsive to the detected pressure difference will be described in more detail with reference to the flow chart 300 of FIG. 3.

Referring to the flow chart 300 of FIG. 3, the control operation with respect to the conveyor 215 starts with supplying the cooling medium into the aisle 120 (step 302). The cooling medium will thus fill the aisle 120 from the bottom until it reaches the cover element 135. As the aisle 120 is sealed both laterally and on its top (see FIG. 1), essentially all of the cooling medium entering the aisle 120 through the opening 255 will pass trough the racks 105 and can thus be utilized for an efficient heat dissipation within the electrically powered equipment mounted in the racks 105. The flow of cooling medium through the racks manifests itself in a certain positive pressure inside the aisle 120 compared to the ambience of the aisle 120.

Should the equipment inside the racks 105 require to dissipate more heat (and therefore require more cooling), the private medium conveyors of the equipment will propel more cooling medium from the aisle 120 through the racks 105. As a result, the pressure inside the aisle 120 as detected by the pressure sensor 195A with respect to the ambience pressure as detected by the pressure sensor 195B will drop slightly. This drop of the pressure difference (and the resulting decrease of the positive pressure inside the aisle 120) will be detected by the comparison performed in step 304 by the control unit 250 (e.g., by comparing the determined positive pressure or pressure difference with a predefined pressure set point). The drop can be interpreted as a request for more cooling medium 120. As a result, the control unit 250 controls the conveyer 215 such that the medium speed (and thus the flow rate) increases. Therefore, more cooling medium per time unit is propelled through the duct 165.

Once slightly more cooling medium is introduced into the aisle 120 per time unit than is propelled by the private medium conveyors through the racks 105 out of the aisle 120, the pressure of cooling medium inside the aisle 120 will gradually rise again. At the same time, the pressure difference between the aisle 120 and the ambience will increase. The control unit 250 can thus determine based on the increasing pressure difference that enough cooling medium is fed into the aisle 120 and can start gradually decreasing the speed (and thus the flow rate) of cooling medium through the duct 165 until the specific pressure set point is reached again.

The pressure set point applied by the control unit may lie in the range between 2 and 10 Pa (e.g., at approximately 4, 5 or 6 Pa) and may be dynamically defined based on the cooling medium temperature (as measured by the temperature sensor 235) adjusted by the control unit 240. A set point has the advantage that the control scenario that can be implemented by the control unit 250 is not restricted to increasing the flow rate starting from a specific nominal flow rate, but can also start with an initial flow rate decrease. Accordingly, should the electrically powered equipment located in the racks have less power to dissipate (and should their private medium conveyors therefore propel less cooling medium from the aisle 120 through the racks 105), the pressure difference may rise with respect to the pressure set point. This rise of the pressure difference can be interpreted by the control unit 250 as an excess of cooling medium supplied to the aisle 120, and the propelling of cooling medium into the duct 165 (i.e. the medium speed) may be decreased. Of course, control strategies not relying on a pressure set point could be implemented as well. Such control strategies may, for example, be based on a minimum pressure difference limit that should not be undershot (but may be exceeded).

Returning to FIG. 2, the function of an optional bleeding opening 197 provided at a top end of the aisle 120 in the cover element 135 will now be briefly explained. While the bleeding opening 197 is schematically illustrated to be spaced apart from the pressure sensors 195A and 195B, it could also be located close to one or both pressure sensors 195A and 195B. Moreover, while only one single bleeding opening 197 is shown, it is clear that multiple such bleeding openings could be provided for the aisle 120.

The optional bleeding opening 197 has a fixed or adjustable diameter with a size ranging for example anywhere between a fully closed position (or a small size such as 10 cm2) and 500 cm2 (e.g., between 80 cm2 and 200 cm2). The bleeding opening 197 may be provided to enable a bleeding of the cooling medium out of the aisle 120 (and an optional entering of an ambient medium into the aisle 120). In certain operational situations there is a likelihood that cooling medium inside the aisle 120 will be heated up by thermal heat transfer from the warmer racks and the chassis of electrically powered equipment stored therein. The heated-up cooling medium is collecting at the top end of the aisle 120 and would degrade the cooling efficiency if sucked in by internal fans of the electrically powered equipment. Advantageously, the bleeding opening 197 allows the heated-up cooling medium leave the aisle 197, which improves the overall cooling efficiency. Due to the simultaneously maintained positive pressure inside the aisle 120, no ambient medium will enter the aisle 120 through the bleeding opening 197 under normal operating conditions.

In an embodiment not illustrated in the drawings, an optional further sensor may be provided in the vicinity of the bleeding opening 197 (or a second bleeding opening spaced apart from the bleeding opening 197) and may be configured to determine a medium flow direction through the bleeding opening. The further sensor may, for example, be a temperature sensor. The temperature sensed by the temperature sensor will generally be higher if cooling medium leaves the bleeding opening 197 into the ambience compared to climate situations in which warmer medium enters the aisle 120 from the ambience via the bleeding opening 197. The entering of medium through the bleeding opening 197 into the aisle 120 may, for example, be the result of a failure of the sensing arrangement 195 or of unusual operating conditions.

The medium flow direction sensed by the temperature sensor is indicative or representative of a climate condition within the aisle 120 in relation to the cooling medium. Dependent on the medium flow direction sensed by the temperature sensor, one or more parameters of the cooling medium (such as its flow rate) can be controlled to allow for an energy-efficient cooling of the electrically powered equipment mounted in the racks 105. To this end, the control unit 250 may additionally be connected to the temperature sensor and perform its control tasks also dependent on the temperature sensed in the vicinity of the bleeding opening.

In the following, a further embodiment for controlling the conveyor 215 will be described with reference to the flow chart 400 of FIG. 4. The control embodiment illustrated in FIG. 4 can be performed concurrently or as an alternative to the control embodiment discussed above in context with FIG. 3.

In a first step 402, the pressure difference (as an exemplary parameter) of the cooling medium inside and outside this aisle is maintained at a predetermined value In step 404, the cooling medium is advanced by the conveyor 215 through the duct 165 into the aisle 120 and to the medium supply sides of the racks 105. Then, in step 406, it is determined if a turnover of cooling medium through the racks 105 differs from a turnover of cooling medium through the conveyor 215. Such a turnover difference may manifest itself in a change of the pressure difference between the inside and the outside of the aisle 120 and may thus be detected by the sensor arrangement 195.

In a further step 408, the conveyor 215 is controlled dependent on the turnover difference determined in step 406. This control may, for example, target at minimizing the turnover difference or at keeping the turnover difference at a predetermined value.

It should be noted that steps 402 to 408 will in a typically scenario be performed concurrently and repeatedly. Moreover, as has been explained above, the turnover difference and any changes in the turnover difference may be detected based on a comparison of pressure values sensed by the pressure sensors 195A and 195B. In other words, when the turnover through the racks is higher than the turnover through the conveyor, the pressure difference will rise, and vice versa.

As a result of the control approach illustrated in FIGS. 1 to 4 in relation to the conveyor 215, the power consumption of the conveyor 215 can be reduced as the speed of its fan can be selectively decreased in situations in which the electrically powered equipment mounted in the racks 105 requires less cooling.

While the embodiments discussed above comprise only a single sensor arrangement 195 comprising a single pressure sensor 195A inside the aisle 120 and a single pressure sensor 195B outside the aisle 120, it will be appreciated that two or more pressure sensors 195A could be located at spaced-apart positions for example in the upper portion of the aisle 120. Additionally, or in the alternative, two or more pressure sensors 195B could be arranged at spaced-apart positions outside the aisle 120. In such a situation, each of the multiple pressure sensors will be coupled to the control unit 250. The control unit 250 may then perform its control tasks for example based on the external pressure value detected by any of the internal pressure sensors 195A and the external value detected by any of the external pressure sensors 195B. Moreover, it will be appreciated that also the number of aisles 120 coupled to the duct 165 may be increased as required. In this regard, reference is made to the schematic rack system layout illustrated in FIG. 5. Again, identical reference numerals will be used to identify the same or similar components.

According to the rack system layout shown in FIG. 5, four parallel aisles 120 are provided, each aisle 120 being defined by two parallel rows 110, 115 of racks (only two rows are specifically denoted in FIG. 5). The individual aisles 120 are all coupled to the same duct (see reference numeral 165 in FIGS. 1 and 2). Each row 110, 115 of racks comprises either 9 or 10 rack units. Each aisle 120 comprises at least one sensor arrangement 195.

The aisles 120 are provided with cooling medium from six individual down flow units 205. A master control unit (not shown) is responsible for down flow unit management, and the six down flow units 205 are connected as slave units to the master control unit. The master control unit incorporates the control functions discussed above in connection with the control unit 250 plus additional control functions for down flow unit management.

The master control unit is configured to perform its control operations responsive to the least favourable (e.g., smallest positive or largest negative) pressure difference detected by any of the multiple sensor arrangements 195 distributed over the individual aisles 120. Depending on the cooling requirements, the master control unit switches individual down flow units on, off or into a standby mode. Additionally, the master control unit controls the fan speed of the conveyors associated with down flow units 205 that have been switched on (in a range between 30 to 100% of the maximum speed) dependent on the detected least favourable pressure difference.

While the master control unit thus centrally controls the total flow rate of the cooling medium, each down flow unit 205 may autonomously and locally control temperature and humidity of the cooling medium passing the individual down flow unit 205. The temperature and humidity control of the individual down flow units may be based on a temperature set point received from the master control unit.

The overall control concept is identical to the control concept discussed above in context with FIGS. 1 to 4. In other words, in a first step the least favourable pressure difference detected by any of the distributed sensor arrangements 195 is compared to a pressure set point. If the least favourable pressure difference higher than the pressure set point applied by the master control unit, this is an indication that the down flow units 205 deliver too much cooling medium to the individual aisles 120. Accordingly, the flow rate of cooling medium will be decreased. If, on the other hand, the least favourable pressure difference is lower than the pressure set point, this can be seen as an indication that the down flow units 205 deliver not enough cooling medium to the individual aisles 120. Accordingly, the flow rate of cooling medium will be increased. As mentioned above, possible measures for controlling the flow rate include switching individual down flow unit 205 on or off, and controlling the fan speed of the down flow units 205 that have been switched on. Control strategies that may be applied by the controllers 240, 250 shown in FIG. 2 and the master control unit include a PI control which, as such, is known in the art.

FIG. 6 illustrates an embodiment of a rack 105 that comprises a plurality of mounting spaces for accommodating payload including electrically powered equipment. Specifically, FIG. 6a shows the empty rack 105 that may form the basis for the rack systems discussed above in context with FIGS. 1 to 5. Unused mounting spaces of the rack 105 may be covered with blanking panels as shown in FIG. 6b. The blanking panels ensure that cooling medium supplied to the aisle 120 does not leak out of the racks 105. It should again be noted here that no 100% sealing is required to permit an efficient cooling operation.

FIG. 7 shows an illustration of the floor of the aisle 120. As can be seen in FIG. 7, the floor is completely covered by a grill 705. The grill 705 has a large open surface area. Specifically, approximately 90% of the surface area of the grill 705 is permeable for the cooling medium. As a result of using the grill 705 as illustrated in FIG. 7, only a comparatively small pressure difference between the duct 165 on the one hand and the ambience of the aisle 120 on the other is required to efficiently supply cooling medium to the aisle 120, which again permits operating the conveyors inside the down flow units at low speeds. As has been mentioned above, a pressure difference of less than 10 Pa will in many cases be sufficient.

The various cooling approaches discussed herein provide significant advantages over prior art cooling approaches as illustrated, for example, in FIGS. 8 and 9. FIG. 8 shows a rack system layout without cold and hot aisle separation. This kind of rack system layout is common in data centres that host legacy systems and that were not specifically tailored to support a ventilation path inside the data centre. As can be seen in the ellipses, there are various regions in which fresh cooling medium supplied from the floor and heated-up cooling medium exiting the racks gets mixed. Such a mixing reduces the cooling efficiency of the data centre significantly. FIG. 9 shows another variant of a rack system layout inside the data centre, this time with cold and hot aisle separation. As shown by the ellipsis, there is still a zone where fresh cooling medium and heated-up cooling medium can mix.

Comparing the operational parameters shown for the rack system layouts in FIGS. 8 and 9 with the operational parameters shown in FIG. 2, it becomes apparent that the cooling approach discussed herein can be incorporated using much lower medium speeds and pressure differences. Additionally, the cooling medium exiting the down flow units 205 need not be cooled as much as in the legacy approaches, which also adds to the overall cooling efficiency.

While the present invention has been described with respect to particular embodiments, those skilled in the art will recognize that the present invention is not limited to the specific embodiments described and illustrated herein. Therefore, it is to be understood that this disclosure is only illustrative. Accordingly, it is intended that the invention be limited only by the scope of the claims appended hereto.

Claims

1. A rack system, comprising

a plurality of racks arranged to form at least one aisle between them, wherein the aisle is sealed such that essentially aN of a cooling medium supplied to the aisle passes through the racks, and wherein a top end of the aisle is sealed by a cover element; and
a sensor arrangement configured to compare the medium pressure inside and outside the aisle.

2. The system of claim 1, wherein the sensor arrangement comprises a first pressure sensor that is located inside the aisle and a second pressure sensor that is located outside the aisle.

3. The system of claim 2, wherein a circulation path for the cooling medium is provided, and wherein the first sensor and the second sensor are located along the circulation path.

4. The system of claim 1, wherein at least a part of the sensor arrangement is located at a top end of the aisle.

5. The system of claim 1, further comprising a control mechanism adapted to control at least one parameter of the cooling medium supplied to the aisle dependent on a signal generated by the sensor arrangement.

6. The system of claim 5, wherein the at least one parameter is selected from the set comprising a temperature, a humidity and a flow rate of the cooling medium.

7. The system of claim 5, wherein the control mechanism is responsive to a pressure difference between the inside and the outside of the aisle determined by the sensor arrangement.

8. The system of claim 5, wherein the control mechanism is adapted to at least maintain a predefined positive pressure inside the aisle with respect to the outside of the aisle.

9. The system of claim 8, wherein the positive pressure is selected to lie between 1 and 20 Pa.

10. The system of claim 1, further comprising at least one conveyor for conveying the cooling medium into the aisle.

11. The system of claim 10, wherein the at least one conveyor is adapted to influencing a flow rate of the cooling medium supplied to the aisle dependent on a signal generated by the sensor arrangement.

12. The system of claim 1, further comprising at least one climate control unit for influencing at least one of a temperature and a humidity of the cooling medium supplied to the aisle.

13. The system of claim 12, wherein the at least one climate control unit is adapted to influence at least one of the temperature and the humidity of the cooling medium dependent on a signal generated by the sensor arrangement.

14. The system of claim 1, further at least one bleeding opening for enabling bleeding of the cooling medium out of the aisle, wherein the bleeding opening 15 preferably located at a top end of the aisle.

15. The system of claim 14, wherein the sensor arrangement is spaced apart from the bleeding opening along a circulation path of the cooling medium.

16. The system of claim 1, further comprising one or more terminating elements sealing the aisle at one or more lateral ends.

17. The system of claim 1, further comprising a grill for supplying the cooling medium to the aisle, the grill being located at a floor of the aisle.

18. The system of claim 1, further comprising a duct configured to supply the cooling medium into the aisle.

19. The system of claim 18, wherein the duct is configured to supply the cooling medium to a plurality of aisles.

20. The system of claim 18, wherein the duct is situated essentially below the plurality of racks.

21. A method for determining a climate condition of a rack system comprising a plurality of racks arranged to form an aisle between them, the method comprising:

supplying a cooling medium into the aisle, wherein the aisle is sealed such that essentially all of the cooling medium supplied to the aisle passes through the racks, and wherein a top end of the aisle is sealed by a cover element; and
comparing the medium pressure inside and outside the aisle to determine the climate condition.

22. The method of claim 21, further comprising controlling at least one parameter of the cooling medium supplied to the aisle dependent on a result of the comparison.

23. The method of claim 22, wherein the at least one parameter is selected from the set comprising a temperature, a humidity and a flow rate of the cooling medium.

24. The method of claim 23, wherein the flow rate is controlled to at least maintain a predefined positive pressure inside the aisle with respect to the outside of the aisle.

25. (canceled)

Patent History
Publication number: 20110014862
Type: Application
Filed: Nov 10, 2008
Publication Date: Jan 20, 2011
Applicant: Knurr AG (Arnstorf)
Inventors: Olivier Honold (Erlenbach), Rupert Reiter (Dietersburg), Martin Gallmann (Wurenlos)
Application Number: 12/742,012
Classifications
Current U.S. Class: Electronic Cabinet (454/184)
International Classification: H05K 5/02 (20060101);