METHODS AND SYSTEMS FOR PRODUCING NANOLIPOPROTEIN PARTICLES
Provided herein are methods and systems for the production of a nanolipoprotein particle (NLP) that includes a scaffold protein a membrane forming lipid and optionally a target protein. At least one of the scaffold protein and target protein can be provided through an IVT system. The membrane forming lipid, scaffold protein and optionally the target protein can be assembled for a time and under conditions that allow obtaining high yield NLPs, NPLs with an increased solubility, an NLP of a controlled size, and/or an NLP having a size predetermined to include a pre-selected target protein.
This application claims priority to U.S. Provisional Application entitled “Cell-free Self Assembly of Nano-lipoprotein Particles as a Platform for Co-expressed Membrane Proteins” Ser. No. 60/928,579, filed on May 9, 2007 Docket No. IL-11841, and to U.S. Provisional Application entitled “Monitoring IVT or Cell-free Membrane Protein Expressions, Folding and Functional Using In Situ Expression of Bacteriorhodopsin as an Internal Colorimetric” Ser. No. 60/928,573 filed on May 9, 2007 Docket No. IL-11842, the disclosures of which are incorporated herein by reference in their entirety. This application may also be also related to U.S. application entitled “Methods and Systems for Monitoring Production of a Target Protein in a Nanolipoprotein Particle” filed on the same day of the presente application with Docket No. P196-US, the disclosure of which is also incorporated herein by reference in its entirety.
STATEMENT OF GOVERNMENT GRANTThe United States Government has rights in this invention pursuant to Contract No. DE-AC52-06NA27344 between the U.S. Department of Energy and Lawrence Livermore National Security, LLC, for the operation of Lawrence Livermore National Security.”
TECHNICAL FIELDThe present disclosure relates to membranes and membrane associated proteins and to complexes mimicking said membranes and membrane associated proteins.
BACKGROUNDMembrane-associated proteins and protein complexes account for −30% or more of the cellular proteins. Membrane proteins are held within a bilayer structure. The basic membrane bilayer construct consists of two opposing layers of amphiphilic molecules know as phospholipids; each molecule has a hydrophilic moiety, i.e., a polar phosphate group/derivative, and a hydrophobic moiety, i.e., a long hydrocarbon chain. These molecules self-assemble in a biological (largely aqueous) environment according to thermodynamics associated with water exclusion or hydrophobic association.
In order to facilitate the myriad functions of biological membranes including the passage of nutrients, signaling molecules and other molecules into and out of the cell, membrane proteins are arrayed in the bilayer structure as depicted below. Note that some proteins span the bilayer, others are anchored within the bilayer, and still others organize “peripheral” proteins into complexes. Many membrane bound protein complexes mediate essential cellular processes e.g. signal transduction, transport, recognition, and cell-cell communication. In general, this class of proteins is challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment.
Membrane proteins are optimally folded and functional when in a lipid bilayer, but standard protein purification methods often remove lipids, invariably altering protein conformation and function.
Furthermore, also non-membrane proteins (i.e. proteins that do not exercise a biological activity in connection with a location on a membrane) may still be desirably associated with a membrane for the purpose of solubilization and/or transporting and delivering to a cell.
To overcome these problems, fully functional integral membrane proteins and additional proteins can be assembled in lipid/protein-based particulate structures called nanolipoprotein particles (NLPs) usually comprising membrane forming lipids and apolipoproteins.
NLP assembly and function usually involves the association of specific apolipoprotein and lipid molecules leading to formation of proteolipid complexes; the latter are used to transport a diverse array of lipid molecules within organisms.
NLPs made in the presence of a solubilized membrane protein (target) result in a membrane protein NLP construct. Accordingly, NLP assembly can also be used for stabilization and characterization of membrane proteins.
SUMMARYProvided herein, are methods and systems suitable for producing NLPs. In particular, in some methods and systems herein disclosed, expression of at least one of the scaffold protein and a target protein is provided for rapid assembly with a membrane forming molecule such as a lipid into an NLP nanostructure. More particular, some of the methods and systems herein disclosed allow the co-expression of the scaffold protein and target protein for assembly in a NLP, which can occur in a single reaction.
According to a first aspect a method for producing a nanolipoprotein particle is described. The nanolipoprotein particle comprises a scaffold protein and a membrane forming lipid. The method comprises: providing a polynucleotide encoding for the scaffold protein; and translating the polynucleotide in an in vitro cell-free translation system, in presence of the membrane forming lipid. In particular, the method can be performed in a single reaction (“one pot”), and the nanolipoprotein structure formed can have a discoidal structure and can form within minutes to hour after the addition of the reaction constituents. According to a second aspect, a method for producing a nanolipoprotein particle is described. The nanolipoprotein particle comprises a scaffold protein, a membrane forming lipid and a target protein. The method comprises: providing a polynucleotide encoding for the target protein; and translating the polynucleotide in an in vitro cell free translation system, in presence of the scaffold protein and the membrane forming lipid.
According to a third aspect, a method for producing a nanolipoprotein particle is described. The nanolipoprotein particle comprises a scaffold protein, a membrane forming lipid and a target protein. The method comprises: providing a first polynucleotide encoding for the scaffold protein; providing a second polynucleotide encoding for the target protein; and translating the first polynucleotide and the second polynucleotide in an in vitro cell free translation system, in presence of the membrane forming lipid.
According to a fourth aspect, a system for producing a nanolipoprotein particle is described. The nanolipoprotein particle comprises a scaffold protein and a membrane forming lipid. The system comprises: the membrane forming lipid; and a polynucleotide encoding for the scaffold protein. The system is configured to be operated in connection with an in vitro cell free translation system for the translation of the polynucleotide in presence of the membrane forming lipid.
According to a fifth aspect a system for producing a nanoliprotein particle is described. The nanolipoprotein particle comprises a scaffold protein, a membrane forming lipid and a target protein. The system comprises: at least one of the membrane forming lipid and the scaffold protein; and a polynucleotide encoding for the target protein. The system is configured to be operated in connection with an in vitro cell free translation system for the translation of the polynucleotide in presence of the membrane forming lipid and of the scaffold protein.
According to a sixth aspect, a system for producing a nanoliprotein particle is described. The nanolipoprotein particle comprises a scaffold protein, a membrane forming lipid and a target protein. The system comprises: a first polynucleotide encoding for the scaffold protein; and a second polynucleotide encoding for the target protein. The system is configured to be operated in connection with an in vitro cell free translation system for the translation of the first and second polynucleotide in presence of the membrane forming lipid.
Provided herein are also methods and systems for producing NLPs with an increased solubility, with a controlled size and/or of a predetermined dimensions so to include a predetermined target protein.
According to one aspect, a method for producing a nanolipoprotein particle is described. The nanolipoprotein particle comprises a scaffold protein a membrane forming lipid and optionally a target protein. The method comprises: contacting the scaffold protein and the membrane lipid and optionally the target protein for a time and under conditions to allow self assembly of said protein component and said membrane lipid. The scaffold protein and the membrane lipid are contacted in a mass ratio of about 3:1 to about 6:1
According to a further aspect a method for producing a nanolipoprotein particle of a predefined size is described. In particular a method to produce a nanolipoprotein having a size from 10 to 60 nm is disclosed. The nanolipoprotein particle comprises a scaffold protein and a membrane forming lipid. The method comprises: mixing the scaffold protein and the membrane forming lipid at a mass ratio of scaffold protein to membrane forming lipid from about 3:1 to about 4:1.
According to a still an additional aspect, a method for producing a nanolipoprotein particle suitable to include a predetermined target protein is described. The nanolipoprotein particle comprises a scaffold protein and a membrane forming lipid, the method comprises mixing the scaffold protein, the membrane forming lipid and the target protein at a final mass ratio of scaffold protein:membrane forming lipid:target protein of about 4:1:6.
The methods and systems herein described can be used for the production of target proteins, and in particular membrane proteins for structural and functional characterization.
The methods and systems herein described can be also used for producing selected integral membrane proteins for biophysical characterization.
The methods and systems herein described can be further used as an additive to cell free expression methods and systems in applications that are independent from the organism/system used to generate the cell free extract.
The methods and systems herein described can additionally be used for the efficient production of membrane proteins, with particular reference to the membrane proteins difficult to produce from native systems.
The methods and systems herein described can also be used in processes for screening parameters for evaluation of production of any insoluble protein such as membrane proteins.
The methods and systems herein described can be applied in several fields including basic biology research, applied biology, bio-engineering, bio-energy, medical research, medical diagnostics, therapeutics, and bio-fuels.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the detailed description, serve to explain the principles and implementations of the disclosure.
Methods and systems for production of NLPs are disclosed. In the methods and systems herein disclosed expression of at least one protein of the protein component of a NLP is performed in a cell-free method/system in presence of other NLPs components for a time and under conditions that allow assembly of the NLP.
The term “nanolipoprotein particle” “nanodisc” “rHDL” or “NLP” as used herein indicates a supramolecular complex formed by a membrane forming lipid and a scaffold protein. In some embodiments the NLP can also include a target protein. In some embodiments, the nanolipoprotein particle can have a discoidal structure. The scaffold protein and, optionally, the target protein constitute protein components of the NLP. The membrane forming lipid constitutes a lipid component of the NLP.
The term “protein” as used herein indicates a polypeptide with a particular secondary and tertiary structure that can participate in, but not limited to, interactions with other biomolecules including other proteins, DNA, RNA, lipids, metabolites, hormones, chemokines, and small molecules.
The term “polypeptide” as used herein indicates an organic polymer composed of two or more amino acid monomers and/or analogs thereof. Accordingly, the term “polypeptide” includes amino acid polymers of any length including full length proteins and peptides, as well as analogs and fragments thereof. A polypeptide of three or more amino acids can be a protein oligomer or oligopeptide.
As used herein the term “amino acid”, “amino acidic monomer”, or “amino acid residue” refers to any of the twenty naturally occurring amino acids including synthetic amino acids with unnatural side chains and including both D and L optical isomers. The term “amino acid analog” refers to an amino acid in which one or more individual atoms have been replaced, either with a different atom, isotope, or with a different functional group but is otherwise identical to its natural amino acid analog
The term “scaffold protein” as used herein indicates any protein that is capable of self assembly with an amphipatic lipid in an aqueous environment, organizing the amphipatic lipid into a bilayer, and include but are not limited to apolipoproteins, lipophorines, derivatives thereof (such as truncated and tandemly arrayed sequences) and fragments thereof (e.g. peptides), such as apolipoprotein E4, 22K fragment, liphorin III, apolipoprotein A-1 and the like. In particular, in some embodiments rationally designed amphipathic peptides can serve as a protein component of the NLP.
In some embodiment, the peptides are amphipatic helical peptides that mimic the alpha helices of a apolipoprotein component that are oriented with the long axis perpendicular to the fatty acyl chains of the amphipatic lipid and in particular of the phospholipid
The term “target protein” as used herein indicates any protein having a structure that is suitable for attachment to or association with a biological membrane or biomembrane (i.e. an enclosing or separating amphipathic layer that acts as a barrier within or around a cell). In particular, target proteins include proteins that contain large regions or structural domains that are hydrophobic (the regions that are embedded in or bound to the membrane); those proteins can be extremely difficult to work with in aqueous systems, since when removed from their normal lipid bilayer environment those proteins tend to aggregate and become insoluble. In particular, target proteins include but are not limited to membrane proteins, i.e. proteins that can be attached to, or associated with the membrane of a cell or an organelle, such as integral membrane proteins (i.e. proteins (or assembly of proteins) that are permanently attached to the biological membrane.), or peripheral membrane proteins (i.e. proteins that adhere only temporarily to the biological membrane with which they are associated). Integral membrane proteins can be separated from the biological membranes only using detergents, nonpolar solvents, or sometimes denaturing agents. Peripheral membrane proteins are proteins that attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer with an attachment that is reversible.
The term “membrane forming lipid” or “amphipatic lipid” as used herein indicates a lipid possessing both hydrophilic and hydrophobic properties that in an aqueous environment assemble in a lipid bilayer structure that consists of two opposing layers of amphipathic molecules know as polar lipids. Each polar lipid has a hydrophilic moiety, i.e., a polar group such as, a derivatized phosphate or a saccharide group, and a hydrophobic moiety, i.e., a long hydrocarbon chain. Exemplary polar lipids include phospholipids and alkylphosphocholins. Amphipatic lipids include but are not limited to membrane lipids, i.e. amphipatic lipids that are constituents of a biological membrane, such as phospholipids like dimyrisoylphosphatidylcholine (DMPC) or Dioleoylphosphoethanolamine (DOPE) or dioleoylphosphatidylcholine (DOPC).
The membrane forming lipid and the protein components of the NLP are generally able to self-assemble in a biological (largely aqueous) environment according to the thermodynamics associated with water exclusion (increasing entropy) during hydrophobic association. In the methods and systems herein provided, the amphipatic lipid and the protein components of the NLP are allowed to assembly in a cell free expression system.
As used herein, “the wording cell free expression”, “cell free translation”, “in vitro translation” or “IVT” refer to at least one compound or reagent that, when combined with a polynucleotide encoding a polypeptide of interest, allows in vitro translation of said polypeptide/protein of interest.
The term “polynucleotide” as used herein indicates an organic polymer composed of two or more monomers including nucleotides, nucleosides or analogs thereof. The term “nucleotide” refers to any of several compounds that consist of a ribose (ribonucleotide) or deoxyribose (deoxyribonucleotides) sugar joined to a purine or pyrimidine base and to a phosphate group, and that are the basic structural units of nucleic acids. The term “nucleoside” refers to a compound (as guanosine or adenosine) that consists of a purine or pyrimidine base combined with deoxyribose or ribose and is found especially in nucleic acids. The term “nucleotide analog” or “nucleoside analog” refers respectively to a nucleotide or nucleoside in which one or more individual atoms have been replaced with a different atom or a with a different functional group. Accordingly, the term polynucleotide includes nucleic acids of any length DNA RNA analogs and fragments thereof. A polynucleotide of three or more nucleotides is also called nucleotidic oligomers or oligonucleotide.
In some embodiments, the polynucleotide is an engineered polynucleotide designed such that the resulting protein may be expressed as a full-length protein. In some embodiments the polynucleotide is an engineered polynucleotide designed to encode a protein fragment. Protein fragments include one or more portions of the protein, e.g. protein domains or subdomains. In some embodiments the polynucleotide is an engineered polynucleotide designed to encode a mutated proteins. In particular, in some embodiments the polynucleotide can also be designed such that the resulting protein, protein fragment or mutated protein is expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. In particular, in some embodiments wherein the polynucleotide encodes for a target protein, the polynucleotide can be engineered so that target protein are labeled or tagged. Labeling or tagging can be performed with methods that include, for example, FRET pairs, NHS-labeling, fluorescent dyes, and biotin as well as coding for a “His-tag” to enable protein isolation and purification via established Ni-affinity chromatography.
In some embodiments herein disclosed, the polynucleotide is a DNA molecule that can be in a linear or circular form, and encodes the desired polypeptide under the control of a promoter specific to an enzyme such as an RNA polymerase, that is capable of transcribing the encoded portion of the DNA.
In embodiments where the polynucleotide is DNA, the DNA may be transcribed as part of the cell free reactions or system. In those embodiments the DNA contains appropriate regulatory elements, including but not limited to ribosome binding site, T7 promoter, and T7 terminator, and the reagents or compounds include appropriate elements for both transcription and translation reactions. In other embodiments, the polynucleotide can be prepared prior to addition to the cell free reactions/system, wherein the polypeptide of interest is produced, and the reagents or compounds include appropriate elements for and translation reactions only.
Accordingly, as used herein, the term “cell free expression”, “cell free translation”, “in vitro translation” or “IVT” refer to methods and systems wherein the transcription and translation reactions are carried out independently, and to systems in which the transcription and translation reactions are carried out simultaneously in a non-cellular compartment, e.g. glass vial.
In each of these methods and systems, the reagents or compounds typically include a cell extract capable of supporting in vitro transcription and/or translation as appropriate. In any case, the cell extracts must contain all the enzymes and factors to carry out the intended reactions, and in addition, be supplemented with amino acids, an energy regenerating component (e.g. ATP), and cofactors, including factors and additives that support the solubilization of the protein of interest.
These systems are known in the art and can be identified by the skilled person upon reading of the present disclosure, and exist for both eukaryotic and prokaryotic applications. Exemplary cell free expression systems that can be used in connection with the methods and systems of the present disclosure includes but are not limited to commercial kits for various species such as extracts available from Invitrogen Ambion, Qiagen and Roche Molecular Diagnostics, cellular extracts made from E. coli or wheat germ or rabbit reticulocytes, or prepared following protocols, such as published laboratory protocols, identifiable by a skilled person upon reading of the present disclosure.
In some embodiments, the cell free system can operate in batch mode or in a continuous mode. In the batch mode the reaction products remain in the system and the starting materials are not continuously introduced. Therefore, in batch mode, the system produces a limited quantity of protein. In a continuous mode instead, the reaction products are continuously removed from the system, and the starting materials are continuously restored to improve the yield of the protein products and therefore the system produces a significantly greater amount of product.
In some embodiments, the cell free expression system is a high-throughput expression system, where an array (i.e., at least two) of polynucleotides (coding for the same or different polypeptides) is processed simultaneously in multi-well reaction plates, where each polynucleotide is in a well of the plate. The reaction plate can typically have at least 2 wells, and typically has 12-, 24-, 96-, 384-, or 1536-wells; other sizes may also be used.
In some of those embodiments the array is carried out to explore the function and potential relationships of proteins encoded within any genome.
In some of those embodiments the array is carried out for parallel analysis of multiple binary interactions between proteins and other molecules. In addition, in some embodiments engineering and tagging techniques allows the orientation of proteins of interest and expands the capabilities and use of protein microarrays. Some of those embodiments wherein cell-free expression is combined with array-based proteomics are applicable in particular in protein biochemistry, molecular diagnostics and therapeutics.
In some embodiments array-based methods and systems provide a high-throughput format with which to investigate protein-protein, protein-DNA, and protein-small molecule interactions on the NLP.
In some embodiments, the scaffold protein is expressed in the cell free reaction system where the amphipatic lipid and, optionally, the target protein are also included. In those embodiments the cell free reaction is performed for a time and under conditions that allow the expression of scaffold protein and the assembly of the scaffold protein with the amphipatic lipid and optionally the target protein in an NLP structure.
In some embodiments, the target protein is expressed in the cell free reaction system where the amphipatic lipid and the scaffold protein are also included. In those embodiments the cell free reaction is performed for a time and under condition that allow the expression of target protein and the relevant assembly with the scaffold protein and the amphipatic lipid in an NLP structure.
In some embodiments, the target protein is expressed in the cell free reaction system where a preformed NLP is included. In those embodiments addition of pre-formed NLPs to an actively expressing cell-free protein synthesis reaction is performed for a time and under condition to allow direct insertion of membrane protein as it is synthesized in the cell-free system, into the NLP.
In some embodiments, the target protein and/or scaffold protein are expressed or co-expressed in a cell free system wherein both kinds of proteins can be expressed in a single reaction (one-pot) in a system that can include the appropriate additives directed to facilitate reactant solubilization. In those embodiments, the co-expressed target protein and scaffold protein are then allowed to assembly of membrane proteins into NLP nanostructures; possibly within the same reaction mixture. Some of those embodiments allow producing NLPs overcoming the requirement for the purification and reassembly of the NLP complex. Some of those embodiments also provides a single-step process for the production of soluble membrane proteins that eliminates the need for cell growth, cell lysis, and subsequent purification, refolding. Some of those embodiments allow avoiding use of detergents while allowing single-step addition of lipids and other molecules important to protein function.
In particular, co-expression of both scaffold protein and target membrane protein in presence of phospholipids and surfactant/detergent can be performed in a “one-pot” reaction that generates, in situ, both scaffold protein and target membrane protein; NLP self-assembly will ensue using phospholipids already in the reaction mixture. Some of those embodiments are exemplified by the co-expression of a truncated apolipoprotein (L1-ApoA1) and the bacteriorhodopsin gene, which results in the functionally active seven transmembrane helix bacteriorhodopsin protein (bR) upon addition of retinal cofactor as illustrated in Examples 1-15 and in
In embodiments, wherein the methods and systems performed in a “one-pot” solution the nanolipoprotein structure can be formed in a rapidly e.g. within minutes to hour after the addition of the reaction constituents.
In some embodiments, each of the target protein and/or the scaffold protein expressed in the IVT system is comprised of more than one protein, thus resulting in NLP including two or more target proteins and/or two or more scaffold proteins. In particular, in some of those embodiments cell-free co-expression of membrane proteins in NLP complexes enable production in a same NLP of multiple classes of membrane associated proteins previously not conveniently obtainable.
In some embodiments the target proteins are membrane proteins such as protein coupled receptors (GPCRs), which include, for example acetylcholine receptors (AChRs) and rhodopsin. GPCRs conform to a shared common structure that is believed to traverse the cell surface membrane seven times forming a helical structure encompassing a ligand binding site. Of the three cytoplasmic dominions the C-loop has a C-terminal tail that recognized and activates specific hetero-trimeric GTP binding proteins (G proteins) in an agonist dependent manner.
Further exemplary target proteins include Ion channels (IC) and small multidrug resistance transporter (SMR), and additional membrane proteins that mediate essential cellular processes including signal transduction, transport, recognition, bioenergetics, and cell-cell communication. This would include G-coupled receptors, Toll receptors and various kinases that important for the aforementions processes For example possible target proteins include membrane proteins from Thiobacillus denitrificans such as unusual membrane associated [NiFe] hydrogenase complex, a group of highly expressed membrane bound c-type cytochromes and a group of highly upregulated membrane proteins of unknown functions.
Exemplary GPCRs suitable to be used as target proteins in the methods and systems herein disclosed are indicated in Table 1.
In particular, bacteriorhodopsin (bR) from H. salinarium, is further exemplary target protein having 7 transmembrane spanning regions that can be produced, purified and regenerated by exogenously adding all-trans retinal. bR was used in a series of experiments exemplified in the Examples section as a model target protein to be included in NLPs according to methods and systems herein disclosed. Additional target proteins that can be included in the NLPs according to the methods and systems herein disclosed can be identified by a skilled person upon reading of the present disclosure and will not be further discuss in details.
In general, target proteins that can advantageously be included in NLP using methods and systems herein disclosed, comprise all the proteins and in particular membrane protein, whose over-expression results in cell toxicity (in vivo), protein aggregation, mis-folding, and low yield and that are instead expressed in a cell free system that includes appropriate additives.
In some embodiments, the additives used in the cell free reaction systems include any substance that improves the solubilization of the protein of interest and/or of any other protein components that are present in the reaction mixtures, any substance that may augment protein production and any substance that improves protein functions. Those additives include but are not limited to cofactors (e.g. retinal, heme) other proteins that facilitate modification (e.g. glycosylases, phosphatases, chaperonins) lipids, redox factors, detergents and protease inhibitors, and in particular, phospholipids such as dimyristoylphosphatidyl choline (DMPC) and the like, and surfactants/detergents such as cholate, triton X-100 and the likes. Exemplary detergents that can be used for protein solubilization in the methods and systems herein disclosed, include Heptanoyl-N-methyl-glucamide, Octanoyl-N-methyl-glucamide, Nonanoyl-N-methyl-glucamide, n-Nonyl-b-D-gluco-pyranoside, N-Octyl-b-D-glucopyranoside, Octyl-b-D-thiogluco-pyranoside, N,N-Dimethyldodecylamine-N-oxide and Glycerol. Additional additives that might be included in the reaction mixtures include labels and labeleling molecule that can be used to label or tag the target protein and thus to enable the detection of the target protein through detection of a related labeling signal.
The terms “label” and “labeled molecule” as used herein refer to a molecule capable of detection, including but not limited to radioactive isotopes, fluorophores, chemiluminescent dyes, chromophores, enzymes, enzymes substrates, enzyme cofactors, enzyme inhibitors, dyes, metal ions, nanoparticles, metal sols, ligands (such as biotin, avidin, streptavidin or haptens) and the like. The term “fluorophore” refers to a substance or a portion thereof which is capable of exhibiting fluorescence in a detectable image. As a consequence the wording and “labeling signal” as used herein indicates the signal emitted from the label that allows detection of the label, including but not limited to radioactivity, fluorescence, chemolumiescence, production of a compound in outcome of an enzymatic reaction and the likes.
In some embodiments, the methods and systems herein disclosed are used to produce proteins for structural studies, including for example NMR and X-ray crystallography. In particular, these cell free methods can be applied to integral membrane proteins in a high-throughput manner, as a variety of conditions can be rapidly tested to identify optimal expression parameters.
In some embodiments, the methods and systems herein disclosed are used to produce NLPs suitable as drug delivery vehicles, wherein the particles are formed by taking advantage of the ability of amphipathic apolipoproteins to solubilize certain phospholipids vesicle substrates, transforming them into a relatively homogeneous population of disk-shaped bilayers whose perimeter is circumscribed by apolipoprotein molecules.
In some embodiments, NLPs are provided by the methods and systems herein disclosed by using different scaffold proteins, which allows tailoring the average size of the particles, e.g. from 10 to 60 nm (+/−3%), and in particular 10 to 30 nm (+/−3%) at an average height of 5.0 nm. The nanoscale bilayers so obtained can be used to investigate and control assembly of oligomeric integral membrane proteins critical to macromolecular recognition and cellular signaling. Those embodiments can be performed using any apolipoprotein-like molecules as potential structure for solubilizing the membrane proteins via NLP formation. Examples include, but are not limited to ApoE4, ApoAI, MSPI(ApoAI truncations), synthetic peptides and insect lipophorins.
In some embodiments, methods and systems are herein disclosed that are performed at predefined lipid protein ratio, assembly conditions and/or with the use of preselected protein component and amphipatic lipid so to increase the yield, control the size of the resulting NLP and/or provide an NLP of pre-determined dimensions so to include a pre-determined target protein.
In some embodiments, for obtaining an increased solubility the scaffold protein and the membrane lipid are contacted in a mass ratio of about 3:1 to about 6:1 and in particular of about 4:1 to about 6:1, more particularly of about 4:1 to about 5:1 and of about 5:1 to about 6:1.
In some embodiments the scaffold protein is selected to define the size of NLPs. In particular, the scaffold protein and/or the membrane forming lipid can be selected so that the scaffold protein and the membrane forming lipid are contacted lipid at a mass ratio of scaffold protein to membrane forming lipid from about 3:1 to about 4:1 to provide a particle having a size from 10 to 60 nm. In some embodiments, Lipophorin III lipoproteins make assemble into larger NLPs with diameters 10-30 nm range, apolipoprotein A1 NLPs range in size from 10-25 nm, truncated Δ(1-49)Apolipoprotein A1 15-35 nm. Adjustment of protein to lipid ratios increasing lipid will also increase the size of the NLP. An exemplary, procedure is illustrated in the examples section.
In some embodiments the amphipatic lipid is tested to provide the most stable and native-like environment. For example a target protein that is naturally found in the inner mitochondrial membrane would contain lipids specific to that region of the cell. In particular the protein of the inner mitochondrial membrane requires a membrane compose of ˜20% cardiolipin for proper function. A protein that requires more flexibility in it function may require lipids with a higher degree of unsaturation creating a bilayer with more fluidity. While incorporating a target protein the stability of the protein may be improve by using a detergent that has been proven to allow the protein to retain native activity as measured/monitored by our indicator protein.
In some embodiments, the target protein scaffold protein and membrane forming lipid are added in certain proportion to provide a nanolipoprotein particle configure to include a predetermined target protein. The method typically comprises contacting the reactant to obtain a particle with a controlled size (see e.g. Example 30) with the addition of membrane protein, e.g. bacteriorhodopsin as a crude “purple membrane” completing a final mass ratio apolipoprotein:phospholipid:membrane protein of about 4:1:6
In some embodiments the amphipatic lipid is selected to resemble the native lipid composition in which the membrane protein is known to function.
In some embodiments the lipid to scaffold protein ratio: is selected to optimize and maximize the yield leading to NLP formation.
In some embodiments the assembly parameters are selected to allow the constiuents reach maxiumum NLP formation reflective of a thermodynamic endpoint.
The systems herein disclosed can be provided in the form of kits of parts. In some embodiments, the characteristic feature size can be micrometers. The target protein and/or the scaffold protein can be included in the kit as a protein alone or in the presence of lipids/detergents for transition in to nano-particles. The target protein and/or the scaffold protein can be included as a plasmid or PCR DNA product for transcription/translation. The indicator protein may be included as encoded RNA for translation
In a kit of parts, a polynucleotide, amphipatic lipid, target protein and/or scaffold protein are comprised in the kit independently possibly included in a composition together with suitable vehicle carrier or auxiliary agents. For example a polynucleotide-can be included in one or more compositions alone and/or included in a suitable vector, and each polynucleotide- is in a composition together with a suitable vehicle carrier or auxiliary agent. Furthermore, the target protein can be included in various forms suitable for appropriate incorporation into the NPL. For example, in embodiments wherein the target protein is bR, the cofactor all-trans-retinal would be included in a kit that also contained the encoded genetic information for the production of bacteriorhodopsin as the target protein.
In some embodiments, a ligand suitable to bind a target protein of interest can be further provided as an additional component of the kit. Additional components can include labeled polynucleotides, labeled antibodies, labels, microfluidic chip, reference standards, and additional components identifiable by a skilled person upon reading of the present disclosure. In particular, the components of the kit can be provided, with suitable instructions and other necessary reagents, in order to perform the methods here disclosed. The kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes or CD-ROMs, for carrying out the assay, will usually be included in the kit. The kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).
Further details concerning the identification of the suitable carrier agent or auxiliary agent of the compositions, and generally manufacturing and packaging of the kit, can be identified by the person skilled in the art upon reading of the present disclosure.
EXAMPLESThe methods and system herein disclosed are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.
Example 1 Cell-free Production of NLPsThe experimental strategy for cell-free membrane protein-NLP self-assembly was based on the ability of membrane proteins to insert into lipid bilayers during cell-free synthesis, the apolipoprotein ability to sequester lipid bilayer patches, and the demonstrated ability of NLPs to than solubilize membrane proteins. Individual plasmid DNAs encoding the membrane protein and the apolipoprotein are added to the cell-free reaction with the addition of phospholipids and cofactors to produce membrane protein associated discoidal nanolipoprotein particles (NLPs) in a single reaction. In particular, as shown in
In a first series of experiments, two plasmids were used to generate the integral membrane protein and the lipoprotein NLP support, one encoding membrane protein bacterioOpsin (bOp) and the second encoding a Δ1-49 apolipoprotein A-1 fragment (Δ49A1). The plasmids were co-expressed, in the presence of all-trans-retinal and the phospholipid dimyristoyl-phosphatidylcholine (DMPC), resulting in functional bacteriorhodopsin (bR) protein solubilized in a discoidal bR-NLP.
In particular, the truncated form of Apo A1 (Δ1-49) or Δ49A1 was cloned using the following primers: forward, 5′-atgctaaagctccttgacaactgg-3′ (SEQ ID NO: 1) and reverse, 5′-ttactgggtgttgagcttcttagtg-3′ (SEQ ID NO: 2). This construct is six amino acids shorter than our truncated form of Apo A1 (Δ1-49) or Δ49A1, and was expected to perform similarly in NLP assembly and characterization.
The resulting PCR product was cloned into the vector pIVEX2.4d using NdeI and SmaI restriction sites. This vector also contains a His-tag for nickel affinity purification. The bacterioOpsin sequence (bOp), which encodes the bacteriorhodopsin protein, was amplified from a plasmid p72bop (Sonar et al., 1993; obtained from Kenneth Rothschild) using the following primers: 5′-ggggcatatgcaagctcaaat-3′ (SEQ ID NO: 3) and 5′-ggggatccaaaaaaaacgggcc-3′ (SEQ ID NO: 4). The gene represents a synthetic form of bOp that was designed for E. coli-based expression (1). The resulting PCR product was cloned directionally into the HIS-tagged pIVEX 2.4b vector using the NdeI and BamHI restriction enzyme sites. All constructs were verified by DNA sequencing.
Cell-free reactions were then performed. In particular, preparative reactions are carried out using the Invitrogen's Expressway Maxi kit or Roche's RTS 500 ProteoMaster Kit. Basically, lyophilized reaction components (Lysate, Reaction Mix, Amino Acid Mix, Methionine) are dissolved in Reconstitution Buffer and combined as specified by the manufacturer. For co-expression a total of 5 μg of each plasmid DNA (bOp and Δ49A1) was added to the lysate mixture with added DMPC vesicles and retinal cofactor (see below). The reactions were incubated at 30° C. or 37° C. for 4-24 h. For membrane protein survey studies co-expression of 0.2 ug Δ49A1 DNA and lug of each membrane protein DNA was added to the cell-free mixture where [35S]Met (135 mCi/mmol final) (Perkin Elmer, Waltham, Mass.) was added in place of methionine. The soluble fraction was obtained by centrifuging the reactions at 14000×g for 5 min. Autoradiograms were generated by overnight exposures to proteins separated by SDS-PAGE (data not shown). Percent solubility was determined using ImageJ software (U.S. National Institutes of Health) to quantize autoradiogram bands for the soluble fractions in the presence and absence of apolipoprotein Δ49A1.
In some reactions a retinal cofactor was added. To this purpose, an all trans-retinal (Sigma) solution was prepared with 100% ethanol at a stock concentration of 0.586 or 10 mM. The stock solution was diluted to achieve a final working concentration of 30-50 μM in cell-free reactions.
The lipid component of the NLPs was also prepared. Small unilamellar vesicles of DMPC (liposomes) were prepared by probe sonicating a 68 mg/mL aqueous solution of DMPC until optical clarity is achieved; typically 15 min on ice is sufficient. A 2 min. centrifugation step at 13700 RCF was used to remove any metal contamination from the probe tip. The individual lipid component was added to the cell-free reaction at a concentration of 2 mg/mL.
Soluble fractions were purified. In particular, NLP complexes were then purified through Affinity purification. In particular, immobilized metal affinity chromatography was used to isolate the proteins of interests (truncated 49A1 and bOp) from the cell-free reaction mixture based on affinity of the N-terminal poly-His tag. The soluble fraction was separated from precipitated protein by centrifugation for 5 min at 18K RCF at 4° C. The soluble fraction was mixed with Ni-NTA Superflow resin (Qiagen) according to the manufacturer's protocol using native purification conditions with the following modifications; 5 mM imidazole in PBS buffer was used for washing and 400 mM imidazole PBS buffer was used for elution of the His-tagged proteins. All elutions were combined, concentrated and buffer exchanged into TBS using a 100K MWCO molecular weight sieve filters (Vivascience) in a volume of 200 μL.
The samples were also characterized by SDS-PAGE, Native PAGE, UV-visible spectroscopy, and atomic force microscopy (AFM) as illustrated in the following examples. A survey study of other membrane proteins co-expressed with the truncated apolipoprotein also significantly increased solubility all of the membrane proteins surveyed
Example 2 Characterization of NLPs Produced by Cell-free System: Solubilization of the bR-NLP ComplexThe experimental design outlined in Example 1 of cell-free co-expression for refolding and incorporation into NLPs was also demonstrated using bR from Halobacterium salinarium, and truncated apolipoprotein A-1 (Δ1-49) or Δ49A1. The bR protein is a seven transmembrane (TM) helical protein and serves as a structural model protein for rhodopsin and other 7-TM proteins such as GPCR family members.
Simultaneous cell-free protein expression of both bR and Δ49A1 in the presence of DMPC in a single reaction produces a functional bR-NLP complex (
In particular, as illustrated in
Single-step co-expression, assembly and purification of the soluble bR-NLP complex was completed within 4 hours giving analogous yields and functions comparable to previous published findings (2). This extremely rapid approach was also applicable to a wide variety of other transmembrane proteins (
Although bR coloration was observed in the presence of DMPC without Δ49A1, very little of the material was soluble compared to when the Δ49A1 was co-expressed in the reaction mixture (
Demonstration using bacteriorhodopsin (bR) and truncated apolipoprotein Δ1 (Δ49A1) produced bR-NLP complexes that were shown to be soluble, discoidal in shape and light active (
bR-NLP complex heterogeneity was also observed by both native gel electrophoresis and SEC.
In particular, NLPs produced as described in Example 2 were first analyzed by SEC, to detect the separation of NLPs from larger lipid-rich material. Size exclusion chromatography identified a size shift in the bR-NLP complex compared to empty NLPs or liposomes. The bR-NLP complexes eluted primarily before empty NLPs and after liposomes (
The NLPs were also analyzed by SDS Page. In particular, a 1 μL aliquot of the total (T) cell-free reaction, soluble (S) fraction and resuspended pellet (P) were diluted with 1×LDS Sample buffer with reducing agents (Invitrogen), heat denatured and loaded on to a 4-12% gradient pre-made Bis-Tris gel (Invitrogen) along with the molecular weight standard SeeBlue plus2 (Invitrogen). The running buffer was 1× MES-SDS (Invitrogen). Samples were electrophoresed for 38 minutes at 200V. Gels were stained with coomassie brilliant blue.
The particles were also analyzed by native PAGE. Equal amounts of NLP samples (0.5-1.0 μg) were diluted with 2× native gel sample buffer (Invitrogen) and loaded onto 4-20% gradient pre-made Tris-glycine gels (Invitrogen). Samples were electrophoresed for 2 hrs. at a constant 125 V. After electrophoresis, gels were incubated with SYPRO Ruby protein gel stain (Bio-Rad) for 2 hours and then de-stained using 10% MeOH, 7% Acetic acid. Following a brief wash with ddH2O, gels were imaged using the green laser (532 nm) of a Typhoon 9410 (GE Healthcare) with a 610 nm bandpass 30 filter. Molecular weights were determined by comparing migration vs. log molecular weight of standard proteins found in the NativeMark standard (Invitrogen).
This heterogeneity may have been due to multiple factors such as number of lipids per NLP, bR oligomerization within the NLPs and/or generation of NLPs with varying diameters. Particle diameters measured by atomic force microscopy AFM (data not shown) supports the latter.
To this extent NLPs were imaged using and Asylum MFP-3D-CF atomic force microscope. Images were captured in tapping mode with minimal contact force and scan rates of 1 Hz. Asylum software was used for cross-sectional analysis to measure NLP height and diameter. For experimental analysis, the heights and diameters were measured on 182 NLPs produced by cell-free expression in the absence of bR and 430 total NLPs (empty-NLPs 185 and 255 bR-NLPs) produced by cell-free co-expression. Two-tailed student T-tests were run to compare both the height and diameter of the “empty”-NLP population in the sample co-expressed with bR compared to the sample with no bR expressed. A p-value of <0.01 was considered significant. A student T-test compares two populations of data and can determine if the difference between the two sets is statiscally significant or insignificant.
Size and shape of the NLPs determined by AFM showed a height of the “empty”-NLP to be 5.0+/−0.3 while the height of bR-NLPs was 6.4+/−0.3. UV-visible spectroscopy identified a 5 nm shift upon light adaption indicating functionality
Example 4 Characterization of NLPs Including Membrane Protein Indicator: Demonstration of Membrane Protein ActivityFunctional activity of the soluble, self-assembled, co-expressed bR-NLP complex was determined by light-dark adaptation (
The light-dark adaptation yielded a 5 nm shift with a dark absorption maximum of 549 nm and light absorption maxima of 554 nm. These results indicated that the majority of active bR was in a monomeric form (4). This is in agreement with other studies that used pre-purified apolipoprotein to solubilize native forms of bR (5). The major advantage of our approach is that it allows to obtain folded light active bR-NLP assemblies in less than four hours that have been self-assembled in a single step, thereby eliminating the need for isolation of membrane protein, protein purification, dialysis and refolding protocols prior to the formation of NLP-membrane protein complexes.
Example 5 Characterization of NLPs: Co-expression Survey of Membrane ProteinsIn order to determine if the co-expression method increased solubility a series of membrane proteins with varying numbers of transmembrane domains were expressed using cell-free methods. Cell-free expression of the membrane protein alone and lipid-assisted expression of the membrane protein were used for comparison. The reactions included 35S-methionine in order to quantify the protein. Autoradiograms (not shown) were generated from total and soluble fractions separated by SDS-PAGE. Densitometry using ImageJ software (National Institutes of Health) was used to analyze the autoradiograms. The percent solubilized membrane protein compared to the total membrane protein was plotted in
In particular in
In all cases co-expression with the truncated apolipoprotein Δ49A1 was greater that the expression of the membrane protein alone or lipid-assisted membrane protein expression (
NLPs produced by cell-free methods and NLPs assembled by conventional means (6) were both examined by AFM to assess NLP size and shape and to demonstrate the association between bR with NLPs. For comparison to cell-free produced bR-NLP complexes, both bR-NLPs and “empty”-NLPs were also prepared using previously described methods(6, 7).
Conventional assembly of NLPs is described herein in Examples 13 to 33. Briefly, the truncated form of Apo A1 (Δ1-55) called MSP1T2 or Δ55A1 was purchased from Nanodisc Inc. For “empty”-NLPs Δ55A1 was combined with DMPC liposomes in a ratio of 1:4 by mass in TBS buffer. The mixture was then incubated at room temp for 2 hours. The NLPs were then purified by size exclusion chromatography. Assembly of bR-NLPs: Δ55A1 was mixed with DMPC in a ratio of 1:4 by mass in TBS buffer. Sodium cholate solution was then added to a final concentration of 20 mM. Purple membrane bacteriorhodopsin was then added in a 0.67 mass ratio to the Δ55A1 apolipoprotein. Incubation proceeded as described above, followed by dialysis in TBS for detergent removal. The NLPs were then purified by size exclusion chromatography.
In particular, the size exclusion chromatography was performed as follows. The NLPs made with and without incorporated membrane protein were purified from ‘free protein’ and ‘free lipid’ by HPLC (Shimadzu) using a Superdex 200 10/300 GL column (GE Healthcare), with TBS at a flow rate of 0.5 ml/min. The column was calibrated with four protein standards HMW Gel filtration calibration kit (GE Healthcare), of known molecular weight and Stokes diameter that span the separation range of the column and the NLP samples. The void volume was established with blue dextran. The NLP fraction is concentrated about 10-fold to approximately 1.0 mg/ml using molecular weight sieve filters (Vivascience) having molecular weight cutoffs of 50 kDa. Protein concentration was determined using the ADV01 protein concentration kit (Cytoskeleton), which is based on Coomassie dye binding.
These NLPs and bR-NLP complexes were made with a similarly truncated form of Apolipoprotein Δ1 (Δ1-55) or Δ55A1 (MSP1T2, Nanodisc Inc.), purple membrane bR and DMPC liposomes (6, 7). Both the co-expressed and conventionally assembled bR-NLPs showed similar increases in particle height relative to an “empty” NLP indicating likely association of bR protein within the NLPs (
Empty NLPs produced either by conventional methods or cell-free displayed heights of approximately 5.0±0.3 nm (s.d.) as determined by AFM (
Using solely the increase in height as a basis for distinguishing bR-NLPs from “empty” Δ49A1-NLPs, an overall yield of protein incorporation of 58% was determined (Table 2). Two-tailed student T-tests indicated that there was no statistically significant difference between the diameter and height of the “empty” Δ49A1-NLPs produced by cell-free methods in the presence (n=185; 2a) and absence (n=182; 1) of bR (Table 2) with p-values of 0.94 and 0.04 respectively. However, a statistically significant increase in diameter and height was observed between the bR-NLPs (n=255; 2b) and “empty” Δ49A1-NLPs (n=185, 2a) with p-values of 1.8 E−24 and 3.9 E−155 respectively (Table 2). Those results are illustrated in Table 2 that includes a summary of analysis of cell-free expressed NLPs with and without co-expressed bR
AFM was also used to visualize the first SEC fraction, where high molecular weight lipid complexes were observed consistent with results reported in Chromy et al (6) in which was described lipid-based macro-molecular formations unable to enter a native-PAGE and had the appearance of liposom-like material (
The methods described below outline cell-free expression and purification of apolipoproteins. In particular, it is described the cell-free production of a selected N-terminal truncation of human apolipoprotein E4 which does not require post-translational modification.
The following materials and instruments were used: Apolipoprotein (ApoAl, MSP, Apo E4, lipophorin III, or truncations Δ49ApoA1 and ApoE4 22k) clones of interest from the LLNL-IMAGE Consortium cDNA collection or as a gift from collaborating labs, subcloned in to an expression vector such as, pET32a thioredoxin (Novagen) (33, 34), pIVEX-2.4b (Roche), or pEXP4 (Invitrogen); Spectrophotometer UV-visible A260/A280 quantification or PicoGreen dsDNA Quantification Kit (Invitrogen/Molecular Probes); Cell-Free Expression System: Expressway™ Maxi Cell-Free E. coli Expression System (Invitrogen) or RTS 500 ProteoMaster E. coli HY Kit (Roche); Thermomixer, Eppendorf Thermomixer R (for Roche lysates) or Incubator shaker for example New Brunswick C24 (for Invitrogen lysates); Disposable fritted columns 3 mL capacity (Bio-Rad); Ni-NTA Superflow resin (Qiagen); Ni-NTA buffers (modified Qiagen recipes) Binding buffer: 50 mM NaH2PO4, 300 mM NaCl; pH 8.0; Wash Buffer: 50 mM NaH2PO4; 300 mM NaCl; 10 mM Imidazole; pH 8.0; Elution Buffer: 50 mM NaH2PO4; 300 mM NaCl; 400 mM Imidazole; pH 8.0; Gel electrophoresis equipment; NuPAGE 4-12% Bis-Tris SDS-PAGE gel with 1×MES-SDS running buffer (Invitrogen), Protein Quantification Kit and standards, such as Bio-Rad Protein Assay (Bio-Rad) Vivaspin6, ultrafiltration Devices, 10k MWCO (Sartorius Biotech); Centrifuge such as Eppendorf 5804R (Needs to fit 15 mL Falcon tubes); Thrombin (Novagen); DMPC; 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (Avanti Polar Lipids); Probe or bath sonicator; β-mercaptoethanol; TBS Buffer: 10 mM Tris-HCl; 0.15 M NaCl; 0.25 mM EDTA; 0.005% NaN3 (sodium azide) adjust to pH 7.4; and FPLC Instrument (Shimadzu SCL-10A), size exclusion column (Superdex 200 10/300 GL (GE Healthcare Life Sciences).
In particular, Lipophorin III DNA clones (M. sexta and B. mori) were obtained from the lab of Robert Ryan at Children's Hospital Oakland Research Institute (CHORI). Truncated Apolipoprotein E4 22 kDa N-terminal thioredoxin fusion plasmid was obtained from Karl Weisgraber at the University of California, San Francisco. The 193 amino acid protein sequence of the 22 kD Apolipoprotein E4 construct is as follows, with the two initial amino acids, Gly-Ser, are left over from the thrombin cleavage site in pET32a. Midi or Maxi prepped plasmid DNA was prepared according to the Qiagen protocol.
The cDNAs for apolipoprotein were selected and cloned into expression vector of interest such as pIVEX-2.4b (Roche Applied Science), GFP folder or pETBlue-2 (Novagen.), pET32a (thioredoxin fusion vector). The plasmids were propagated by transforming into Top10 or DH5a, chemically competent cells (Invitrogen) and isolate DNA using HiSpeed Plasmid Maxi or Midi Kits (Qiagen). The N-terminal truncated apolipoprotein E4-22 kD (ApoE422k) thioredoxin (trx) fusion protein construct in pET32a (ApoE422k-trx) is illustrated here (
The reactions were incubated at 30° C. shaking at 990 rpm in a thermomixer (Roche RTS ProteoMaster or Eppendorf Thermomixer R)—(Roche Lysates) or 37° C. shaking at 225 rpm in a shaker incubator (New Brunswick)—(Invitrogen Lysates). All reactions were run overnight (although 4 hours is sufficient). A 5-10 μl sample was collected for further analysis.
The His-tagged apolipoprotein (ApoE422k) was purified by using Ni-NTA native affinity chromatography, and 1 mL of the Ni-NTA slurry, equivalent to 500 μL column bed volume (Qiagen) was equilibrated with binding buffer and resuspend the resin to form a 50% slurry again. The equilibrated slurry was added to the cell-free post-reaction mixture and mix at 4° C. for 1-2 hours. The mixture was added to a 3-mL fritted plastic column and collected the flow through for SDS-PAGE analysis.
The column was washed with eight column volumes (500 μL) of native wash buffer. Fractions are collected for SDS-PAGE analysis.
The bound apolipoprotein was eluted with six column volumes of native elution buffer.
All collected fractions were analyzed by denatured gel electrophoresis using a NuPAGE 4-12% Bis-Tris SDS-PAGE gel with 1×MES-SDS running buffer for 38 minutes at 200V (Invitrogen). The load buffer is LDS Sample Buffer (Invitrogen). Volumes to load for SDS-Page gels were as follows: 1 μL of total reaction and non-bound flow through, 5 μL wash fractions 1-2, 20 μL of remaining washes and all elutions. Gels were stained with Coomassie brilliant blue.
Elution fraction of interest determined by gel electrophoresis were combined and concentrated and buffer exchanged into TBS using an ultrafiltration device vivaspin6. In particular, concentration from 6 mL to 100 μL was easily achieved in ˜15 min at 5000 RCF in an Eppendorf 5804R centrifuge with a fixed angle rotor check each 3-5 min. Buffer exchange into TBS pH 7.4 required at least 3 dilutions and re-concentration steps. Alternatively eluted protein could were dialyzed (spectrapor 1 MWCO 3500) against TBS buffer overnight and concentrated by immersion of the dialysis membrane in PEG 8000 (polyethylene glycol).
The final protein concentration was determined by Bradford total protein concentration following the manufacturer's protocol.
Small unilamellar vesicles of DMPC were then prepared by probe sonicating 20 mg DMPC lipid into 1 mL TBS at 6 amps for approximately 15 minutes or until optical clarity is achieved. Typically fifteen minutes is sufficient to achieve optical clarity. An appropriate container choice was a thick walled 3 mL glass conical vial. In particular, lipid solution were vortexed lightly before sonication to help get to lipid into the buffer. Lipid should be stored at −20° C. when not in use, and protected from water absorption. When sonicating lipid overheating of the lipids was avoided by either sonicating in a beaker of ice or cooling the sample every few minutes. The solution was practically water clear at the end of the sonication. If the probe hits the side of the glass vessel metal will be sloughed off into the solution and the solution will become grayish. The metal can be removed by a short centrifugation at 13,700 RCF for two minutes after transferring to a 1.5 ml Eppendorf tube. Remove the supernatant and use. Any white pellet indicated DMPC that is not in vesicle form. Alternatively, sonicate in bath sonicator to optical clarity and skip the centrifugation step.
The sample was transferred to a 1.5 mL tube. Any contaminant metal was removed from the probe by centrifugation at 13700 RCF for 2 minutes in a 1.5 mL tube.
Thioredoxin fusion protein tags were removed by incubating 2-4 mg of the produced protein with 100 μg/mL of the sonicated DMPC overnight at 24° C. Thrombin was added at 1:500 w/w ratio (thrombin:apolipoprotein) and incubated at 37° C. for one hour. The reaction was halted by the addition of β-mercaptoethanol to a final concentration of 1%. 5 μg of the product were analyzed by SDS-PAGE as described above. The results are shown in
Contaminant thioredoxin (trx), thrombin and β-mercaptoethanol were then removed from the apolipoprotein, ApoE422k by size exclusion chromatography using a FPLC Instrument (Akta, GE Healthcare and Life Sciences or Shimadzu SCL-10A), and size exclusion column (Superdex 200 10/300 GL) with a TBS buffer at a flow rate of 0.5 mL/min. The fractions of interest were determined by gel electrophoresis combine and concentrate as above.
Example 8 Nanolipoprotein Particle (NLP) Formation and PurificationThe methods described below outlines nanolipoprotein Particle (NLP) formation and purification. The following materials and equipments were used: DMPC: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (Avanti Polar Lipids); Purified apolipoprotein protein or truncation (ApoE422k construct); TBS Buffer: 10 mM Tris-HCl; 0.15 M NaCl; 0.25 mM EDTA; 0.005% NaN3 (sodium azide); adjust to pH 7.4. 30° C. and 20° C. water baths; Probe or bath sonicator; Spin filter, 0.45 μm; Concentrator 50 kD MWCO, Vivaspin 2 (Sartorius Inc.) (Other concentrator brands that are angled are also acceptable such as Agilent, because the nanolipoprotein particle produced will be larger than 200 kD, a 100 kD filter may be useful); FPLC Instrument (Shimadzu SCL-10A), size exclusion column (Superdex 200 10/300 GL (GE Healthcare Life Sciences).
Nanolipoprotein particles (NLPs) form in a self assembly process in the correct mass ratio of apolipoprotein to lipid. This ratio needs to be optimized for each different apolipoprotein. The ratio described below is for ApoE422k (21). Other ratios can be found in the literature (7, 10, 11).
The water bath incubators were started with temperatures at 30° C. and 20° C. 34 mg of DMPC were probe sonicated into 1 mL of TBS at 6 amps for approximately 15 minutes or until optical clarity is achieved. DMPC solution was centrifuged at 13700 RCF for 2.5 min to remove residual metal from probe sonicator. The supernatant was transferred into a new tube. Apo E422K was combined with DMPC in a ratio of 1:4 by mass in TBS buffer in a 1.5 mL Eppendorf tube. Typically batches are of the 250 μL size.
Transition temperature procedure was performed as follows: the tube was immersed in water bath for 10 minutes each 30° C. (above DMPC transition temp.) followed by 20° C. (below DMPC transition temp.). The procedure was repeated three times then the tube was incubated at 23.8° C. overnight.
Filter preparation was performed through a 0.45 μm spin filter at 13700 RCF for 1 min. Purify NLPs using size exclusion chromatography. A Shimadzu SCL-10A FPLC was used that was equipped with a Superdex 200 10/300 GL column with TBS buffer, a 200 μL sample injection volume, and a flow rate of 0.5 mL/min. Collect 0.5 mL fractions see
Fractions were concentrated using a Vivaspin 2 ultrafiltration device with a 50k MWCO as described in Example 7.
Example 9 Biotinylation of Membrane ProteinThe methods described below outline the biotinylation of membrane bound proteins, and in particular of Bacteriorhodopsin (bR). The following materials and equipments were used: EZ-Link Sulfo-NHS-LC-Biotin (Pierce); Bacteriorhodopsin (Sigma); Bath sonicator; Ultracentrifuge (Beckman-Coulter Optima TLX, TLA-120.2 fixed angle rotor); 1× BupH PBS buffer (Pierce): 0.1 M NaH2PO4, 0.15 M NaCl; pH 7.0. Bacteriorhodopsin can also be produced in a cell-free manner and purified in the denatured state. A re-folding procedure is then employed to incorporate the retinal according to the methods of Rothschild et al (2, 12).
Biotinylation of the membrane protein (MP) provides a tool for investigating the incorporation of the MP with the NLP. Biotinylation using of bacteriorhodopsin supplied in membrane sheets from Sigma selectively labels only the solvent exposed lysine residues when using EZ-Link Sulfo-NHS-LC-Biotin (Pierce) which is impermeable to membranes. Bacteriorhodopsin in membrane sheets is easily separated from the aqueous phase by centrifugation. For other membrane proteins that may be solubilized in detergent micelles removal of excess biotin solution will need to be accomplished using a desalting column or other means. Membrane proteins including bR may be expressed in a cell free manner and biotinylated (2, 13-16).
In particular, bacteriorhodopsin (bR) purchased from Sigma and stored as a lyophilized powder at 4° C. was resuspended in BupH PBS buffer in the original bottle. Amine containing buffers such as TBS, were avoided due to the interaction with the biotinylation reagent. The sample was bath sonicated eight times for 1 min. each chilling the bottle on ice for one minute in between each burst. UV-visible spectra were recorded to confirm the concentration of bR in solution using the molar extinction coefficient at 568 nm of 63,000 M-1 cm-1.
A freshly made 10 mM solution of EZ-Link Sulfo-NHS-LC-Biotin (Pierce) was prepared according to the manufactures recommendation in ddH2O.
The biotin solution was added to the bacteriorhodopsin solution in a 20-fold molar excess, and incubated on ice for two hours.
The excess biotin was removed by centrifugation of the solution in an ultracentrifuge at an RCF of 89,000 (although 50,000 should be sufficient) for 20 minutes at 4° C. The supernatant was removed and the bR pellet resuspended in TBS buffer. This process was repeated two times total. In particular, Bacteriorhodopsin in membrane sheets was extremely sticky, and did pellet well at the RCF listed. 85-90% recovery of bR was achieved with careful resuspension and washing of tips and tubes. Resuspension should be in the TBS buffer used for assembly (or other buffer of interest that will be used for assembly).
UV-visible spectra were collected as described above to calculate the concentration of the solution and the percent recovery typically around 85-90% with careful resuspension.
Example 10 Membrane Protein Incorporation into Nanolipoprotein Particles (MP-NLPs)The methods described below outline incorporation of a membrane protein into nanolipoprotein particles (NLPs). The following materials and equipments were used: DMPC [1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine] (Avanti Polar Lipids); Purified apolipoprotein or truncation (ApoE4 22 kD construct); TBS Buffer: 10 mM Tris-HCl; 0.15 M NaCl; 0.25 mM EDTA; 0.005% NaN3 (sodium azide), adjusted to pH 7.4; Sodium Cholate (Sigma) 500 mM solution in TBS; Biotinylated Bacteriorhodopsin (bR) (Sigma) from Example 22; 30° C. and 20° C. and 23.8° C. water baths; Probe Sonicator; Dialysis cups 10,000 MWCO (Pierce) or D-Tube Dialyzers, mini (Novagen); Spin filter, 0.45 μm; FPLC Instrument (Shimadzu SCL-10A); size exclusion column (Superdex 200 10/300 GL (GE Healthcare Life Sciences); Concentrator 50 kD MWCO, Vivaspin 2 (Sartorius Inc.).
The water bath incubators were started at temperatures at 30° C. and 20° C. 34 mg of DMPC were probe sonicated into 1 mL of TBS at 6 amps for approximately 15 minutes or until optical clarity was achieved. Alternatively, the DPMC can be sonicated in bath sonicator to optical clarity (see Example 7).
The solution was centrifuged at 13K for 2 minutes to remove residual metal sloughed off from probe sonicator. 250 μL were batched in a 1.5 mL Eppendorf tube. Combine Apo E422K with DMPC in a ratio of 1:4 by mass in TBS buffer. Sodium cholate solution was then added to a final concentration of 20 mM. The biotinylated bacteriorhodopsin membrane protein was then added in a 0.67 mass ratio to the Apo E422k apolipoprotein.
The transition temperature procedure was performed as follows: the tube was immersed in water bath for 10 minutes each 30° C. (above DMPC transition temp.) followed by 20° C. (below DMPC transition temp.). The procedure was repeated three times and the tube was then incubated at 23.8° C. overnight.
The cholate detergent was removed and MP-NLPs (bR-NLPs) were allowed to self-assembly; the sample was loaded into a pre-soaked D-Tube Dialyzers, mini (Novagen). The sample was then dialyzed against 3 changes each of 1 L TBS buffer over a 2-3 day period at room temperature. In particular, dialysis at 4° C. was used for unstable membrane proteins. Detergent use was compatible with the membrane protein of interest. Adsorbent beads (Bio beads, Bio-Rad) were also used to remove the detergent. If dialysis cups were used (Pierce) the sample was split into three pre-soaked dialysis cups. Care was taken not to create bubbles or droplets on the sides of the cups.
The sample was then concentrated using an ultrafiltration device, Vivaspin 2 (Sartorius) MWCO 50K to 200 μL.
The supernatant was transferred into new tube. Size exclusion chromatography was performed using a Shimadzu SCL-10A FPLC, equipped with a Superdex 200 10/300 GL column (GE Healthcare Life Sciences). The buffer was TBS with a 200 μL sample injection volume, a 0.5 mL/min flow rate and 0.5 mL-1.0 mL fraction size.
The fractions of interest were concentrated using an ultrafiltration device, Vivaspin 2 (Sartorius) MWCO 50K for NLP peaks.
Example 11 Validating NLP Formation by Native Gel Electrophoresis and Confirmation of Membrane Protein Association and Functionality with NLPs by Microarray, UV Visible Spectroscopy, AFM and EMThe methods described below outlines a procedure to validate protein association by microarray and UV visible spectroscopy. The following materials and equipments were used: 4-20% Tris-Glycine polyacrylamide gel, 1× Tris-Glycine native running buffer, 2× Native Sample buffer, Native Mark molecular weight marker (Invitrogen); Sypro Ruby Stain (Bio-Rad) light sensitive, Aqueous destain solution: 10% Methanol; 7% acetic acid; Fluoroimager with appropriate filter for SyproRuby stain; Biotinylated positive control protein such as biotinylated-bR; Bovine serum albumin 1 mg/ml solution; PBS-Tween buffer: 1.06 mM KH2PO4; 2.97 mM Na2HPO4; NaCl 1551.72 mM, 0.05% tween-20 (v/v) pH 7.4; 1×PBS buffer, (Gibco): 1.06 mM KH2PO4; 2.97 mM Na2HPO4; NaCl 1551.72 mM, pH 7.4; Cyanine-5-Strepavidin (Rockland) solution (5 μg/mL); Barcoded γ-Aminopropylsilane coated glass slides (GAPS-II; Corning); Robotic arrayer; Hybridization Chamber (Grace Bio-Labs); Blocking buffer: 1 mg/mL BSA in 1×PBS, Wash Buffer: 1×PBS; Laser-based confocal scanner (ScanArray 5000 XL; Perkin-Elmer); UV-visible plate reader (Bio-TEK Synergy HT); 96 well flat bottom UV plate (Corning Costar UV Plate).
Validation through Native Polyacrylamide Gel Electrophoresis
Native polyacrylamide gel electrophoresis is used to validate the association of proteins of interest (apolipoprotein and/or membrane protein) with NLP fractions eluted from the size exclusion column. Protein identification is confirmed with mass spectrometry.
Native-PAGE gels, 4-20% Tris-glycine were run with 0.75 μg total loaded protein estimated by A280 absorbance. 10 μL of molecular weight standards, Native mark (Invitrogen) diluted 20× in native sample buffer were loaded on the gels. The gels were run at 125V for approximately 2 hours.
The gels were stained with ˜150 mL of SyproRuby protein stain (Bio-Rad) following the microwave staining method: 30 sec. microwave, 30 sec. mixing on shaker table, 30 sec microwave, 5 min. shake, 30 sec. microwave, finally 23 min. on shaker table at room temperature. The gels were destained for 1.5 hours on a shaker table at room temperature.
The gels were imaged using a Typhoon Imager with appropriate filters selected for the SyproRuby fluorescence.
The results are illustrated in
Confirmation of Membrane Protein Association and Functionality with NLPs by Microarray
Microarray spotting technology was used to attach NLPs to an amino-silane coated glass slide in an array format for streptavidin binding studies (17-19) Biotinylated bacteriorhodopsin (bR) was used to validate the incorporation of bR into nanolipoprotein particle fractions eluted from size exclusion chromatography. Cyanine-5-Strepavidin was used for fluorescence detection of biotinylated bacteriorhodopsin.
Microarray single print head was used to deposit approximately 1 nL of diluted protein solution on the slide. It was determined that robotic spotting is best when the humidity is greater than 30%. Proteins were spotted in 4×4 squares with 16 replicates of each sample, generating ˜300 nm diameter spots with a spot-to-spot distance of ˜350 nm.
Protein microarrays were spotted on GAPSII amino silane glass slides (Corning) with bacteriorhodopsin bR (non-biotinylated), biotinylated-bR, biotinylated-bR-NLPs, using a robotic arrayer. Non-biotinylated bR was used as a negative control, and biotinylated-bR was used as a positive control.
Bacteriorhodopsin (bR) concentrations of 10 mM, as determined by UV-visible spectroscopy as described above were used for all samples.
Proteins were cross-linked to the glass slides by exposure to UV light for five minutes. Unused slides were stored at 4° C. without UV cross-linking.
The hybridization chamber was applied with a volume capacity of 950 μL to the slide carefully as to not disrupt the array. Carefully add reagents below without injecting bubbles.
The slides were blocked with BSA (1 mg/mL) for 30 minutes. The slides were washed with 1×PBS for 15 minutes. Cyanine-5-streptavidin (5 μg/mL) was bound for 15 minutes. The slides were washed in 1×PBS then nanopure water each for 15 min. The slides were dried by centrifugation or air dry.
Protein microarrays of bR, biotinylated-bR and bR-NLPs were imaged with a laser-based confocal scanner (ScanArray 5000 XL; Perkin Elmer) using the VheNe 594 nm laser for detection of any bound Cyanine-5-streptavidin.
Images were collected and analyzed using the mean pixel intensities with Scan Array software (Perkin Elmer) (data analysis not shown).
The results are illustrated in
Confirmation of Membrane Protein Association and Functionality with NLPs by UV-visible Spectroscopy, AFM and EM
UV-visible spectroscopy of light and dark adapted bacteriorhodopsin can be used to determine the functionality of the protein and relates information regarding the conformation of the protein (4).
UV-visible spectra were collected in 96-well plate reader using 100 μL of sample in a UV detectable flat bottom plate. Dark adapted spectra were collected after keeping the sample wrapped in foil overnight taking care not to expose the sample prior to spectral collection. Light adapted spectra were collected after exposure to a full spectrum bright lamp for 15 min. The results are illustrated in
Further in-depth physical characterization of these particles was used to demonstrate functional protein insertion/association. Combined with the biochemical evidence methods such as Atomic force microscopy (AFM) and Electron microscopy (EM) addresses whether the end product of self-assembly/association was successful by determining physical parameters to identify insertion and localization of membrane proteins. Atomic force microscopy (AFM) (
The methods described below membrane protein synthesis and determination of solubility in a single step using cell-free synthesis in conjunction with pre-formed nanolipoprotein particles (NLPs).
Cell-free expression of membrane proteins has usually employed either of two possible methods; one: expression and purification in a denatured state followed by refolding in the presence detergents and/or lipids as well as any cofactors such as all trans-retinal for bacteriorhodopsin or two: expression in the presence of detergents or lipids (2, 13-15). Solubilization of the membrane protein with detergent is generally followed by a dialysis step to return the membrane protein to a lipid bilayer vesicle. The method described here utilizes preformed NLPs as an additive to increase the membrane protein production, solubility and stabilization by incorporation into a NLP lipid bilayer (Co-translation). The procedure uses commercially available cell-free extracts with the addition of membrane protein plasmid DNA (pEXP4 expression vector (Invitrogen)), and pre-formed NLPs to synthesize folded functional membrane protein in one step.
Cloned membrane protein cDNAs of interest were into the expression plasmid pEXP4 (Invitrogen) and were propagated by transforming into Top10 or DH5α chemically competent cells (Invitrogen). Isolate plasmid DNA using a HiSpeed Plasmid Maxi or Midi Kits (Qiagen).
Cell-Free expression reactions were carried out using the Expressway™ Maxi Cell-Free E. coli Expression System (Invitrogen) protocols with the addition of ˜15 μg of membrane protein DNA, for a 1 mL reaction, 300 μg of purified NLPs (ApoE4 22k assembled with DMPC see above section). For scintillation counting the manufacturer protocol for the incorporation of 35S-Methionine was followed. Reactions were scalable to other volumes following the same ratios. Control experiments were carried out without the addition of NLPs using the same lysate batch.
The reactions were incubated at 37° C. shaking at 225 rpm in a shaker incubator (New Brunswick). The reactions were continued for 1.5-2 hours.
A 5 μL aliquot of the total (T) reaction was retained for SDS-PAGE and autoradiograms (not shown), the reaction was then centrifuged for 5 min. at 4° C., and 18000 RCF. The supernatant was collected and a 5 μL aliquot of the soluble (S) fraction placed into a 12×75 mm glass tube.
100 μl of 1N NaOH was added and the resulting mixture was incubated at room temperature for 5 minutes. 2 ml of cold 10% TCA (trichloroacetic acid) were further added to the 12×75 mm tube. Place at 4° C. for 10 minutes.
The precipitate was collected via vacuum filtration through a Whatman GF/C glass fiber filter (or equivalent). The filter was pre-wetted with a small amount of 10% TCA prior to adding the sample.
The tube was rinsed twice with 1 ml of 10% TCA and then rinsed once with 3-5 ml of 95% ethanol. Each of the rinses was passed through the GF/C filter.
The filter was placed in a scintillation vial, aqueous scintillation cocktail was added, and counted in a scintillation counter. The cpm did reflect the amount of radiolabel that was incorporated.
In particular, in
In all cases the expression in the presence of NLPs increased membrane protein solubility. Solubility is determined by removing a 5 μl of the reaction supernatant after a 10 minute centrifugation at 14000 rpm and determining yield by TCA precipitation and scintillation counting as described in section 3.6.
A survey of several membrane proteins with various numbers of transmembrane (TM) segments are expressed using this method. Solubility of the membrane protein is clearly increased in the presence of pre-formed NLPs indicating association with the NLP.
Example 13 Cell-free Production of NLPsIn a further series of experiments performed following the approach outlined in Example 1 and illustrated in
Basically, lyophilized reaction components (Lysate, Reaction Mix, Amino Acid Mix, Methionine) were dissolved in Reconstitution Buffer and combined as specified by the manufacturer. Then, 1-5 μg of each plasmid DNA were added and the reactions are incubated at 30 DC-37 DC for 14-24 h. Small-scale reactions, can make use of PCR products. This is especially convenient for conducting screening experiments in volumes as low as 2 μL. PCR products are quantified using a fluorescence-based IpicoGreen assay Then 0.1 μg of linear template DNA is added to initiate the reaction, which is incubated at 30 DC for 4 h.
For expression screening, reactions were performed in 12-25 μL volumes and the resulting products were analyzed by immunoblotting or using a 96-sample format dot blot or array using previously described techniques adapted to NLP-GPCRs.
The DNA constructs to produce the scaffold proteins E422K, E22K, and apoLp-III from B. mori were provided. The ApoAI and MSPI (truncated form of ApoAI) were also cloned (see Table 3 of Example 16 below).
In general, the bacterial overexpression of these scaffold proteins was started by transferring 20 ml of a bacterial overnight culture into I LM9 minimal medium supplemented with 50 μg/1 ampicillin. The expression was induced with 2 M isopropyl-thio-galactopyranoside (IPTG) at an OD600 nm of 0.55. Four hours later the bacteria were centrifuged (10 min, 4500 rpm, Beckman JA 10), the supernatant filtrated (0.8 urn) and subsequently concentrated to a volume of 2 ml by ultrafiltration through a 10 kDa membrane (Amicon). The concentrate was heated for 5 min at 100° C., centrifuged (15 min, 13,000 rpm, Eppendorf5415 C), and the supernatant was exchanged against 20 mM BisTris (pH 6.5) by 3-kDa ultrafiltration (Centriprep, Amicon). The prepared sample as applied onto a DEAE-Sepharose CL-6B anion exchange column (bed volume 20 ml, Sigma) connected with a Gradifrac-system (Pharmacia). Flow rate was 1 ml/min, and I.-ml fractions were collected. The late fractions of the flow-through containing apoLp-III were pooled, exchanged against physiological saline (172 mM KCl, 68 M NaCl, 5 mM NaHC03, pH 6.1) and applied in a volume of 2 ml onto a gel filtration column (HiLoad 16/60, Superdex 75, Pharmacia) operated with an FPLC system (Pharmacia). Protein purity was checked by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
Lipid (20 mg) was weighed out and combined in a glass, round bottom tube. Chloroform (200 μl) was added to dissolve lipid. Chloroform is evaporated in a stream of nitrogen gas, rotating rapidly to distribute the lipid evenly. Samples are placed under vacuum for 30 min. to assure removal of solvent. The individual components are placed into an assembly solution with the appropriate ratios of lipid (800 μg), scaffold protein (200 μg), detergent (21 mM), creating a mass ratio of 4: I for lipid to protein and maintaining the cholate above the critical micellar concentration. The self-assembly process is started with 3 repeated sets of transition temperature incubations, bracketing the transition temperature of DMPC (23.80 C), by incubating at 30° C. for 10 minutes, then at 20° C. for 10 minutes with light hand mixing between incubations.
Following these transitions, the samples are incubated at 23.8° C. overnight. Following assembly, samples with cholate are dialyzed against 1000× volume of TBS buffer using 3 changes in 24 hrs. The NLPs are purified from ‘free protein’ and ‘free lipid’ by a VP HPLC (Shimadzu) with a Superdex 200 HR 10/30 column (GE healthcare), using TBS at a flow rate of 0.5 ml/min. The column was calibrated with four protein standards of known molecular weight and stokes diameter that span the separation range of the column and the NLP samples.
The void volume was established with blue dextran. The NLP fraction is concentrated about 10-fold to approximately 0.1 mg/ml using molecular weight sieve filters (Vivascience) having molecular weight cutoffs of 50 kDa. Protein concentration was determined using the ADVOI protein concentration kit (Cytoskeleton), which is based on Coomassie dye binding.
To performed Native PAGE validation, equal amounts of NLP samples (0.5-2 μg) were diluted with 2× native gel sample buffer (Invitrogen) and loaded onto 4-20% gradient pre-made Tris-glycine HCl gels (Invitrogen). Samples were electrophoresed for 250 V/hrs at a constant 125 V. After electrophoresis, gels are incubated with Sypro Ruby for 2 hours and then de-stained using 10% MeOH, 7% Acetic acid. Following a brief wash with ddH2O, gels are imaged using the green laser (532 nm) of a Typhoon 9410 (GEHealthcare) with a 610 nm bandpass 30 filter.
Molecular weights were determined by comparing migration vs. log molecular weight of standard proteins found in the NativeMark standard (Invitrogen). The Stokes diameter of the NLPs is calculated from the known Stokes diameter of the same proteins in the standard sample.
Example 14 Characterization of NLPs Produced by Cell-free Systems: Solubilization of the bR-NLP ComplexThe experimental approach described in Example 13 was applied to obtain cell free expression for single step production and refolding of the membrane protein bacteriorhodopsin (bR) from Halobacterium alinarium, which serves as model protein for G-protein coupled receptors (GPCRs), an important membrane protein family.
Cell-free expression of bR in the presence of NLPs is shown in
Additionally, these NLP-bR constructs are funcIllJnal as assessed by UV/Vis spectrometry (data not shown). The bR protein is only purple when co-factors are present to allow proper protein folding The figure also demonstrates that the bR protein is incorporated within the NLP following size exclusion chromatography to purify and isolate the complex (
Combining array-based technologies with cell-free expression is a recent development for highly parallel strategies to analyze protein functions (see
To validate the use of cell-free protein expression screening for compatibility with bacterial expression, the correlation of cell free and bacterially-expressed proteins was first examined using C-terminal OFP fusion proteins 40-42
Cloning and Bacterial ExpressionFor the construction of C-terminal GFP fusion proteins 69, a set of microbial genes and human cDNAs were amplified with primers containing restriction site adapters for NdeI and BamHI and a high-fidelity polymerase, Fwo DNA polymerase (Roche Diagnostics). The PCR products were digested with NdeI and BamHI restriction enzymes and subcloned into the pET28-derived plasmid for GFP-fusion 69 using the same restriction sites. Genes were expressed as Cterminal GFP fusion proteins in 2 mL Escherichia coli cultures, grown in LB media at 37° C. with vigorous shaking until mid-exponential phase (00600=0.6) was reached, and expression was induced with 1 mM IPTG. Cultures were grown for an additional 2 h and harvested by centrifugation. Fluorescence of GFP was determined from the soluble fraction of bacterially or IVT-expressed proteins. Detection and quantification of GFP fluorescence was carried out in a 96-well Genios fluorescence plate reader (Tecan).
Template Preparation and Cell-free ReactionsExpression screening—Sequential PCR and IVT reactions were performed in 25 μL volumes in 96-well plates. DNA amplification was performed using primers specific to the T7 promotor (5′-GCGCGCGAGATCTCGATCCCGCGAAATTAATACGAC-3′) (SEQ ID NO: 6) and terminator (5′GCGCGCGTATCCGGATATAGTTCCTCCTTTCAG) (SEQ ID NO: 7) sequences and Taq DNA polymerase (Roche Diagnostics). PCR conditions consisted of 5 cycles with a 50° C. annealing temperature followed by 20 cycles with a 60° C. annealing temperature, with 2 min extension times for all cycles. Subsequent IVT reactions contained 1 J1L of the PCR reaction product and 20 J1L of a master mix containing the RTS kit components and 0.13 J1L of a BODIPY-Lys-tRNALY′ conjugate, FluoroTect GreenLy, (Promega). The reactions were incubated at 30° C. for 4 h and analyzed immediately or stored at −20° C. pMBP-IN—The gene fragment encoding DnaE-IN with 4 N-terminal extein residues (FAEY) was amplified by polymerase chain reaction (PCR) using a plasmid containing the DnaE genes from of Synechocystis sp. strain PCC6803 (Ssp) as templates.
The 5′-primer (5′-TG GAA TTC TTT GCG GAA TAT TGC CTC AGT TTT GG-3′) (SEQ ID NO: 8) and the 3′-primer (5′-TTT GGA TCC TTA TTT AAT TGT CCC AGC GTC AAG TAA TGG AAA GGG-3′) (SEQ ID NO: 9) introduced EcoRI and BamHI restriction sites, respectively. The PCR amplified DNA was purified, digested simultaneously with EcoRI and BamHI and then ligated into a EcoRI, BamHI-treated pMAL-C2X plasmid (New England Biolabs).
pTXBI-Ic—The gene fragment for the DnaE-Ic was prepared by PCR using a plasmid containing the DnaE genes from of Synechocystis sp. Strain PCC6803 (Ssp) as template59 The 5′-primer (5′-A AAA AGG CAT ATG GTT AAA GTT ATC GGT CGT CGT TCC CTC-3′) (SEQ ID NO:10) and 3′-primer (5′-TAA AAT GGC TCT TCG GCA ATT GGC GGC GAT C-3′) (SEQ ID NO: 11) introduced Nde I and Sap I restriction sites, respectively. The PCR product was purified, double-digested with Nde I and Sap I and ligated into an Nde I, Sap I-treated pTXB-I plasmid (New England Biolabs).
pIVEX-MBP-Itl—The DNA fragment encoding the protein MBP-IN was prepared by digesting pMBP-IN with Nde I and BamH I restriction enzymes. The DNA fragment was purified and inserted between the Nde I and BamH I restriction sites of the pIVEX2.3 plasmid (Roche Diagnostics).
Protein Microarray Spotting and DetectionTo analyze GFP proteins in an array format, crude IVT-expressed proteins (˜I nL) were spotted in triplicate on CMT-GAPS glass slides (Corning) with a robotic arrayer (Norgren Systems). Arrays contained up to 224 spots of ˜200 μm diameter. Spotting controls included IVT lysate alone and Cy-labeled DNA fragments (Molecular Probes). The arrays were dried at 25° C. and stored at 4° C. until use. Fluorescence was quantified using a ScanArray 5000 (Packard Bioscience) and visualized with false color. Functionalization of glass substrates—Glass slides coated with gaminopropyl-silane (GAPS WM; Corning) were treated with 200 μL of a solution of MPS (3-maleimidopropionic acid N-hydroxysuccinimide ester, 2 mM) in O.I M TrisoHCl buffer at pH 7.5 for 40 min at room temperature using a hybridization chamber (Schleicher & Schuell, Keene, N.H.). The glass slides were washed with deionized H2O, MeOH, and dried under a N2 stream. The modified glass slides were immediately treated with 200 μL of a solution of thiol linkers 1 (0.05 mM) and 2 (1.5 mM) in freshly degassed 0.5 mM EDTA, 1 mM TCEP, 50 mM sodium phosphate, 150 mM NaCl buffer at pH 7.0 for 16 hours at room temperature. After the glass slides were washed and dried as described above, the S-tBu protecting group on the C-terminal Cys residue was deprotected by treating the glass slides with 50% ˜-mercaptoethanol in DMF for 2 h at room temperature.
The glass slides were washed with deionized HzO, MeOH, dried under a N2 stream and used immediately. Generation of protein microarrays for protein immobilization—Protein solutions (0.1 mM-40 mM) in spotting buffer (0.5 mM EDTA, 1 mM TCEP, 50 mM sodium phosphate, 150 mM NaCl buffer at pH 7.0 containing 10% glycerol) were arrayed in functionalized glass slides using a robotic arrayer (Norgren Systems). Proteins were spotted with a center-to-center spot distance of 250 μm with an average spot size of 100 μm in diameter. After spotting, the array was kept in a humidified chamber at 37° C. for 16 h. The glass substrate was thoroughly washed with PBST (50 mM sodium phosphate, 500 mM NaCl buffer at pH 7.2 containing 0.2% Triton X-100) Immobilized EGFP was imaged using a ScanArray 5000 at 488 nm without further modification Immobilized MBP was detected by immunofluorescence at 543 nm using a primary murine anti-MBP antibody and then a secondary goat anti-mouse antibody conjugated to TRITe (tetramethylrhodamine isothiocyanate). The amount of fluorescence was quantified using the QuantArray software package (Packard Bioscience, Billerica, Mass., USA).
Fluorescence-based Protein Microarray Expression ScreensThe clones of interest encoded both human and bacterial proteins. The expression data could be grouped into two subsets (
Cell-free expressed proteins were then spotted on microarray format for multiple applications. First, as a tool for rapid expression screening, in which the arrayed proteins were compared for relative expression levels. In particular, cell-free expressed GFP and GFP fusion proteins were spotted in quadruplicate on a glass slide (See
Overall, in vitro expression and detection methods are relatively rapid since they require no electrophoresis or transfer to membranes. In addition, the detection method were flexible, and could use either fluorescent fusion proteins or covalently incorporated labels 43,44 Cell-free expression in conjunction with Cterminal tags such as His6 may also have an advantage for detecting exclusively full-length translation products. Since BODIPY molecules may affect the conformation of the protein, immunological detection of unlabeled proteins may be preferable if the resulting protein will be used for functional assays. BODIPY labeling would be preferable if no tag or a variety of tags is present on different expression clones. Alternatively, immunological detection may be employed using antibodies against affinity tags, or native proteins may be visualized with 35S-Met. These flexible approaches for cell-free protein expression enable automated production of many proteins and their subsequent purification. Coupled with label-free array-based technologies such approaches will become very powerful in the future 45
Array-based Site-specific and Traceless Immobilization of Cell-free Expressed ProteinsA key element for the rapid and efficient production of protein microarrays using cell-free expression systems is the method of protein immobilization. In order to be successful it has to be able to selectively immobilize the protein of interest from a complex mixture and under diluted conditions, typically around lower than μM concentrations. During the last few years several enzymatic capture approaches have been developed for the covalent and site-specific immobilization of enzyme-fusion proteins from complex mixtures without the need for purification and reconcentration steps. Most of them rely in the expression of the protein of interest fused to an enzyme (typically an esterase or transferase) that is selectively immobilized onto an appropriate ligandcoated surface. One of the main limitations of these ligand-capture techniques for site-specific immobilization is that the enzyme remains attached to the surface after the immobilization step has taken place. In some cases, the presence of such a large linker could give rise to problems, especially in those applications where the immobilized proteins will be involved in studying protein-protein interactions within complex protein mixtures.
To address this problem, a new traceless capture ligand approach was developed for the selective immobilization of proteins to surfaces based on protein trans-splicing process (
Key to this approach is the use of the naturally split DnaE intein from Synechocystis sp. PCC6803 59 The C- and N-intein fragments of the DnaE intein are able to self-assemble spontaneously (Kd=0.1-0.2 μM), not requiring any refolding step 30,60 The DnaE intein-mediated trans-splicing reaction is also very efficient under physiological-like conditions (LII2′″ 4 h and trans-splicing yields ranging from 85% to almost quantitative) [30]. Using this strategy, several proteins were successfully specifically immobilized to chemically modify SiO2-based substrates from complex mixtures, including cell-free expression reactions as well as soluble cell lysates (
Site-specific immobilization of proteins using protein trans-splicing is highly specific and efficient. It allows the use of protein mixtures and eliminates the need for the purification and/or reconcentration of the proteins prior to the immobilization step. The required minimum protein concentration for efficient immobilization was estimated to be sub-micromolar 30 More importantly, once the protein is immobilized to the surface, both intein fragments are spliced out into solution and easily removed by washing, providing a completely traceless method of attachment. All these features allow this methodology to be easily interfaced with cell-free protein expression systems with rapid access to the high throughput production of protein chips and other types of biosensing platforms.
Example 16 apoE422K and apoLp-III Protein ProductionApolipoproteins apo E422K and apoLp-III where selected from the ones illustrated in Table 3 below.
The expression clone to produce apoE422K, the N-terminal 22 kDa fragment of apolipoprotein E4 (apoE4), as a 6His and thyrodoxin tagged construct was kindly provided by Dr. Karl Weisgraber. ApoE422K was over-expressed and in E. coli as previously reported. Pelletted E. coli cells expressing apoE422K were re-suspended in lysis buffer (50 mM sodium phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 8.0) and lysed with an Emulsiflex-05 homogenizer (Avestin Inc., Ottawa, Canada) at 4° C. Following centrifugation, the clarified supernatant was first partially purified by nickel affinity chromatography using a 5 ml H is Trap FF crude nickel column (GE Healthcare) on an Akta FPLC (GE Healthcare) then further purified with a 320 ml Superdex 75 HiLoad 26/60 column (GE Healthcare) using TBS running buffer (10 mM Tris, pH 7.4, 0.15 M sodium chloride, 0.25 mM EDTA, 0.005% sodium azide) giving one predominant peak.
The collected material was cleaved with bovine α-Thrombin (Haematologic Technologies) 1/500 enzyme/protein for 1 hour at 37° C. Resulting products were separated by SEC on a 320 ml Superdex 75 HiLoad 26/60 FPLC column with one column volume of TBS. Protein fractions were analyzed by SDS-PAGE gels stained with Sypro Ruby (BioRad), gels were imaged with a Typhoon 9410 (GE Healthcare). Relative purity of the proteins was determined to be greater than 95% by densitometry and overall yields are on the order of 6 mg/L bacterial culture.
The B. mori apoLp-III expression clone was a kind gift from Dr. Rob Ryan. ApoLp-III was over-expressed in E. coli as described. The protein was expressed with a PEL leader sequence, targeting the protein to the periplasm, where the leader sequence is cleaved and protein secreted in to the media. Expression was induced for four hours, bacteria were pelleted and the supernatant was collected, filtered (0.8 μm), and subsequently concentrated to a volume of ˜20 ml using a Vivaflow 200 (Sartorius) with a 5-kDa MW cutoff PES membrane. The concentrated protein was exchanged against 20 mM Tris pH 8.0 over a HiPrep 26/10 desalting column on an Akta FPLC (GE Healthcare). The protein was then purified to homogeneity by HPLC (Shimadzu) using a ProPac WAX-10 column (Dionex) and eluted as follows: 0-100% gradient between 20 mM Tris pH 8.0 and 20 mM Tris pH 8.0 with 0.5M NaCl. Fractions showing highest protein content by A280 were pooled.
Protein purity was checked by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectroscopy analysis. The protein was >90% pure by gel electrophoresis, MS analysis gave expected molecular ion peaks; overall yield was 40%.
Fluorescently labeled apoE422K was obtained by using a Cy3 labeling kit and following the manufacturer's instructions (GE Healthcare). Dye:protein ratio was determined by comparing the absorbance of the protein at 280 nm and the absorbance of the CyDye at 532 nm. The ratio provided a 1:1 correlation suggesting that a single Cy3 molecule is present on each apoE422K protein.
Example 17 Nanolipoprotein Particle (NLP) Formation Through Self-assembly of Lipids and ApolipoproteinsIn order to better understand the self-assembly process and the range of attributes of NLPs extensive comparison of particles from a number of self-assembly conditions was performed, using four different apoliporoteins, and a battery of characterization techniques, was applied. In particular NLPs from each of the four apolipoproteins apoA-I, Δ-apoA-I fragment, apoE4 fragment, and apolipophorin III (apoLp-III), assembled and characterized in combination with DMPC, with and without cholate, with and without fluorescent labels on the apolipoprotein and DMPC molecules
Phospholipids (DMPC and NBD-DMPC) were purchased from Avanti Polar Lipids. Inc (Alabaster, Ala.). Full-length apoA-I was purchased from Fitzgerald, Inc. (Concord, Mass.), apoA-I, Δ1-55 (MSP1T2) and Nanodisc™ particles were purchased from Nanodisc, Inc., (Urbana, Ill.). The latter particles were made from DMPC and apoA-I, Δ1-55 protein fragment (MSP1T2); this fragment has a modified NH2-terminus containing a His tag and a tobacco etch virus (TEV) cleavage site.
DMPC (20 mg) is weighed out, added to a glass, round bottom tube followed by chloroform (200 n1) to dissolve lipid. Chloroform is evaporated in a stream of nitrogen with constant rotation to distribute the lipid evenly along the tube wall and placed under vacuum overnight. DMPC is either re-suspended in TBS with probe sonication or with TBS/cholate and gentle vortexing; the final concentration of cholate (20 mM) is above its critical micellar concentration (CMC). Apolipoproteins (200-250 μg) are added to the TBS/DMPC solution+/− cholate at a mass ratio of 4:1 for apoE422K and 3:1 of apoLp-III. The particle formation process is started with 3 repeated sets of transition temperature incubations, above and below the transition temperature of DMPC (23.8° C.), i.e. 10 minutes at 30° C., then 10 minutes at 20° C., with light hand mixing between incubations. After 3 heating and cooling transitions, the samples are incubated at 23.8° C. overnight.
Following assembly, samples containing cholate are dialyzed against 1000× volume of TBS buffer using 3 changes in 24 hrs. The NLPs are purified from ‘free protein’ and ‘free lipid’ by size-exclusion chromatography (VP HPLC, Shimadzu) using a Superdex 200 HR 10/30 column (GE Healthcare), in TBS at a flow rate of 0.5 ml/min. The column was calibrated with four protein standards of known molecular weight and Stokes diameter that span the separation range of the column and the NLP samples. The void volume was established with Blue dextran. The NLP fractions are concentrated to approximately 0.1 mg/ml using molecular weight sieve filters (Vivascience) with molecular weight cutoffs of 50 kDa. Protein concentration was determined using the ADV01 protein concentration kit (Cytoskeleton, Inc.).
Example 18 NLPs Purification from Free Lipid and Free Protein Starting ReactantsComparison of Size Exclusion Chromatography (SEC) traces from NLP assemblies illustrated in
ApoE422K and apoLp-III derived NLPs eluted a few minutes after the void volume, whereas the two apoA1-based NLPs eluted 3-4 minutes after the others. These data suggest larger particles are formed from apoE422K and lipophorin apolipoproteins versus particles derived from apoA-I proteins. The SEC profiles of apoE422K and lipophorin-NLPs were quite similar eluting in nearly the same position showing a diameter of ˜14-15 nm. Each had a small ‘free lipid’ peak and a larger ‘free protein’ peak surrounding the single predominant NLP peak; this elution pattern for E422K is similar to previous results (20). Interestingly, altering the lipid:protein ratio for apoLp-III assembled NLPs enhanced the NLP peak, while diminishing the free component peaks consistent with previous, work (21). When cholate was used to solubilize lipid films deposited by chloroform evaporation, the ‘free lipid’ peak is diminished or completely disappears suggesting that altering lipid:protein ratio affects apparent yield of lipophorin-based NLPs (data not shown).
Example 19 NLPs' Size and Heterogeneities Associated with Individual ApolipoproteinsEqual amounts of NLP samples (0.5-2 μg) are diluted with 2× native gel sample buffer (Invitrogen) and loaded onto 4-20% gradient pre-made Tris-HCl gels (Invitrogen). Samples are electrophoresed for 250 Vhrs at a constant 125V. After electrophoresis, gels are incubated with Sypro Ruby for 2 hours and then destained using 10% MeOH, 7% Acetic acid. Following a brief wash with ddH2O, gels are imaged using a Typhoon 9410 (GE Healthcare) at 532 nm (green laser) with a 610 nm bandpass 30 filter. Molecular weights are determined by comparing migration vs. log molecular weight of standard proteins found in the NativeMark standard (Invitrogen). The Stokes diameter of the NLPs is calculated from the known Stokes diameter of the same proteins in the standard sample.
The results illustrated in
Accordingly, native gel electrophoresis reveals (
In addition to using previously reported analytical methods for examining NLP, ion mobility spectrometry (IMS) was also used, a very sensitive and precise technique for measuring particle size Mass determination was performed using Bruker APEX II 9.4 T FTICR mass spectrometer through a homebuilt nanospray interface on an Apollo (Bruker Daltonics, Billerica, Mass., USA) ESI source. Protein solution concentrations were 1-10 μM or 1 nM in 10 mM ammonium acetate, pH 7.5. Solutions were desalted and concentrated by centrifugal filtration using Microcon or Amicon Ultra-4 filters (Millipore, Bedford, Mass.).
The aerodynamic diameter of NLPs was determined with a Macroion Mobility Spectrometer (Model 3890, TSI Inc., Shoreview, Minn.). The details of the instrumentation and a method for measuring protein sizes have been described elsewhere (4,5). Interestingly, this method has been used to measure the size distribution for HDL, LDL and VLDL taken directly from serum (6). Briefly, the instrument consists of an electrospray ionization source with a charge-neutralizing chamber, a differential mobility analyzer (DMA) and a condensation particle counter (CPC). Multiply charged droplets generated by electrospray are charge-reduced by interaction with air ions formed by α-radiation (210Po). NLP samples are exchanged via dialysis (3× buffer exchange) into a volatile buffer and then pumped into the electrospray source at 100 mL/min. These conditions were chosen so primary electrospray droplets contain, on average, less than one individual NLP in 25 mM ammonium acetate. The droplets ultimately evaporate, leaving individual NLPs in the gas phase carrying, predominantly, a single charge (7). Charged NLPs pass through a scanning differential mobility analyzer and are counted by a condensation particle counter. The size distribution of a population of NLPs is determined from the scanning parameters; mobility measurements are used to infer NLP mean aerodynamic diameter.
Together with the ion mobility data summarized in Table 4 below, the spectra illustrated in
Samples were diluted using TBS to achieve a final concentration of 0.02 mg/ml. Three μl of each sample was pipetted onto a carbon coated 400 mesh copper EM grid (Ted Pella). After sitting for 1 minute, the sample was blotted with Whatman filter paper. Three μl of 2% Uranyl Acetate (Electron Microscopy Sciences) was applied for one minute and then blotted. Grids were dried for 30 minutes before use in the EM. Negative stain images were recorded using a Philips CM300 FEG transmission electron microscope operating at an accelerating voltage of 300 keV. Images were recorded as 8-bit and 16-bit tiff at varying magnifications onto a Gatan digital CCD and stored as jpegs and Gatan image format files. Images were then analyzed using Gatan Digital Micrograph software.
Micrographs in
Two of these assemblies made from apoE422K and DMPC are shown, with (panel B) and without cholate (panel A). The lower right-hand corner of each panel shows a region at higher magnification to highlight the presence of discoidal structures. Cholate has no effect on the size and structure of apoE422K-derived NLPs. Like previous reports, images of stacked particles were observed—described as “rouleaux”—but not in all samples. Others have described these formations as artifacts of sample preparation and concentration (22).
Atomically flat Muscovite mica disks were glued to metal substrates to secure them to the scanner of a stand-alone MFP-3D AFM (Asylum Research, Santa Barbara, Calif.). 2 uL of solution was incubated for two minutes on the mica surface in imaging buffer (10 mM MgCl2, 10 mM Tris-HCL, and 0.1 M NaCl, adjusted to pH 8.0) and then lightly rinsed. The AFM has a closed loop in the x, y, and z axes. The topographical images were obtained with “Biolevers” (Olympus, Tokyo, Japan) with a spring constant of 0.03 N/m. Images were taken in alternate contact (AC) mode in liquid, with amplitudes below 20 nm and an amplitude setpoint at 50% tapping amplitude. Scan rates were below 1.5 Hz. Height, amplitude, and phase images were recorded. Heights of features in images were determined by histogram analysis of contiguous particles. Experiments were carried out in a temperature controlled room at 23+/−1° C.
All four apolipoprotein assemblies show a common discoidal bilayer structure. In particular, it was observed that NLPs made from different apolipoproteins examined by AFM showed discrete bracketed structures even at high concentration, indicative of individual particles. When DMPC without apolipoprotein is examined, planar fusible features, ˜4-5 nm in thickness are observed consistent with the presence of a lipid bilayer (data not shown). Also, when apolipoprotein is examined alone, globular features on the order of 2-3 nm are seen. NLPs have diameters ranging from 10 to 20 nm and heights of approximately 5 nm; these observations are consistent with diameters measured by other techniques described above. Particle size and structure is unaffected by cholate as shown in
In the analysis illustrated in
Table 4 shows the size characteristics of NLPs made using fluorescently-labeled reactants do not appreciably change from the unlabeled reactants. Moreover, the size and shape are maintained as observed AFM and EM analyses show similar discoidal structures (panel D). These data suggest that fluorescent dye attachment to lipid and protein reagents can be used to track NLP assembly as well as provide means to detect individual reactants within the particle.
Example 23 NLPs Combined CharacterizationTable 4 summarizes results from combined characterization approaches and highlights particle size parameters of NLPs assembled from each of four apolipoproteins in combination with a single phospholipid, dimyristoylphosphatidylcholine (DMPC). Reaction of each protein with DMPC yields NLPs with unique overall structural/shape characteristics. In general, particles produced were found to be discoidal in shape with diameters ranging from 10-20 nm dependent on the apolipoprotein or derivative used in assembly; a height of ˜5 nm was determined for all NLP preparations, consistent with a membrane bilayer formed by DMPC (23).
The fundamental observations are that the apolipoprotein is the primary determinant of NLP size and that a discoidal shape was consistent among the four assemblies. These characterization results, irrespective of the method or apolipoprotein used, show remarkable consistency in measuring overall NLP size and shape for any given apolipoprotein. Moreover, measured sizes and shapes did not differ appreciably when formed in the presence of cholate and when using fluorophore labeled reactants. The following sections summarize results from each of the specific characterization techniques.
Table 4 illustrates the results of the physical characterization of NLPs by native gel electrophoresis, SEC, Ion mobility spectrometry, AFM and negative stain TEM performed according to Examples 1 to 7. Molecular weights and Stokes diameters of the NLPs from native gels and SEC were determined using known protein standards and are shown in kDa and nm, respectively. The average mean aerodynamic diameter (AMAD) corresponds to the centroid and full width at half maximum (FWHM) of the most abundance peak within an ion mobility trace. The centroid provides a robust measurement of the average mean aerodynamic diameter of the particles within a sample while the FWHM provides a comparative estimate of sample heterogeneity. AFM derived measurements of height and TEM derived measurements of diameter are reported as the mean+/−standard deviation of individual measurements from typically 100 NLPs within a sample. ApoAI and MSP1T2 assembled NLPs were noticeably smaller than E422K and apoLp-III assembled NLPs, ranging in size from 10-13 nm in diameter as compared to 12-20 nm in diameter for the E and apoLp-III assemblies. Cholate addition during assembly did not appear to appreciably change the size of any of the structures. The addition of fluorescently labeled assembly components also had little effect on the molecular size, but likely affects the homogeneity of the assembled structures since fluorescent components were unlikely to be uniformly distributed throughout the NLP population. Characterization data using purchased empty Nanodiscs™ are also shown for comparative purposes.
Example 24 NLPs Production and Characterization to Support NLPs Modeling and Molecular DynamicsNLPs were produced, purified and characterized as described in Examples 16 to 21. In particular, the NLPs did include Phospholipids 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) and 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) and apolipoprotein apoE422k The DMPC and DOPC were purchased from Avanti Polar Lipids, Inc. (Alabaster, Ala.). Full-length apoA-I was purchased from Fitzgerald, Inc. (Concord, Mass.), Nanodisc™ particles were purchased from Nanodisc, Inc., (Urbana, Ill.). An expression clone to produce apoE422k, the N-terminal 22 kDa fragment of apolipoprotein E4 (apoE4), as a 6His and thyrodoxin tagged construct was also used.
ApoE422k was chosen based on its importance for biotechnology applications, specifically the solubilization of membrane proteins. It is easy to purify to homogeneity and is known to be more stable than full length apoE4 or apoE3. NLP formation with E422k is highly reproducible and NLPs are stable over extended time periods. Furthermore, it produces larger particles compared to A-I or MSP1 (14), which may be relevant when accommodating larger membrane proteins
Briefly, dried DMPC was dissolved in 10 mM Tris pH 7.4, 0.15 M sodium chloride, 0.25 mM EDTA, 0.005% sodium azide (TBS) buffer at a concentration of 20 mg/ml followed by probe sonication to clarity. This resulting liposome suspension was spun at 13000 g for 2.5 minutes to remove any residual titanium from the probe sonicator and un-solubilized lipid. ApoE422k (200-250 μg) was added to the TBS/DMPC solution at a mass ratio of 4:1. The particle formation process was started with 3 repeated sets of transition temperature incubations, above (10 minutes at 30° C.) and below the transition temperature of DMPC (23.8° C.) followed by incubation at 23.8° C. overnight. The NLPs were purified by size-exclusion chromatography using a Superdex 200 HR 10/300 column (GE Healthcare), in TBS at a flow rate of 0.5 ml/min.
The NLP fractions were concentrated to approximately 0.1 mg/ml using molecular weight sieve filters (Vivascience) with molecular weight cutoffs of 50 kDa. Protein concentration was determined using the ADV01 protein concentration kit (Cytoskeleton, Inc.).
The samples were analyzed by Atomic Force Microscopy. In particular, Atomically flat Muscovite mica disks were glued to metal substrates to secure them to the scanner of a stand-alone MFP-3D AFM (Asylum Research, Santa Barbara, Calif.). Two μL of solution at 1.0 μg/mL concentration was incubated for two minutes on the mica surface in imaging buffer (10 mM MgCl2, 10 mM Tris-HCl, and 0.1 M NaCl, adjusted to pH 8.0) then lightly rinsed. The AFM has a closed loop in the x, y, and z axes. Topographical images were obtained with silicon nitride cantilever probes (MSCT, Veeco, Santa Barbara, Calif.) with a spring constant of 0.05 N/m.
Images were taken in alternate contact (AC) mode in liquid, with amplitudes below 20 nm and an amplitude setpoint at 50% tapping amplitude. Scan rates were below 1.5 Hz. Height, amplitude, and phase images were recorded. Diameters of particles in images were determined by the full width half maximum (FWHM) analysis of contiguous particles in the slow scan direction, using Igor Pro Wavemetrics software routines. Heights of particles were determined from histogram analysis. Experiments were carried out in a temperature controlled room at 23+/−1° C.
Alternate contact mode or tapping mode was used in AFM imaging to ensure minimal structural perturbation from tip-sample contact force. It is widely known that imaging nano-scale particles with AFM results in laterally broadening particle size due to tip convolution effects, but there exists a second broadening effect due to the finite response of imaging feedback in the fast scan direction. This latter effect can result in the NLPs shape appearing elongated in the fast scan direction. To limit tip convolution effects, only tips revealing sharp imaging were used for analysis. To limit the broadening from slow imaging response, FWHM from a cross-section perpendicular to the fast scan direction was used to determine particle diameter. To determine the reproducibility of the procedure for measuring NLP diameters, randomly selected particles were repeatedly imaged to verify consistent diameter measurements.
The NLPs were then subjected to Ion Mobility Spectrometry. IMS determines the mean aerodynamic diameter of particles based on the terms in equation (1):
Dp=nqE/3πNv Eq (1)
where Dp=particle diameter, n=number of elementary electrical charges, q=unit charge in Coulombs, E=electrical field strength, N=viscosity of suspending gas and v=particle velocity. This is a first principles measurement and it does not require calibration for measuring particle diameter. The development of an electrospray interface provides a way to analyze particles suspended in a liquid.
An electrospray interface was used (Model 3480, TSI, Inc. Shoreview, Minn. and a Macroion Mobility Spectrometer Model 3890, TSI Inc., Shoreview, Minn.) to measure the size distribution of NLP particles after they were exchanged via dialysis into a 25 mM ammonium acetate buffer (14, 26, 27). The methodology used to prepare the samples and measure the NLP size distributions were similar to a method developed by Benner for analyzing human lipoprotein particles and NLPs.
NLP aerodynamic diameters were subsequently converted to aerodynamic spherical volumes. Assuming volume equivalency of the aerodynamic spherical volumes and NLP discoidal volumes and using an appropriate correction factor, IMS derived mean aerodynamic diameters were converted to NLP discoidal diameters through; where (Nu is the NLP discoidal diameter, h is the NLP discoidal height determined
through AFM analysis, Rma is the mean spherical radius determined from IMS and K is an appropriate correction factor. It is appropriate to convert aerodynamic spherical diameter to discoidal diameters with this factor because the net velocity of the particles during analysis is slow (−5 cm/s) compared to their diffusional velocity (440 cm/s) and thus their shape will be slightly distorted during differential mobility analysis.
Transmission Electron Microscopy (TEM) was also performed. In particular, NLP samples were diluted using TBS, mounted onto carbon coated 400 mesh copper EM grids, stained with 2% Uranyl Acetate and imaged using a Philips CM300 FEG transmission electron microscope operating at an accelerating voltage of 300 keV as previously described (14).
The samples were also analyzed by native PAGE. In particular, equal amounts of NLP samples (0.5-2 μg) were diluted with 2× native gel sample buffer (Invitrogen) and loaded onto 4-20% gradient pre-made Tris-glycine gels (Invitrogen). Samples were electrophoresed for 250 Vhrs (BioRad) at a constant 125V. After electrophoresis, gels were incubated with Sypro Ruby for 2 hours and then destained using 10% MeOH, 7% aqueous acetic acid. Following a brief wash with ddH2O, gels were imaged using a Typhoon 9410 (GE Healthcare) at 532 nm (green laser) with a 610 nm bandpass 30 filter. Molecular weights were determined by comparing migration vs. log molecular weight of standard proteins found in the NativeMark standard (Invitrogen).
Example 25 NLPs Modeling and Molecular DynamicsNLP Modeling and Molecular Dynamics was then performed on NLPs characterized as described in Example 24: An idealized 35 nm2 bilayer slab of DMPC lipids (a 740,000 atom system) was created and equilibrated to give a lipid cross-sectional area of 52 Å2 per lipid. Circular discs were cut out of this slab at 0.5 nm diameter increments, in a range of 11 to 30 nm. The apoE422k crystal structure, PDB:1GS9 was used as the basis for the protein modeling. Refolded E422k proteins were modeled and tested in three different forms: fully extended, doubled-back/“hairpin”, and semi-extended/“double-hairpin” folds (
Initial modeling of the NLPs was based on a fully extended E422k (
Proteins were aligned along the equator of the lipid disc and packed against the lipid discs of different sizes with the aim of fully enclosing the hydrophobic face of the lipids but not allowing the proteins to overlap each other. A 1 nanosecond (ns) equilibration molecular dynamics (MD) run was then used to optimize the packing of the lipid against the protein. NLPs without gaps between lipid and protein, were then entered into a 40 ns MD simulation to determine the stability of the model. All MD simulations were run using the CHARMM forcefield in NAMD with many of the settings and set-up details taken from previous simulations. Simulations were conducted on 1024 processors of Thunder, a 23 teraflop, 4096 Intel Itanium2 processor machine at the Livermore Computing Center. System set-up, analysis and image preparation was done using, Gromacs (40), Pymol and VMD with additional “in house” tcl/tk, perl and C++ scripts.
Example 26 Verification of NLPs Modeling and Molecular Dynamics through Individual Particle CharacterizationE422k/DMPC NLPs were formed using DMPC as the lipid component and E422k as the lipoprotein component as herein described. A typical SEC trace of an E422k/DMPC NLP assembly contains three dominant peaks, the free lipid rich peak, an NLP rich peak, and apolipoprotein rich peak (
Both single particle characterization techniques showed the production of 12-30 nm sized NLPs (
Heterogeneous E422k/DMPC NLP diameter distributions display discrete sizes as determined through AFM, TEM and IMS. AFM cross-sectional analysis of several hundred single NLPs was used to quantify both height and diameter heterogeneity. The height distribution of the particles revealed a relatively homogeneous population displaying a Gaussian distribution with a mean height of 4.9+/−0.2 nm, consistent with the height of a lipid bilayer. However, histograms of the diameters revealed that the NLP sizes displayed discrete diameters (
The discrete diameters were centered at 14.7, 18.8, 23.3 and 28.7 nm and the fraction of each NLP type decreased with increasing NLP diameters shown in Table 5, where the diameter mean and SD and percentage of the four NLP populations is reported.
To verify that the observed discrete diameters were not an effect of AFM tip resolution or mica surface-particle interactions E422k/DMPC NLPs were also analyzed by ion mobility spectrometry (IMS) and TEM (
IMS is a technique that determines the mean aerodynamic diameter of particles based upon the differential migration of gas phase ions through a homogeneous electric field and is well established in the field of aerosol science for particle analysis and measurement. The history of the development of IMS was recently extensively reviewed (42). In fact, IMS has been used to determine size distributions for HDLs, LDLs and VLDLs (26, 27) and more recently for NLPs assembled from a wide range of lipoproteins (14). The IMS traces confirm the discrete NLP diameters seen with AFM; in fact the diameter peaks in both the AFM (14.9, 18.7, 23.3, 28.7 nm) and IMS (14.1, 19.5, 24.3, 28.6 nm) are almost identical.
TEM also confirmed the existence of the same four discrete sizes that were observed by AFM and IMS (14.9 nm, 18.9 nm, 23.3 nm, 29.0 nm) (
E422k/DMPC NLPs were subjected to native gel electrophoresis to further assess particle heterogeneity. 0 mM and 5 mM cholate (below critical micelle concentration of ˜15 mM) was added to the NLP solution after assembly and run on native gel (
All three techniques (AFM TEM and IMS) independently identified the existence of four distinct particle sizes of E422k/DMPC NLPs with diameters centered at ˜14.5, 19, 23.5 and 28 nm.
Example 27 Verification of NLPs Modeling and Molecular Dynamics through Simulations of E422k/DMPC NLPsTo determine if the discrete NLP diameters observed by AFM. TEM and IMS could be related to the number of E422k proteins in an NLP, NLP assembly was computationally modeled using MD simulations. As illustrated in
Modeling of NLPs using fully extended double-belted E422k proteins (
Interestingly, MD simulations revealed that stable NLPs with diameters of 14.5, 19, 23.5 and 28 nm could all be formed using the hairpin (
Additional models are illustrated in
The computer modeling and molecular dynamics (MD) simulations indicate that these NLPs sizes can be related to a quantized number of the E422k lipoproteins surrounding the NLPs. Discrete sizes were also observed in NLPs self-assembled from E422k/1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC), A-1/DMPC, and commercially obtained NLPs purchased from Nanodisc, Inc. indicating this is likely a general and physically relevant phenomenon.
Example 28 Verification of NLPs Modeling and Molecular Dynamics in Commercial NLPsDiscrete NLP diameters were also observed in A-I/DMPC NLPs, E422k/DOPC and NLPs purchased from Nanodisc, Inc. To determine if the formation of discrete NLP diameters was a general phenomenon for self-assembling NLPs, size distributions were analyzed by AFM for A-I/DMPC NLPs and NLPs (16) purchased from Nanodiscs Inc., (Urbana, Ill.). A-I/DMPC NLPs were formed with the same procedure used for E422k/DMPC NLPs with the exception that cholate was added during assembly as described in Examples 1 to 7. The purchased NLPs were formed from MSP1 a truncated version of apoA-I (apoA-I A1-22) and DMPC.
The diameter histogram for the two different samples clearly show discrete peaks similar to those observed in E422k/DMPC NLPs except with a shift to slightly smaller particle diameters (
To ascertain the effect of the lipid on the discrete sized distributions observed for E422k, NLPs were assembled with DOPC instead of DMPC (
In the process of characterizing certain NLPs and evaluating their therapeutic potential in treatment of systemic fungal infections or leishmaniasis in humans, it was recognized that the apolipoprotein component of the NLP particle represents a limiting factor. In particular, those observations were made in connection with NLPs such as AMB-ND, a lipid formulation of the water insoluble antibiotic amphotericin B (AMB), termed nanodisks (ND), comprised of a nanometer scale disk shaped phospholipid bilayer stabilized by recombinant human apolipoprotein (apo) A-I. Whereas apolipoproteins serve key functions in facilitating ND formation and as a structural component of the product particles, the inventors hypothesized that peptides represent a potential alternative to recombinant apolipoprotein.
The requirement of such a peptide would be a reasonably short sequence together with the ability to induce formation of AMB-ND with retention of the stability and biological properties demonstrated for apolipoprotein containing ND. Human apoA-I mimetic peptides have been described that are capable of solubilizing phospholipid vesicles. One such peptide, termed 18A, has been extensively studied. Derivatives of this have been made by substituting Phe for Leu residues on the nonpolar face of the amphipathic alpha helix.
A helical wheel depiction of the resulting peptide, termed 4F, is shown in
A series of experiments is herein illustrated related to NLPs formation starting from an 18-residue synthetic amphipathic ex-helical peptide, termed 4F (Ac-D-W F K A F Y D K V AEKF KEA F NH (SEQ ID NO: 12), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids).
AMB (USP grade) was obtained from Research Organics Inc. Dimyristoyl-phosphatidylcholine (DMPC) and dipentadecanoyl phosphatidylcholine (PC) were from Avanti Polar Lipids Inc. and egg PC was from Sigma. Recombinant apoA-I was produced as previously described. 4F peptide was a kind gift of Dr. G. M. Ananatharamaiah I•m).
ND particles were prepared essentially as previously described. Briefly, 10 mg DMPC was dissolved in chloroform:methanol (3:1 v/v) and dried under a stream of nitrogen gas, coating the vessel wall with the phospholipid. The tube was then lyophilized for a minimnm of 2 h to remove residual organic solvent. Following this the lipids were dispersed in 1 ml phosphate buffered saline (PBS; 20 mM sodium phosphate, pH 7.0, 150 mM sodium chloride) by vortexing. To the dispersed lipid 2.5 mg AMB from a stock solution (30 mg/ml in dimethylsulfoxide; DMSO) was added. Subsequently, 4 mg 4F peptide or apoA-1 (in PBS) was added and the solution incubated at 24° C. Following bath sonication to induce sample clarification, the respective ND solutions were dialyzed overnight against PBS.
Protein concentrations were determined by the bicinchoninic acid assay with bovine serum albumin as standard. Peptide concentrations were determined spectrophotometrically. Absorbance spectroscopy was performed on a Perkin-Elmer Lambda
AMB levels were determined using a 20 spectrophotometer with an extinction coefficient at 416 nm 1.214×105 M′″ em·′ in DMSO.
Bilayer vesicles of egg PC, dipentadecanoyl PC or DMPC were prepared in 20 mM sodium phosphate, pH 7.0 by extrusion through a 200 nm filter as described by Weers et al. Unless otherwise specified, 100 μg phospholipid was incubated at a given temperature in a thermostated cell holder in the absence or presence of 40 Jig 4F peptide or apoA-I (sample volume=400 μl. Sample right angle light scattering intensity was monitored as a function of time on a PerkinElmer LS SOB luminescence spectrometer, with the excitation and emission monochromaters set at 600 nm (3.6 nm slit width).
Phospholipid Vesicle Solubilization StudiesA critical aspect of AMB-ND formation relates to the ability of apolipoproteins to disrupt AMB containing phospholipid vesicles, transforming them into disk-shaped bilayers. 4F and apoA-I were characterized with respect to their relative ability to induce a time-dependent decrease in the light scattering intensity of candidate phospholipid vesicle substrates (
In the case of the synthetic saturated chain phospholipid, dipentadecanoyl PC, apoA-1 was unable to induce a significant decrease in vesicle light scattering intensity upon incubation at 33° C. On the other hand, 4F induced vesicle solubilization as a function of time. Consistent with the known properties of apoA-1 [11,13], it was able to disrupt DMPC vesicles upon incubation at the gel to liquid phase transition temperature of this lipid (23.9° C.). At the same time, however, 4F was equally effective, indicating that 4F and apoA-1 are equivalent in terms of their ability to solubilize DMPC vesicles. Based on relative vesicle solubilization activity of 4F with different phospholipids, subsequent studies were carried out with DMPC.
Fluorescence StudiesFluorescence spectra were obtained on a Perkin-Elmer LS SOB luminescence spectrometer. For quenching studies samples were excited at 280 nm and emission was monitored from 300-500 nm. Quenching data were analyzed by the Stern-Volmer equation: FolF=1+Ksv [Q] where Fo and F represent the emission maximum in the absence and presence of quencher, respectively. The collisional quenching constant was estimated from the slope of plots of FrJF versus [Q].
4F contains a single Trp residue that provides a potentially useful intrinsic fluorescent probe. Indeed, whereas 4F in buffer has a wavelength of maximum Trp fluorescence emission of 350 nm (excitation 280 nm), binding to DMPC induced a ˜7 nm blue shift in emission wavelength maximum together with a near doubling of Trp fluorescence emission quantum yield (
To characterize the ability of AMB to quench 4F Trp fluorescence, 4F ND lacking AMB were prepared. Subsequently, aliquots of AMB were added to the ND solution and the effect on 4F Trp fluorescence emission intensity determined. A concentration dependent decrease in Trp fluorescence emission intensity was observed that was maximal at 8 flg AMB per 40 flg 4F ND. A Stern-Volmer plot of the quenching data revealed a Ksv=7.7×104
Electron MicroscopySamples were diluted to a concentration of 0.02 mg/ml in TBS buffer. Carbon-coated 400 mesh grids (Ted Pella,) were glow-discharged. 3 μl of ND samples were applied to the grid and blotted dry with Whatman filter paper. Negative staining was conducted using 3 μl of a 2% solution of uranyl acetate, and again blotted with Whatman paper. Grids were transferred to the a 1EOL 1230 electron microscope, operating at 120 keV acceleration.
To characterize the structure and morphology of ND particles prepared with 4F, negative stain electron microscopy was performed. 4F-AMB ND were similar in morphology to ApoA-I-AMB-ND reported earlier [9], displaying a population of particles with an average diameter in the range of 12.5 nm (
Cultures of the yeast, Saccharomyces cerevisiae, were grown in yeast extract peptone glucose broth media (YEPD; Teknova, Hollister, CAL Twenty μl of a saturated overnight culture was used to inoculate 5 ml YEPD media in the absence or presence of indicated amounts of a given AMB-ND formulation. Cultures were grown for 16 h at 30° C. with rotation and the extent of culture growth monitored by measuring sample turbidity at 600 nm.
Microtiter broth growth inhibition assays were conducted with three species of pathogenic fungi, Candida albicans (ATCC #: 90028), Aspergillus fumigatus (ATCC#: 16424) and Cryptococcus neoformans (isolate H99, ATCC #: 208821). Fungi were cultured in RPM1 1640 medium buffered with MOPS to pH 7.0. The final inoculum was 1×106 cells 1m!. Experiments were performed in triplicate at 37° C. for 48 h according to established protocols [10, 15]. All samples tested were soluble in the standard RPMI medium used and no precipitation or interference was seen in any of the samples tested against either fungal species Inhibitory activity was determined from cultures grown with varying amounts of a given AMB-ND formulation ranging from 0.01-16 μg/ml.
To evaluate if substitution of 4F for apoA-1 in AMB-ND affects its biological activity, growth inhibition assays were performed with the yeast, S. cerevisiae. As shown in
Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a ˜7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F-AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv′″ 7.7×104 Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND.
These results indicate that 4F and apoA-I form ND particles of similar size and efficiently solubilize significant amounts of the water insoluble polyene antibiotic, AMB. Indeed, in terms of phospholipid vesicle solubilization activity, 4F appears to be superior to apoA-I. Similar to results reported earlier, 4F but not apoA-I, can solubilize egg PC. In experiments directed to analyze 4F fluorescence properties upon association with DMPC and AMB, that AMB proved to be a highly effective quencher of Trp fluorescence emission, suggesting AMB has associated with the ND particles, These findings were verified and extended by electron microscopy. Micrographs of AMB ND prepared using 4F or apoA-I had a similar morphology, comprised of a discoidal shape with a diameter in the range of 12.5 nm. Since the biological activity of AMB-ND prepared with 4F were equivalent to that of AMB-ND prepared with apoA-I, these results suggest that 4F may offer a suitable substitute for apoA-I for formulation of AMB-ND.
The advantages of 4F versus apoA-I as a component of ND structure include the much smaller size of the peptide (18 amino acids versus 243 in the case of apoA-I). Given this large difference in molecular size and the fact that the product ND are of similar diameter, it is evident that multiple copies of peptide must align around the perimeter of the ND particle. Previous characterization studies revealed that apoA-I ND possess two copies of apoA-I, with the protein aligned in a belt-like manner around the periphery of the disk particle. Considering that 4F ND have a similar diameter, it is reasonable to speculate that 4F ND contain 20 or more peptide molecules per disc, presumably aligned perpendicular to the fatty acyl chains of ND phospholipids oriented with the hydrophobic face of the alpha helix directed toward the particle surface.
Whereas 4F ND displayed equivalent biological activity to apoA-I ND with respect to yeast and pathogenic fungi growth inhibition properties, it remains to be determined if these results can be extended to an in vivo setting. At the same time, it is worth noting that 4F and related peptides are known to function as anti-atherosclerotic agents in vivo. Thus, it is likely that 4F itself will not manifest in vivo toxicity when presented as a component of ND. Another key advantage of peptides versus protein as a component of ND particle structure relates to versatility. Given the utility of solid phase peptide synthesis versus bacterial expression of recombinant apolipoprotein using GMP methods, the cost of producing AMB-ND may be significantly reduced. Furthermore, this approach eliminates the possibility that bacterial toxins such as lipopolysaccharide may contaminate a given ND preparation. The ease of amino acid substitution also simplifies optimization studies since large numbers of amino acid substitution can be introduced and rapidly evaluated. Given the results presented in this study and the intrinsic advantages of peptides versus recombinant protein, further development of AMB-ND as a potential lipid based formulation for treatment of systemic fungal infections using 4F as the scaffold protein should be pursued.
Example 30 Production of NLPs with a Controlled SizeA nanolipoprotein particle of a predefined size was produced according to the methods and systems exemplified below. An apolipoprotein and a membrane forming lipid were mixed in TBS buffer contained in a glass reaction vessel for a defined period of time. Typically, DMPC (20 mg) is weighed out, added to a glass, round bottom tube followed by chloroform (200 ul) to dissolve lipid. Chloroform is evaporated in a stream of nitrogen with constant rotation to distribute the lipid evenly along the tube wall and placed under vacuum overnight. DMPC is either re-suspended in TBS with probe sonication or with TBS/cholate and gentle vortexing; the final concentration of cholate (20 mM) is above its critical micellar concentration (CMC). Apolipoproteins (200-250 ng) are added to the TBS/DMPC solution+/−cholate at a mass ratio of 4:1 for apoE422K and 3:1 of apoLp-III. The particle formation process is started with 3 repeated sets of transition temperature incubations, above and below the transition temperature of DMPC (23.8° C.), i.e. 10 minutes at 30° C., then 10 minutes at 20° C., with light hand mixing between incubations.
After 3 heating and cooling transitions, the samples are incubated at 23.8° C. overnight. Following assembly, samples containing cholate are dialyzed against 1000× volume of TBS buffer using 3 changes in 24 hrs. The NLPs are purified from ‘free protein’ and ‘free lipid’ by size-exclusion chromatography (VP HPLC, Shimadzu) using a Superdex 200 HR 10/30 column (GE Healthcare), in TBS at a flow rate of 0.5 ml/min.
Example 31 Dimensions NLPs Assembled upon co-expression of Scaffold Protein and Target ProteinExperiments were performed according to procedures exemplified in the preceding examples to provide NLPs via in vitro co-expression of an apolipoprotein and a membrane protein. The dimensions of the NLPs so obtained are reported in Table 6.
Co-expression leads to varying diameters for the scaffold with inserted membrane proteins. This parameter demonstrates that that lipid interface is directly modified by the inserted protein/lipid interaction and not correlated with apolipoprotein. This demonstrates the need to characterize diameter as an important feature that is more variable in co-expression of nanolipoparticles.
Example 32 Time Course of NPLs Assembly via One-pot Co-expresson of Scaffold Protein and Target ProteinExperiments were performed according to procedures exemplified in the preceding examples to provide NLPs via in an vitro “one pot” system wherein co-expression of bR and a Δ1-49ApoA1 was performed in presence of DMPC vesicles.
The time course of the reaction was measures as illustrate in
The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the devices, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. Modifications of the above-described modes for carrying out the disclosure that are obvious to persons of skill in the art are intended to be within the scope of the following claims. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.
The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background, Summary, Detailed Description, and Examples is hereby incorporated herein by reference. Further, the hard copy of the sequence listing submitted herewith and the corresponding computer readable form are both incorporated herein by reference in their entireties.
It is to be understood that the disclosures are not limited to particular compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains. Although any methods and materials similar or equivalent to those described herein can be used in the practice for testing of the specific examples of appropriate materials and methods are described herein.
A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.
REFERENCES
- 1. Dunn, R. J., Hackett, N. R., McCoy, J. M., Chao, B. H., Kimura, K., and Khorana, H. G (1987) Structure-function studies on bacteriorhodopsin. I. Expression of the bacterio-opsin gene in Escherichia coli. J Biol Chem 262, Page.
- 2. Sonar, S., Patel, N., Fischer, W., and Rothschild, K. J. (1993) Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. Biochemistry 32, Page.
- 3. Kalmbach, R., Chizhov, I., Schumacher, M. C., Friedrich, T., Bamberg, E., and Engelhard, M. (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371, Page.
- 4. Wang, J., Link, S., Heyes, C. D., and El-Sayed, M. A. (2002) Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 83, Page.
- 5. Bayburt, T. H., Grinkova, Y. V., and Sligar, S. G (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch Biochem Biophys 450, Page.
- 6. Chromy, B. A., Arroyo, E., Blanchette, C. D., Bench, G., Benner, H., Cappuccio, J. A., Coleman, M. A., Henderson, P. T., Hinz, A. K., Kuhn, E. A., Pesavento, J. B., Segelke, B. W., Sulchek, T. A., Tarasow, T., Walsworth, V. L., and Hoeprich, P. D. (2007) Different Apolipoproteins Impact Nanolipoprotein Particle Formation. J Am Chem Soc, Page.
- 7. Bayburt, T. H., Carlson, J. W., and Sligar, S. G (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123, Page.
- 8. Forstner, M., Peters-Libeu, C., Contreras-Forrest, E., Newhouse, Y., Knapp, M., Rupp, B., and Weisgraber, K. H. (1999) Carboxyl-terminal domain of human apolipoprotein E: expression, purification, and crystallization. Protein Expr Purif 17, Page.
- 9. Morrow, J. A., Arnold, K. S., and Weisgraber, K. H. (1999) Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli. Protein Expr Purif 16, Page.
- 10. Jayaraman, S., Gantz, D., and Gursky, O. (2005) Structural basis for thermal stability of human low-density lipoprotein. Biochemistry 44, Page.
- 11. Gursky, O., Ranjana, and Gantz, D. L. (2002) Complex of human apolipoprotein C-1 with phospholipid: thermodynamic or kinetic stability? Biochemistry 41, Page.
- 12. Coleman, M., Nilsson, A., Russell, T. S., Rath, P., Pandey, R., and Rothschild, K. J. (1995) Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Biochemistry 34, Page.
- 13. Klammt, C., Lohr, F., Schafer, B., Haase, W., Dotsch, V., Ruterjans, H., Glaubitz, C., and Bernhard, F. (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271, Page.
- 14. Klammt, C., Schwarz, D., Lohr, F., Schneider, B., Dotsch, V., and Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. Febs J273, Page.
- 15. Sonar, S., Marti, T., Rath, P., Fischer, W., Coleman, M., Nilsson, A., Khorana, H. G, and Rothschild, K. J. (1994) A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57->Asp. Evidence for proton translocation without Schiff base deprotonation. J Biol Chem 269, Page.
- 16. Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. Febs J 272, Page.
- 17. Camarero, J. A., Kwon, Y., and Coleman, M. A. (2004) Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication. J Am Chem Soc 126, Page.
- 18. Rao, R. S., Visuri, S. R., McBride, M. T., Albala, J. S., Matthews, D. L., and Coleman, M. A. (2004) Comparison of multiplexed techniques for detection of bacterial and viral proteins. J Proteome Res 3, Page.
- 19. Segelke, B. W., Schafer, J., Coleman, M. A., Lekin, T. P., Toppani, D., Skowronek, K. J., Kantardjieff, K. A., and Rupp, B. (2004) Laboratory scale structural genomics. J Struct Funct Genomics 5, Page.
- 20. Lu, B., Morrow, J. A., and Weisgraber, K. H. (2000) Conformational reorganization of the four-helix bundle of human apolipoprotein E in binding to phospholipid. J Biol Chem 275, Page.
- 21. Wientzek, M., Kay, C. M., Oikawa, K., and Ryan, R. O. (1994) Binding of insect apolipophorin III to dimyristoylphosphatidylcholine vesicles. Evidence for a conformational change. J Biol Chem 269, Page.
- 22. Forte, T. M., Nichols, A. V., Gong, E. L., Levy, R. I., and Lux, S. (1971) Electron microscopic study on reassembly of plasma high density apoprotein with various lipids. Biochim Biophys Acta 248, Page.
- 23. Abdulreda, M. H., and Moy, V. T. (2007) Atomic force microscope studies of the fusion of floating lipid bilayers. Biophys J 92, Page.
Claims
1. A method for producing a nanolipoprotein particle in a single reaction, the nanolipoprotein particle comprising a scaffold protein and a membrane forming lipid, the method comprising:
- providing a polynucleotide encoding for the scaffold protein; and
- translating the polynucleotide to produce the scaffold protein via an in vitro cell-free translation system, in presence of the membrane forming lipid, thus producing a nanolipoprotein having a discoidal structure.
2. The method of claim 1, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of lipids phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
3. The method of claim 1, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) and a small multidrug resistance transporter (SMR).
4. The method of claim 1, wherein the polynucleotide is an engineered polynucleotide encoding for a chimeric product.
5. The method of claim 1, wherein the target protein is selected from the group consisting of bacteriorhodopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
6. A method for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein, a membrane forming lipid and a target protein, the method comprising:
- providing a polynucleotide encoding for the target protein; and
- translating the polynucleotide to produce the target protein via in vitro cell free translation system, in presence of the scaffold protein and the membrane forming lipid.
7. The method of claim 6, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
8. The method of claim 6, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) and a small multidrug resistance transporter (SMR).
9. The method of claim 6, wherein the polynucleotide is an engineered polynucleotide encoding for a chimeric product.
10. The method of claim 6, wherein the target protein is selected from the group consisting of bachteriorhodopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
11. A method for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein, a membrane forming lipid and a target protein, the method comprising:
- providing a first polynucleotide encoding for the scaffold protein;
- providing a second polynucleotide encoding for the target protein; and
- translating the first polynucleotide and the second polynucleotide in an in vitro cell free translation system, in presence of the membrane forming lipid.
12. The method of claim 11, wherein contacting the first and second polynucleotide with the membrane forming lipid and the scaffold protein is performed simultaneously in a single reaction mixture.
13. The method of claim 11, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
14. The method of claim 11, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) and a small multidrug resistance transporter (SMR).
15. The method of claim 11, wherein at least one of the first and the second polynucleotide is an engineered polynucleotide encoding for a chimeric product.
16. The method of claim 11, wherein the target protein is selected from the group consisting of bacteriorhodopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
17. A system for providing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein and a membrane forming lipid, the system comprising:
- the membrane forming lipid; and
- a polynucleotide encoding for the scaffold protein,
- the system configured to be operated in connection with an in vitro cell free translation system for translation of the polynucleotide in presence of the membrane forming lipid.
18. The system of claim 17, wherein the polynucleotide is engineered to provide a chimeric product.
19. The system of claim 17, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
20. The system of claim 17, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) or a small multidrug resistance transporter (SMR).
21. The system of claim 17, wherein the target protein is selected from the group consisting of bacteriorodhopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
22. The system of claim 17, further comprising a labeled molecule that specifically binds to the target protein, the labeled molecule providing a labeling signal.
23. The system of claim 22, wherein the labeled molecule is selected from the group consisting of radioactive isotopes, chemioluminescent dyes, fluorophores, chromophores, enzymes, enzymes substrates, enzyme cofactor, enzyme inhibitors, dyes, metal ions, nanoparticles, metal sos and ligands.
24. A system for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein, a membrane forming lipid and a target protein, the system comprising
- at least one of the membrane forming lipid and the scaffold protein; and
- a polynucleotide encoding for the target protein,
- the system configured to be operated in connection with an in vitro cell free translation system for the translation of the polynucleotide in presence of the membrane forming lipid and of the scaffold protein.
25. The system of claim 24, wherein the polynucleotide is engineered to provide a chimeric product.
26. The system of claim 24, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
27. The system of claim 24, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) or a small multidrug resistance transporter (SMR).
28. The system of claim 24, wherein the target protein is selected from the group consisting of bacteriorodhopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
29. The system of claim 28, further comprising a labeled molecule that specifically binds to the target protein, the labeled molecule providing a labeling signal.
30. The system of claim 29, wherein the labeled molecule is selected from the group consisting of radioactive isotopes, chemioluminescent dyes, fluorophores, chromophores, enzymes, enzymes substrates, enzyme cofactor, enzyme inhibitors, dyes, metal ions, nanoparticles, metal sos and ligands.
31. A system for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein, a membrane forming lipid and a target protein, the system comprising:
- a first polynucleotide encoding for the scaffold protein; and
- a second polynucleotide encoding for the target protein,
- the system configured to be operated in connection with an in vitro cell free translation system for translation of the first and second polynucleotide in presence of the membrane forming lipid.
32. The system of claim 31, wherein at least one of the first and the second polynucleotide is engineered to provide a chimeric product.
33. The system of claim 31, wherein the target protein is a membrane protein and the membrane forming lipid is selected from the group consisting of phospholipids, sphingolipids, glycolipids, ether lipids, sterols and alkylphosphocholins.
34. The system of claim 30, wherein the target protein is selected from the group consisting of a protein coupled receptor (GPCR), an ion channel protein (IC) or a small multidrug resistance transporter (SMR).
35. The system of claim 31, wherein the target protein is selected from the group consisting of bacteriorodhopsin, V2R, CRF, ETB, MC5R, NTR1, 5HT1A, H2, M1,herg, α1AR, β1AR, OP1R,β2AR and M2.
36. The system of claim 31, further comprising a labeled molecule that specifically binds to the target protein, the labeled molecule providing a labeling signal.
37. The system of claim 36, wherein the labeled molecule is selected from the group consisting of radioactive isotopes, chemioluminescent dyes, fluorophores, chromophores, enzymes, enzymes substrates, enzyme cofactor, enzyme inhibitors, dyes, metal ions, nanoparticles, metal sos and ligands.
38. A method for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein and a membrane forming lipid, the method comprising:
- contacting the scaffold protein and the membrane forming lipid for a time and under conditions to allow self assembly of said scaffold protein and said membrane forming lipid,
- the scaffold protein and the membrane forming lipid bing contacted in a mass ratio ranging from 3:1 to 6:1.
39. A method for producing a nanolipoprotein particle of a predefined size, the predefined size being from 10 to 60 nm, the nanolipoprotein particle comprising a scaffold protein and a membrane forming lipid, the method comprising:
- contacting the scaffold protein and the membrane forming lipid for a time and under conditions to allow self assembly of said scaffold protein and said membrane forming lipid,
- the scaffold protein and the membrane forming lipid being contact at a mass ratio of scaffold protein to membrane forming lipid ranging from 3:1 to 4:1.
40. A method for producing a nanolipoprotein particle, the nanolipoprotein particle comprising a scaffold protein, a membrane forming lipid and a target protein, the nanolipoprotein particle configured to include a predetermined target protein, the method comprising
- contacting the scaffold protein, the membrane forming lipid and the predetermined target protein for a time and under conditions to allow self assembly of said scaffold protein and said membrane forming lipid,
- the scaffold protein, the membrane forming lipid being contact at a final mass ratio of scaffold protein:membrane forming lipid:predetermined target protein of about 4:1:6.
Type: Application
Filed: May 9, 2008
Publication Date: Mar 10, 2011
Inventors: Matthew A. Coleman (Oakland, CA), Paul D. Hoeprich (Pleasanton, CA), Brent W. Segelke (San Ramon, CA)
Application Number: 12/118,396
International Classification: G01N 33/566 (20060101); C07K 2/00 (20060101);