Bio-Medical Unit with Adjustable Antenna Radiation Pattern

- BROADCOM CORPORATION

A bio-medical unit for implanting into a host body includes a power harvesting module, a communication module, an antenna assembly, and a processing module. The power harvesting module is operable to generate a supply voltage from an electromagnetic signal. The antenna assembly has an adjustable radiation pattern. The processing module is powered by the supply voltage and is operable to receive, via the communication module, a command regarding a bio-medical function. When the bio-medical function includes a radio frequency transmission, the processing module determines a desired radiation pattern for the antenna assembly. The processing module then determines an operating frequency based on the desired radiation pattern, wherein, for the radio frequency transmission, the antenna assembly has the desired radiation pattern.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED PATENTS

This patent application is claiming priority under 35 USC §119 to a provisionally filed patent application entitled BIO-MEDICAL UNIT AND APPLICATIONS THEREOF, having a provisional filing date of Sep. 30, 2009, and a provisional Ser. No. 61/247,060.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

NOT APPLICABLE

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to medical equipment and more particularly to wireless medical equipment.

2. Description of Related Art

As is known, there is a wide variety of medical equipment that aids in the diagnosis, monitoring, and/or treatment of patients' medical conditions. For instances, there are diagnostic medical devices, therapeutic medical devices, life support medical devices, medical monitoring devices, medical laboratory equipment, etc. As specific exampled magnetic resonance imaging (MRI) devices produce images that illustrate the internal structure and function of a body.

The advancement of medical equipment is in step with the advancements of other technologies (e.g., radio frequency identification (RFID), robotics, etc.). Recently, RFID technology has been used for in vitro use to store patient information for easy access. While such in vitro applications have begun, the technical advancement in this area is in its infancy.

BRIEF SUMMARY OF THE INVENTION

The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

FIG. 1 is a diagram of an embodiment of a system in accordance with the present invention;

FIG. 2 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 3 is a diagram of an embodiment of an artificial body part including one or more bio-medical units in accordance with the present invention;

FIG. 4 is a schematic block diagram of an embodiment of an artificial body part in accordance with the present invention;

FIG. 5 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 6 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 7 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit in accordance with the present invention;

FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module in accordance with the present invention;

FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;

FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;

FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;

FIG. 13 is a schematic block diagram of an embodiment of a power boost module in accordance with the present invention;

FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention;

FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention;

FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;

FIG. 17 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 18 is a diagram of an example of a communication protocol within a system in accordance with the present invention;

FIG. 19 is a diagram of another embodiment of a system in accordance with the present invention;

FIG. 20 is a diagram of another example of a communication protocol within a system in accordance with the present invention;

FIG. 21 is a diagram of an embodiment of a network of bio-medical units collecting image data in accordance with the present invention;

FIG. 22 is a diagram of an embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention;

FIG. 23 is a diagram of another embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention;

FIG. 24 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;

FIG. 25 is a schematic block diagram of an embodiment of a leaky antenna of the bio-medical unit of FIG. 24 in accordance with the present invention;

FIG. 26 is a diagram of an example of an antenna radiation pattern of the leaky antenna of FIG. 25 in accordance with the present invention;

FIG. 27 is a diagram of another example of an antenna radiation pattern of the leaky antenna of FIG. 22 in accordance with the present invention;

FIG. 28 is a diagram of an embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention; and

FIG. 29 is a diagram of another embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a diagram of an embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device (e.g., it does not include a power source (e.g., a battery)) and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. Alternatively, or in addition to, each of the bio-medical units 10 may include a rechargeable power source.

In operation, a transmitter 12 emits electromagnetic signals 16 that pass through the body and are received by a receiver 14. The transmitter 12 and receiver 14 may be part of a piece of medical diagnostic equipment (e.g., magnetic resonance imaging (MRI), X-ray, etc.) or independent components for stimulating and communicating with the network of bio-medical units in and/or on a body. One or more of the bio-medical units 10 receives the transmitted electromagnetic signals 16 and generates a supply voltage therefrom. Examples of this will be described in greater detail with reference to FIGS. 8-12.

Embedded within the electromagnetic signals 16 (e.g., radio frequency (RF) signals, millimeter wave (MMW) signals, MRI signals, etc.) or via separate signals, the transmitter 12 communicates with one or more of the bio-medical units 10. For example, the electromagnetic signals 16 may have a frequency in the range of a few MHz to 900 MHz and the communication with the bio-medical units 10 is modulated on the electromagnetic signals 16 at a much higher frequency (e.g., 5 GHz to 300 GHz). As another example, the communication with the bio-medical units 10 may occur during gaps (e.g., per protocol of medical equipment or injected for communication) of transmitting the electromagnetic signals 16. As another example, the communication with the bio-medical units 10 occurs in a different frequency band and/or using a different transmission medium (e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.).

One or more of the bio-medical units 10 receives the communication signals 18 and processes them accordingly. The communication signals 18 may be instructions to collect data, to transmit collected data, to move the unit's position in the body, to perform a function, to administer a treatment, etc. If the received communication signals 18 require a response, the bio-medical unit 10 prepares an appropriate response and transmits it to the receiver 14 using a similar communication convention used by the transmitter 12.

FIG. 2 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. In this embodiment, the person is placed in an MRI machine (fixed or portable) that generates a magnetic field 26 through which the MRI transmitter 20 transmits MRI signals 28 to the MRI receiver 22.

One or more of the bio-medical units 10 powers itself by harvesting energy from the magnetic field 26 or changes thereof as produced by gradient coils, from the magnetic fields of the MRI signals 28, from the electrical fields of the MRI signals 28, and/or from the electromagnetic aspects of the MRI signals 28. A unit 10 converts the harvested energy into a supply voltage that supplies other components of the unit (e.g., a communication module, a processing module, memory, a functional module, etc.).

A communication device 24 communicates data and/or control communications 30 with one or more of the bio-medical units 10 over one or more wireless links. The communication device 24 may be a separate device from the MRI machine or integrated into the MRI machine. For example, the communication device 24, whether integrated or separate, may be a cellular telephone, a computer with a wireless interface (e.g., a WLAN station and/or access point, Bluetooth, a proprietary protocol, etc.), etc. A wireless link may be one or more frequencies in the ISM band, in the 60 GHz frequency band, the ultrasound frequency band, and/or other frequency bands that supports one or more communication protocols (e.g., data modulation schemes, beamforming, RF or MMW modulation, encoding, error correction, etc.).

The composition of the bio-medical units 10 includes non-ferromagnetic materials (e.g., paramagnetic or diamagnetic) and/or metal alloys that are minimally affected by an external magnetic field 26. In this regard, the units harvest power from the MRI signals 28 and communicate using RF and/or MMW electromagnetic signals with negligible chance of encountering the projectile or missile effect of implants that include ferromagnetic materials.

FIG. 3 is a diagram of an embodiment of an artificial body part 32 including one or more bio-medical units 10 that may be surgically implanted into a body. The artificial body part 32 may be a pace maker, a breast implant, a joint replacement, an artificial bone, splints, fastener devices (e.g., screws, plates, pins, sutures, etc.), artificial organ, etc. The artificial body part 32 may be permanently embedded in the body or temporarily embedded into the body.

FIG. 4 is a schematic block diagram of an embodiment of an artificial body part 32 that includes one or more bio-medical units 10. For instance, one bio-medical unit 10 may be used to detect infections, the body's acceptance of the artificial body part 32, measure localized body temperature, monitor performance of the artificial body part 32, and/or data gathering for other diagnostics. Another bio-medical unit 10 may be used for deployment of treatment (e.g., disperse medication, apply electrical stimulus, apply RF radiation, apply laser stimulus, etc.). Yet another bio-medical unit 10 may be used to adjust the position of the artificial body part 32 and/or a setting of the artificial body part 32. For example, a bio-medical unit 10 may be used to mechanically adjust the tension of a splint, screws, etc. As another example, a bio-medical unit 10 may be used to adjust an electrical setting of the artificial body part 32.

FIG. 5 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 and one or more communication devices 24 coupled to a wide area network (WAN) communication device 34 (e.g., a cable modem, DSL modem, base station, access point, hot spot, etc.). The WAN communication device 34 is coupled to a network 42 (e.g., cellular telephone network, internet, etc.), which has coupled to it a plurality of remote monitors 36, a plurality of databases 40, and a plurality of computers 38. The communication device 24 includes a processing module and a wireless transceiver module (e.g., one or more transceivers) and may function similarly to communication module 48 as described in FIG. 8,

In this system, one or more bio-medical units 10 are implanted in, or affixed to, a host body (e.g., a person, an animal, genetically grown tissue, etc.). As previously discussed and will be discussed in greater detail with reference to one or more of the following figures, a bio-medical unit includes a power harvesting module, a communication module, and one or more functional modules. The power harvesting module operable to produce a supply voltage from a received electromagnetic power signal (e.g., the electromagnetic signal 16 of FIGS. 1 and 2, the MRI signals of one or more the subsequent figures). The communication module and the at least one functional module are powered by the supply voltage.

In an example of operation, the communication device 24 (e.g., integrated into an MRI machine, a cellular telephone, a computer with a wireless interface, etc.) receives a downstream WAN signal from the network 42 via the WAN communication device 34. The downstream WAN signal may be generated by a remote monitoring device 36, a remote diagnostic device (e.g., computer 38 performing a remote diagnostic function), a remote control device (e.g., computer 38 performing a remote control function), and/or a medical record storage device (e.g., database 40).

The communication device 24 converts the downstream WAN signal into a downstream data signal. For example, the communication device 24 may convert the downstream WAN signal into a symbol stream in accordance with one or more wireless communication protocols (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). The communication device 24 may convert the symbol stream into the downstream data signal using the same or a different wireless communication protocol.

Alternatively, the communication device 24 may convert the symbol stream into data that it interprets to determine how to structure the communication with the bio-medical unit 10 and/or what data (e.g., instructions, commands, digital information, etc.) to include in the downstream data signal. Having determined how to structure and what to include in the downstream data signal, the communication device 24 generates the downstream data signal in accordance with one or more wireless communication protocols. As yet another alternative, the communication device 24 may function as a relay, which provides the downstream WAN signal as the downstream data signal to the one or more bio-medical units 10.

When the communication device 24 has (and/or is processing) the downstream data signal to send to the bio-medical unit, it sets up a communication with the bio-medical unit. The set up may include identifying the particular bio-medical unit(s), determining the communication protocol used by the identified bio-medical unit(s), sending a signal to an electromagnetic device (e.g., MRI device, etc.) to request that it generates the electromagnetic power signal to power the bio-medical unit, and/or initiate a communication in accordance with the identified communication protocol. As an alternative to requesting a separate electromagnetic device to create the electromagnetic power signal, the communication device may include an electromagnetic device to create the electromagnetic power signal.

Having set up the communication, the communication device 24 wirelessly communicates the downstream data signal to the communication module of the bio-medical unit 10. The functional module of the bio-medical unit 10 processes the downstream data contained in the downstream data signal to perform a bio-medical functional, to store digital information contained in the downstream data, to administer a treatment (e.g., administer a medication, apply laser stimulus, apply electrical stimulus, etc.), to collect a sample (e.g., blood, tissue, cell, etc.), to perform a micro electro-mechanical function, and/or to collect data. For example, the bio-medical function may include capturing a digital image, capturing a radio frequency (e.g., 300 MHz to 300 GHz) radar image, an ultrasound image, a tissue sample, and/or a measurement (e.g., blood pressure, temperature, pulse, blood-oxygen level, blood sugar level, etc.).

When the downstream data requires a response, the functional module performs a bio-medical function to produce upstream data. The communication module converts the upstream data into an upstream data signal in accordance with the one or more wireless protocols. The communication device 24 converts the upstream data signal into an upstream wide area network (WAN) signal and transmits it to a remote diagnostic device, a remote control device, and/or a medical record storage device. In this manner, a person(s) operating the remote monitors 36 may view images and/or the data 30 gathered by the bio-medical units 10. This enables a specialist to be consulted without requiring the patient to travel to the specialist's office.

In another example of operation, one or more of the computers 38 may communicate with the bio-medical units 10 via the communication device 24, the WAN communication device 34, and the network 42. In this example, the computer 36 may provide commands 30 to one or more of the bio-medical units 10 to gather data, to dispense a medication, to move to a new position in the body, to perform a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), etc. As such, the bio-medical units 10 may be remotely controlled via one or more of the computers 36.

In another example of operation, one or more of the bio-medical units 10 may read and/or write data from or to one or more of the databases 40. For example, data (e.g., a blood sample analysis) generated by one or more of the bio-medical units 10 may be written to one of the databases 40. The communication device 24 and/or one of the computers 36 may control the writing of data to or the reading of data from the database(s) 40. The data may further include medical records, medical images, prescriptions, etc.

FIG. 6 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, the bio-medical units 10 can communicate with each other directly and/or communicate with the communication device 24 directly. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.

FIG. 7 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, one of the bio-medical units 44 functions as an access point for the other units. As such, the designated unit 44 routes communications between the units 10 and between one or more units 10 and the communication device 24. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units 10 may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.

FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and one or more functional modules 54. The processing module 50 may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module 50 may have an associated memory 52 and/or memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of the processing module. Such a memory device 52 may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module 50 includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that when the processing module 50 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element stores, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 1-26.

The power harvesting module 46 may generate one or more supply voltages 56 (Vdd) from a power source signal (e.g., one or more of MRI electromagnetic signals 16, magnetic fields 26, RF signals, MMW signals, ultrasound signals, light signals, and body motion). The power harvesting module 46 may be implemented as disclosed in U.S. Pat. No. 7,595,732 to generate one or more supply voltages from an RF signal. The power harvesting module 46 may be implemented as shown in one or more FIGS. 9-11 to generate one or more supply voltages 56 from an MRI signal 28 and/or magnetic field 26. The power harvesting module 46 may be implemented as shown in FIG. 12 to generate one or more supply voltage 56 from body motion. Regardless of how the power harvesting module generates the supply voltage(s), the supply voltage(s) are used to power the communication module 48, the processing module 50, the memory 52, and/or the functional modules 54.

In an example of operation, a receiver section of the communication module 48 receives an inbound wireless communication signal 60 and converts it into an inbound symbol stream. For example, the receiver section amplifies an inbound wireless (e.g., RF or MMW) signal 60 to produce an amplified inbound RF or MMW signal. The receiver section may then mix in-phase (I) and quadrature (Q) components of the amplified inbound RF or MMW signal with in-phase and quadrature components of a local oscillation to produce a mixed I signal and a mixed Q signal. The mixed I and Q signals are combined to produce an inbound symbol stream. In this embodiment, the inbound symbol may include phase information (e.g., +/−Δθ [phase shift] and/or θ(t) [phase modulation]) and/or frequency information (e.g., +/−Δf [frequency shift] and/or f(t) [frequency modulation]). In another embodiment and/or in furtherance of the preceding embodiment, the inbound RF or MMW signal includes amplitude information (e.g., +/−ΔA [amplitude shift] and/or A(t) [amplitude modulation]). To recover the amplitude information, the receiver section includes an amplitude detector such as an envelope detector, a low pass filter, etc.

The processing module 50 converts the inbound symbol stream into inbound data and generates a command message based on the inbound data. The command message may instruction one or more of the functional modules to perform one or more electro-mechanical functions of gathering data (e.g., imaging data, flow monitoring data), dispensing a medication, moving to a new position in the body, performing a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), dispensing a treatment, collecting a biological sample, etc.

To convert the inbound symbol stream into the inbound data (e.g., voice, text, audio, video, graphics, etc.), the processing module 50 may perform one or more of: digital intermediate frequency to baseband conversion, time to frequency domain conversion, space-time-block decoding, space-frequency-block decoding, demodulation, frequency spread decoding, frequency hopping decoding, beamforming decoding, constellation demapping, deinterleaving, decoding, depuncturing, and/or descrambling. Such a conversion is typically prescribed by one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).

The processing module 50 provides the command message to one or more of the micro-electromechanical functional modules 54. The functional module 54 performs an electro-mechanical function within a hosting body in accordance with the command message. Such an electro-mechanical function includes at least one of data gathering (e.g., image, flow monitoring), motion, repairs, dispensing medication, biological sampling, diagnostics, applying laser treatment, applying ultrasound treatment, grasping, sawing, drilling, providing an electronic stimulus etc. Note that the functional modules 54 may be implemented using nanotechnology and/or microelectronic mechanical systems (MEMS) technology.

When requested per the command message (e.g. gather data and report the data), the micro electro-mechanical functional module 54 generates an electro-mechanical response based on the performing the electro-mechanical function. For example, the response may be data (e.g., heart rate, blood sugar levels, temperature, blood flow rate, image of a body object, etc.), a biological sample (e.g., blood sample, tissue sample, etc.), acknowledgement of performing the function (e.g., acknowledge a software update, storing of data, etc.), and/or any appropriate response. The micro electro-mechanical functional module 54 provides the response to the processing module 50.

The processing module 50 converts the electro-mechanical response into an outbound symbol stream, which may be done in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). Such a conversion includes one or more of: scrambling, puncturing, encoding, interleaving, constellation mapping, modulation, frequency spreading, frequency hopping, beamforming, space-time-block encoding, space-frequency-block encoding, frequency to time domain conversion, and/or digital baseband to intermediate frequency conversion.

A transmitter section of the communication module 48 converts an outbound symbol stream into an outbound RF or MMW signal 60 that has a carrier frequency within a given frequency band (e.g., 900 MHz, 2.5 GHz, 5 GHz, 57-66 GHz, etc.). In an embodiment, this may be done by mixing the outbound symbol stream with a local oscillation to produce an up-converted signal. One or more power amplifiers and/or power amplifier drivers amplifies the up-converted signal, which may be RF or MMW bandpass filtered, to produce the outbound RF or MMW signal 60. In another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol stream provides phase information (e.g., +/−Δθ [phase shift] and/or θ(t) [phase modulation]) that adjusts the phase of the oscillation to produce a phase adjusted RF or MMW signal, which is transmitted as the outbound RF signal 60. In another embodiment, the outbound symbol stream includes amplitude information (e.g., A(t) [amplitude modulation]), which is used to adjust the amplitude of the phase adjusted RF or MMW signal to produce the outbound RF or MMW signal 60.

In yet another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides frequency information (e.g., +/−ΔS [frequency shift] and/or f(t) [frequency modulation]) that adjusts the frequency of the oscillation to produce a frequency adjusted RF or MMW signal, which is transmitted as the outbound RF or MMW signal 60. In another embodiment, the outbound symbol stream includes amplitude information, which is used to adjust the amplitude of the frequency adjusted RF or MMW signal to produce the outbound RF or MMW signal 60. In a further embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides amplitude information (e.g., +/−ΔΔA [amplitude shift] and/or A(t) [amplitude modulation) that adjusts the amplitude of the oscillation to produce the outbound RF or MMW signal 60.

Note that the bio-medical unit 10 may be encapsulated by an encapsulate 58 that is non-toxic to the body. For example, the encapsulate 58 may be a silicon based product, a non-ferromagnetic metal alloy (e.g., stainless steel), etc. As another example, the encapsulate 58 may include a spherical shape and have a ferromagnetic liner that shields the unit from a magnetic field and to offset the forces of the magnetic field. Further note that the bio-medical unit 10 may be implemented on a single die that has an area of a few millimeters or less. The die may be fabricated in accordance with CMOS technology, Gallium-Arsenide technology, and/or any other integrated circuit die fabrication process.

In another example of operation, one of the functional modules 54 functions as a first micro-electro mechanical module and another one of the functions modules 54 functions as a second micro-electro mechanical module. In this example, the bio-medical unit is implanted into a host body (e.g., a person, an animal, a reptile, etc.) at a position proximal to a body object to be monitored and/or have an image taken thereof. For example, the body object may be a vein, an artery, an organ, a cyst (or other growth), etc. As a specific example, the bio-medical unit may be positioned approximately parallel to the flow of blood in a vein, artery, and/or the heart.

When powered by the supply voltage, the first micro-electro mechanical module generates and transmits a wireless signal at, or around, the body object. The second micro-electro mechanical module receives a representation of the wireless signal (e.g., a reflection of the wireless signal, a refraction of the wireless signal, or a determined absorption of the wireless signal). Note that the wireless signal may be an ultrasound signal, a radio frequency signal, and/or a millimeter wave signal.

The processing module 50 may coordinate the transmitting of the wireless signal and the receiving of the representation of the wireless signal. For example, the processing module may receive, via the communication module, a command to enable the transmitting of the wireless signal (e.g., an ultrasound signal) and the receiving of the representation of the wireless signal. In response, the processing module generates a control signal that it provides to the first micro-electro mechanical module to enable it to transmit the wireless signal.

In addition, the processing module may generate flow monitoring data based on the second micro-electro mechanical module receiving of the representation of the wireless signal. As a specific example, the processing module calculates a fluid flow rate based on phase shifting and/or frequency shifting between the transmitting of the wireless signal and the receiving of the representation of the wireless signal. As another specific example, the processing module gathers phase shifting data and/or frequency shifting data based on the transmitting of the wireless signal and the receiving of the representation of the wireless signal.

The processing module may further generate imaging data based on the second micro-electro mechanical module receiving the representation of the wireless signal. As a specific example, the processing module calculates an image of the body object based absorption of the wireless signal by the body object and/or vibration of the body object. As another specific example, the processing module gathers data regarding the absorption of the wireless signal by the body object and/or of the vibration of the body object.

While the preceding examples of a bio-medical unit including first and second micro-electro mechanical modules for transmitting and receiving wireless signals (e.g., ultrasound, RF, MMW, etc.), a bio-medical unit may include one or the other module. For example, a bio-medical unit may include a micro-electro mechanical module for transmitting a wireless signal, where the receiver is external to the body or in another bio-medical unit. As another example, a bio-medical unit may include a micro-electro mechanical module for receiving a representation of a wireless signal, where the transmitter is external to the body or another bio-medical unit.

FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module 46 that includes an array of on-chip air core inductors 64, a rectifying circuit 66, capacitors, and a regulation circuit 68. The inductors 64 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.

In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 64 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. Alternatively, or in addition to, the air core inductors 64 may generate a voltage from the magnetic field 26 and changes thereof produced by the gradient coils. The rectifying circuit 66 rectifies the AC voltage produced by the inductors to produce a first DC voltage. The regulation circuit generates one or more desired supply voltages 56 from the first DC voltage.

The inductors 64 may be implemented on one more metal layers of the die and include one or more turns per layer. Note that trace thickness, trace length, and other physical properties affect the resulting inductance.

FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of on-chip air core inductors 70, a plurality of switching units (S), a rectifying circuit 66, a capacitor, and a switch controller 72. The inductors 70 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.

In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 70 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. The switching module 72 engages the switches via control signals 74 to couple the inductors 70 in series and/or parallel to generate a desired AC voltage. The rectifier circuit 66 and the capacitor(s) convert the desired AC voltage into the one or more supply voltages 56.

FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of Hall effect devices 76, a power combining module 78, and a capacitor(s). In an example of operation, the Hall effect devices 76 generate a voltage based on the constant magnetic field (H) and/or a varying magnetic field. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 76 to produce the one or more supply voltages 56.

FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of piezoelectric devices 82, a power combining module 78, and a capacitor(s). In an example of operation, the piezoelectric devices 82 generate a voltage based on body movement, ultrasound signals, movement of body fluids, etc. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 82 to produce the one or more supply voltages 56. Note that the piezoelectric devices 82 may include one or more of a piezoelectric motor, a piezoelectric actuator, a piezoelectric sensor, and/or a piezoelectric high voltage device.

The various embodiments of the power harvesting module 46 may be combined to generate more power, more supply voltages, etc. For example, the embodiment of FIG. 9 may be combined with one or more of the embodiments of FIGS. 11 and 12.

FIG. 13 is a schematic block diagram of an embodiment of a power boost module 84 that harvests energy from MRI signals 28 and converts the energy into continuous wave (CW) RF (e.g., up to 3 GHz) and/or MMW (e.g., up to 300 GHz) signals 92 to provide power to the implanted bio-medical units 10. The power boost module 84 sits on the body of the person under test or treatment and includes an electromagnetic power harvesting module 86 and a continuous wave generator 88. In such an embodiment, the power boosting module 84 can recover significantly more energy than a bio-medical unit 10 since it can be significantly larger. For example, a bio-medical unit 10 may have an area of a few millimeters squared while the power boosting module 84 may have an area of a few to tens of centimeters squared.

FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module 86 that includes inductors, diodes (or transistors) and a capacitor. The inductors may each be a few mili-Henries such that the power boost module can deliver up to 10's of mili-watts of power.

FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module 86 that includes a plurality of Hall effect devices 76, a power combining module 78, and a capacitor. This functions as described with reference to FIG. 11, but the Hall effect devices 76 can be larger such that more power can be produced. Note that the EM power harvesting module 86 may include a combination of the embodiment of FIG. 14 and the embodiment of FIG. 15.

FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and may include one or more functional modules 54 and/or a Hall effect communication module 116. The communication module 48 may include one or more of an ultrasound transceiver 118 (i.e., a receiver and a transmitter), an electromagnetic transceiver 122, an RF and/or MMW transceiver 120, and a light source (LED) transceiver 124. Note that examples of the various types of communication modules 48 will be described in greater detail with reference to one or more of the subsequent Figures.

The one or more functional modules 54 may perform a repair function, an imaging function, and/or a leakage detection function, which may utilize one or more of a motion propulsion module 96, a camera module 98, a sampling robotics module 100, a treatment robotics module 102, an accelerometer module 104, a flow meter module 106, a transducer module 108, a gyroscope module 110, a high voltage generator module 112, a control release robotics module 114, and/or other functional modules described with reference to one or more other figures. The functional modules 54 may be implemented using MEMS technology and/or nanotechnology. For example, the camera module 98 may be implemented as a digital image sensor in MEMS technology.

The Hall effect communication module 116 utilizes variations in the magnetic field and/or electrical field to produce a plus or minus voltage, which can be encoded to convey information. For example, the charge applied to one or more Hall effect devices 76 may be varied to produce the voltage change. As another example, an MRI transmitter 20 and/or gradient unit may modulate a signal on the magnetic field 26 it generates to produce variations in the magnetic field 26.

FIG. 17 is a diagram of another embodiment of a system that includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, a MMW transceiver 138, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and a MMW transmitter 132. The receiver unit 128 includes a MRI receiver 134 and a MMW receiver 136. Note that the MMW transmitter 132 and MMW receiver 136 may be in the same unit (e.g., in the transmitter unit, in the receiver unit, or housed in a separate device).

In an example of operation, the bio-medical unit 10 recovers power from the electromagnetic (EM) signals 146 transmitted by the MRI transmitter 130 and communicates via MMW signals 148-150 with the MMW transmitter 132 and MMW receiver 136. The MRI transmitter 130 may be part of a portable MRI device, may be part of a full sized MRI machine, and/or part of a separate device for generating EM signals 146 for powering the bio-medical unit 10.

FIG. 18 is a diagram of an example of a communication protocol within the system of FIG. 17. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.

In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields 154-164 are created (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.

During non-transmission periods of the cycle, the bio-medical unit 10 may communicate 168 with the MMW transmitter 132 and/or MMW receiver 136. In this regard, the bio-medical unit 10 alternates from generating power to MMW communication in accordance with the conventional transmission-magnetic field pattern of an MRI machine.

FIG. 19 is a diagram of another embodiment of a system includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, an EM transceiver 174, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and electromagnetic (EM) modulator 170. The receiver unit 128 includes a MRI receiver 134 and an EM demodulator 172. The transmitter unit 126 and receiver unit 128 may be part of a portable MRI device, may be part of a full sized MRI machine, or part of a separate device for generating EM signals for powering the bio-medical unit 10.

In an example of operation, the MRI transmitter 130 generates an electromagnetic signal that is received by the EM modulator 170. The EM modulator 170 modulates a communication signal on the EM signal to produce an inbound modulated EM signal 176. The EM modulator 170 may modulate (e.g., amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, etc.) the magnetic field and/or electric field of the EM signal. In another embodiment, the EM modulator 170 may modulate the magnetic fields produced by the gradient coils to produce the inbound modulated EM signals 176.

The bio-medical unit 10 recovers power from the modulated electromagnetic (EM) signals. In addition, the EM transceiver 174 demodulates the modulated EM signals 178 to recover the communication signal. For outbound signals, the EM transceiver 174 modulates an outbound communication signal to produce outbound modulated EM signals 180. In this instance, the EM transceiver 174 is generating an EM signal that, in air, is modulated on the EM signal transmitted by the transmitter unit 126. one embodiment, the communication in this system is half duplex such that the modulation of the inbound and outbound communication signals is at the same frequency. In another embodiment, the modulation of the inbound and outbound communication signals are at different frequencies to enable full duplex communication.

FIG. 20 is a diagram of another example of a communication protocol within the system of FIG. 19. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.

In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields are created 154-164 (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.

During the transmission periods of the cycle, the bio-medical unit 10 may communicate via the modulated EM signals 182. In this regard, the bio-medical unit 10 generates power and communicates in accordance with the conventional transmission-magnetic field pattern of an MRI machine.

FIG. 21 is a schematic block diagram of an embodiment of a plurality of imaging bio-medical units 10 in a body part 214 where image data A-H 218-232 is provided by the plurality of imaging bio-medical units 10 that may pertain to a mass 216 within the body part 214.

The bio-medical units 10 may determine an operational mode based on a pre-determination (e.g., pre-programmed) and/or system level coordination commands received from an external communication device. The operational mode may specify how to gather image data (e.g., MMW radar sweep, ultrasound, light) and where to gather it (e.g., pointing at a specific location within the body).

In an example, the bio-medical units 10 perform the MMW radar sweep of a mass 216 in a body part in a coordinated fashion such that each bio-medical unit 10 performs the MMW radar sweep sequentially. In another example, one bio-medical unit 10 transmits a radar sweep while the other bio-medical units 10 generate image data based on received reflections.

FIG. 22 is a schematic block diagram of an embodiment of an in vivo cancer treatment system that includes a plurality of bio-medical units 10, a communication control device, and a wireless power source device (shown in other figures). At least one of the bio-medical units includes a power harvesting module, a communication module, and a field generation module. The power harvesting module is operable to convert a wireless power source into a supply voltage. The communication module is operable to communication data. Various embodiments of the power harvesting module and the communication module are discussed in one or more FIGS. 1-29.

The field generation module, which may be one or more of the functional modules discussed in one or more of FIGS. 1-29, is operable to generate a type of electromagnetic field to facilitate cancer treatment. The field generation module includes a fixed and/or variable oscillation module (e.g., phase locked loop, voltage controlled oscillator, digital frequency synthesizer, etc.) to produce an oscillation, an amplifier circuit to amplify the oscillation, and one or more antennas and/or one or more coils to generate an electric field and/or a magnetic field. For example, the field generation module may generate an electric field to contain a cancer treatment drug (e.g., a chemotherapy drug) in a localized area that at least partially encircling the cancer cells when the cancer treatment drug is ionized. As another example, the field generation module may generate a magnetic field to contain the cancer treatment drug in the localized area that at least partially encircling the cancer cells when the cancer treatment drug is polarized.

As yet another example, the field generation module may generate an electric field to charge a second substance that contains a cancer treatment drug in a localized area that at least partially encircling the cancer cells when the cancer treatment drug is ionized. As a further example, the field generation module may generate a magnetic field to magnetize the second substance that contains the cancer treatment drug in the localized area that at least partially encircling the cancer cells when the cancer treatment drug is polarized.

In another embodiment, or in further of the preceding embodiment, the field generation module includes a radio frequency (RF) transmitter to transmit RF signals at the cancer cells to facilitate RF radiation of the cancer cells. In yet another embodiment, or in furtherance of one or more of the preceding embodiments, the field generation module includes a millimeter wave (MMW) transmitter to transmit MMW signals at the cancer cells to facilitate MMW radiation of the cancer cells. Note that the RF and MMW frequency bands include frequencies from approximately 30 MHz to 300 GHz.

The communication control device, which may be external to the body, communicates with the plurality of bio-medical units to facilitate treatment of cancer cells within the body. For instance, the communication control device may transmit a first control signal to a first set of the bio-medical units. The first control signal contains instructions for a first pattern of treatment to be performed by the first set of bio-medical units. For example, enabling the units in a round-robin manner, instruct the units to transmit at a given power level, instruct the units to be positioned at given locations, etc. In addition to, or in the alternative, the communication control device may transmit a second control signal to a second set of bio-medical units. The second control signal contains instructions for a second pattern of treatment to be performed by the second set units.

In an embodiment, the communication control device includes an RF transceiver, a MMW transceiver, and/or a magnetic resonance transceiver. The RF transceiver may be operable to transceive RF data signals with at least one of the bio-medical units. The MMW transceiver may be operable to transceive MMW data signals with at least one of the bio-medical units. The magnetic resonance transceiver may be operable to transceive magnetic resonance data signals with at least one of the plurality of bio-medical units. Examples of transceivers are discussed with reference to one of more of the FIGS. 1-41.

The wireless power source device, which may be external to the body, generates the wireless power source that is wirelessly transmitted to the bio-medical units. The wireless power source device may include an RF generating module, a MMW signal generating module, and/or a magnetic resonance signal generating module. The RF generating module may be operable to generate an RF power signal as the wireless power source. The MMW signal generating module may be operable to generate a MMW power signal as the wireless power source. The magnetic resonance signal generating module may be operable to generate a magnetic resonance power signal as the wireless power source.

In another embodiment, or in furtherance of the preceding embodiment, the bio-medical unit further includes one or more dispensing modules. For instance, the unit may include a first dispensing module and/or a second dispensing module. The first dispensing module may be used to store a cancer treatment drug and to dispense at least a portion of the cancer treatment drug in accordance with a control signal from the communication control device. The second dispensing module may be used to store a second substance that contains the cancer treatment drug in a localized area in the body that at least partially encircling the cancer cells. The second dispensing module may be operable to dispense at least a portion of the second substance in accordance with a control signal from the communication control device.

In another embodiment, or in furtherance of one or more of the preceding embodiments, the bio-medical unit further includes a propulsion module. The propulsion module may be operable to move the bio-medical unit in accordance with control signals from the communication control device. For example, the communication control device may provide signals that cause a plurality of the bio-medical units to encircle cancer cells prior to assisting in treatment. As another example, the communication control device may provides signals that cause the units to adjust their positions to adjust the electric and/or magnetic field being created to contain the cancer treatment drug(s).

In another embodiment, or in furtherance of one or more of the preceding embodiments, the bio-medical unit further includes an imaging module. The imaging module may be operable to generate image data regarding the treatment. For example, the imaging module may be used to provide image feedback regarding the position of the units, the containment of the cancer treatment drug, etc.

To insure that a bio-medical unit maintains a minimal level of power to perform its function(s) the in vivo cancer treatment system may have the bio-medical unit monitor its power level and transmit it to the communication control device. The communication control device interprets the power level data. If the bio-medical unit requires charging, the communication control device transmits a charge enable signal to the wireless power source device and temporarily suspending the treatment. The wireless power source device generates the wireless power source in response to the charge enable signal.

In an example of operation, the bio-medical units 10 are positioned to encircle cancer cells in two or three-dimensional space. The positioning may be done by injection into the desired positions; by injecting the units into an area of the body that is proximal to the cancer cells and then moved, via control signals and propulsion, to the desired location; etc. Note that if the units' position is adjusted via control signals and propulsion, the wireless power source device provides the wireless power source signal to the units such that they have power to process the control signals and to enable the propulsion module.

With the units in position and powered, they may be activated to generate an electromagnetic field (e.g., an electric field and/or a magnetic field) via one or more control signals from the communication control device. With the units generating the electromagnetic field, a ionized and/or magnetized cancer treatment drug (e.g., a chemotherapy drug) is injected near the cancer cells. The electromagnetic field contains the chemotherapy drug in the immediate area of the cancer cells with minimal exposure to healthy cells. In this manner, a lower quantity of cancer treatment drugs may be topically applied to effectively treat cancer, which minimizes damage to healthy cells and reduces the body's adverse reactions to the cancer treatment drugs.

In another example of operation, some of the bio-medical units include canisters that store the cancer treatment drug(s). These units are positioned with the units that generate the electromagnetic field. Once the field is enable, the units are instructed by the communication control device to release a controlled portion of the cancer treatment drug(s). In this manner, once the units are injected into the body, cancer treatment may be done at a more convenient time and/or place for the patient.

In another example of operation, the bio-medical units are activated to generate the electromagnetic field to charge (e.g., positive or negative) and/or polarize a substance (e.g., saline). The charged and/or polarized substance contains the cancer treatment drug in the desired location surrounding the cancer cells.

FIG. 23 is a schematic block diagram of another embodiment an in vivo cancer treatment system that includes a plurality of bio-medical units 10, a communication control device, and a wireless power source device (shown in other figures). At least one of the bio-medical units includes a power harvesting module, a communication module, and a field generation module.

FIG. 24 is a schematic block diagram of an embodiment of a communication module 48 of a bio-medical unit coupled to one or more antenna assemblies 94. The communication module 48 includes a MMW transmitter 132, a MMW receiver 136, and a local oscillator generator 298 (LOGEN) and is coupled to the processing module 50. While not shown in the present figure, the bio-medical unit includes at least one power harvesting module that converts an electromagnetic signal into one or more supply voltages. The one or more supply voltages power the other components of the bio-medical unit. Note that the bio-medical unit and the antenna assemblies 94 may be implemented on one or more integrated circuit (IC) dies within a common housing.

The one or more antenna assemblies 94 may include a common transmit and receive antenna; a separate transmit antenna and a separate receive antenna; a common array of antennas; and/or an array of transmit antennas and an array of receive antennas. The one or more antenna assemblies 94 may further include a transmission line, an impedance matching circuit, and/or a transmit/receive switch, duplexer, and/or isolator. Each of the antennas of the one or more antenna assemblies 94 may be a leaky antenna as shown in FIG. 25 (discussed below) and may be implemented using MEMS and/or nano technology 296.

In an example of operation, the bi-medical unit is exposed to an electromagnetic signal as previously discussed. The power harvesting module generates a supply voltage from the electromagnetic signal, where the supply voltage powers the communication module 48 and the processing module 50. When powered, the processing module may receive a command regarding a bio-medical function via the communication module. A communication device external to the host body or another bio-medical unit may initiate the command, which is received as an inbound (or downstream) RF or MMW signal by the communication module.

In response to receiving the command, the processing module interprets it to determine whether the bio-medical function includes a radio frequency transmission (e.g., for cancer treatment, imaging, pain blocking, etc.). When the bio-medical function includes a radio frequency transmission, the processing module determines a desired radiation pattern for the antenna assembly. For example, the desired radiation pattern may have a primary lobe perpendicular to the surface of the antenna, a primary lobe at an angle from perpendicular to the surface, beamformed, etc. Various radiation patterns are shown in FIGS. 25 and 26.

Having determined the desired radiation pattern, the processing module then determines an operating frequency based on the desired radiation pattern. For example, it may use a look up table to determine the operating frequency for a particular desired radiation pattern, which are determined based on the properties of the antenna(s). Once the operating frequency is established, the antenna assembly will transmit outbound RF &/or MMW signals and receive inbound RF &/or MMW signals in accordance with the desired radiation pattern.

As a more specific example, after establishing the operating frequency, the processing module generates a continuous wave treatment signal in accordance with the bio-medical function (e.g., for pain blocking, for cancer treatment, etc.). In addition, the processing module generates a transmit local oscillation control signal in accordance with the bio-medical function.

The local oscillation generator 298 receives the transmit local oscillation control signal and generates, in accordance therewith, a transmit local oscillation. The transmitter section receives the continuous wave treatment signal (which may be a DC signal, a fixed frequency AC signal with a constant or varying amplitude, or a varying frequency AC with a constant or varying amplitude) and the transmit local oscillation. The transmitter section mixes the continuous wave treatment signal and the transmit local oscillation to produce a radio frequency (RF) continuous wave (CW) signal and outputs it to the antenna assembly, which transmits the RF CW signal in accordance with the radiation pattern.

As another more specific example, after establishing the operating frequency, the processing module generates a pulse treatment signal in accordance with the bio-medical function (e.g., for pain blocking, for cancer treatment, etc.). In addition, the processing module generates a transmit local oscillation control signal in accordance with the bio-medical function.

The local oscillation generator 298 receives the transmit local oscillation control signal and generates, in accordance therewith, a transmit local oscillation. The transmitter section receives the pulse treatment signal (which may be a pulse train having a constant amplitude and a constant frequency, a pulse train having a constant amplitude and varying frequency, a pulse train having a varying amplitude and a constant frequency) and the transmit local oscillation. The transmitter section mixes the pulse treatment signal and the transmit local oscillation to produce a radio frequency (RF) pulse signal and outputs it to the antenna assembly, which transmits the RF pulse signal in accordance with the radiation pattern.

As another more specific example, the processing module determines that the bio-medical function includes a radio frequency transmission for generating an image of a body object. In this instance, the processing module determines a varying operating frequency such that the radiation pattern of the antenna assembly varies to produce a varying radiation pattern. In addition, the processing module generates a varying transmit local oscillation control signal, which it provides to the local oscillation generator.

The transmitter section generates outbound radio frequency (RF) and/or MMW signals that have varying frequencies and outputs them to the antenna assembly. With the frequencies of the outbound RF signals, the radiation pattern of the antenna assembly will vary. As such, a radar-sweeping pattern is generated.

The receiver section 136 receives a representation of the outbound RF signal (e.g., reflection, refraction, and/or a determined absorption). The receive section converts the representation of the outbound RF signal into an inbound symbol stream. The processing module generates a radar image of a body object based on the outbound RF signal and the representation of the outbound RF signal.

In addition to providing RF transmissions to support a bio-medical function, the bio-medical unit may also communicate with an external communication device and/or with another bio-medical unit within the host body. For instance, the processing module determines a second radiation pattern for communication with a communication device external to the host body using a second operating frequency, wherein the antenna assembly has the second radiation pattern for the communication at the second operating frequency. Such communications may be concurrent with the supporting of the bio-medical function or in a time division multiplexed manner.

As another example of operation, or in furtherance of the preceding example, the antenna assembly includes adjustable physical characteristics such that the radiation pattern can be adjusted. For instance, an antenna of the antenna assembly includes a first conductive layer and a second conductive layer. The second conductive layer is substantially parallel to the first conductive layer and is separated by a distance from the first conductive layer. The second conductive layer includes a plurality of substantially equally spaced non-conductive areas corresponding to a particular range of frequencies to facilitate the radiation pattern for the particular range of frequencies. To varying the radiation patterns, the distance between the first and second conductive layers may be varied, the geometry of the non-conductive areas may be varied, and/or the spacing between the non-conductive areas may be varied.

Continuing with this example, the processing module receives a command regarding a bio-medical function via the communication module and interprets it. When the bio-medical function includes a radio frequency transmission, the processing module determines antenna parameters for the antenna assembly (e.g., for desired radiation patterns, determine distance between conductive layers, geometry of the non-conductive areas, and/or spacing between the non-conductive layers). The processing module then generates an antenna control signal based on the antenna parameters, which it provides to the antenna assembly.

FIG. 25 is a schematic block diagram of an embodiment of a leaky antenna 94 that includes a channel and/or waveguide having a first conductive layer and a second conductive layer. The layers are separated by a distance (d), which may be fixed or variable. The second conductive layer includes a series of openings (e.g., non-conductive areas) to facilitate the radiation of an electromagnetic signal 300 that is traveling down the waveguide. The geometry and/or spacing between the openings may be fixed or variable.

The leaky antenna pattern (e.g., direction) is a function of at least the size of the openings, the distance between openings, and the frequency of operation. For example, the distance between openings is set to about one wavelength of the nominal center frequency of operation. With the physical dimensions static, the leaky antenna pattern may be adjusted with changes to frequency of operation (e.g., above and below the center frequency).

FIG. 26 is a diagram of an antenna pattern at a first frequency of operation where the antenna pattern 302 may be substantially in the 90° direction with respect to the length wise direction of the leaky antenna waveguide. In this example, the distance between the openings of the leaky antenna 94 is substantially the same as the length of the wavelength of the frequency of operation.

FIG. 27 is a diagram of an antenna pattern at a second frequency of operation where the antenna pattern 304 may be substantially off of the 90° direction with respect to the length wise direction of the leaky antenna waveguide. In this example, the distance between the openings of the leaky antenna 94 is different than the length of the wavelength of the frequency of operation.

FIG. 28 is a schematic block diagram of an embodiment of a pain blocking bio-medical unit 10 to provide an amplitude modulated (AM) signal 346 to facilitate gate control of pain. The bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), a MEMS propulsion 348, the processing module 50, the memory 52, the power harvesting module 46, a frequency adjust 350, an amplitude modulation 352, a MMW oscillator 354, and a power amplifier 356 (PA).

The bio-medical unit 10 may communicate with other bio-medical units 10 and/or with the communication device 24 to communicate status information and/or commands. The bio-medical unit 10 may receive a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals to mediate pain. In another embodiment, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the pain mediation.

The processing module 50 may control the MEMS propulsion 348 to reposition the bio-medical unit 10. The processing module 50 may determine how to control the frequency adjust 350 and amplitude modulation 352 to affect the pain based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain). The processing module 50 controls the frequency adjust 350 and amplitude modulation 352 in accordance with the determination such that the MMW oscillator 354 fed PA 356 generates an amplitude modulated signal 346.

FIG. 29 is a schematic block diagram of an embodiment of a plurality of energy therapy generating bio-medical units 10 to delivery therapy around a cancer cell mass 234. The bio-medical unit 10 communication module 48 may utilize power control and antenna beam forming in conjunction with one or more other bio-medical unit 10 communication modules 48 such that the resulting composite energy field substantially pinpoints the cancer cells 234. The communication module 48 may radiate energy as RF, MMW, and/or laser light.

The bio-medical unit 10 communication module 48 may communicate with the other bio-medical unit 10 communication modules 48 to coordinate the creation of a beamformed radiation pattern 400 and/or the plurality of communication modules 48 of the plurality of bio-medical units 10 may receive a command from an external communication device 24 containing coordination information. The bio-medical unit 10 may vary the energy generation based on one or more of sensed data (e.g., where the cancer cells are located), a command, and/or available power such that the energy delivered to cancer cells 234 is substantially higher than the energy delivered to healthy cells 398.

As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “operable to” or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item. As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.

The present invention has also been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claimed invention.

The present invention has been described, at least in part, in terms of one or more embodiments. An embodiment of the present invention is used herein to illustrate the present invention, an aspect thereof, a feature thereof, a concept thereof, and/or an example thereof. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process that embodies the present invention may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein.

The present invention has been described above with the aid of functional building blocks illustrating the performance of certain significant functions. The boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality. To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claimed invention. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.

Claims

1. A bio-medical unit comprises:

a power harvesting module operable to generate a supply voltage from an electromagnetic signal;
a communication module powered by the supply voltage;
an antenna assembly having an adjustable radiation pattern; and
a processing module powered by the supply voltage, wherein the processing module is operable to: receive, via the communication module, a command regarding a bio-medical function; when the bio-medical function includes a radio frequency transmission, determining a desired radiation pattern for the antenna assembly; and determining an operating frequency based on the desired radiation pattern, wherein, for the radio frequency transmission, the antenna assembly has the desired radiation pattern and wherein the bio-medical unit is of a size for implanting into a host body.

2. The bio-medical unit of claim 1 further comprises:

the processing module determining a second radiation pattern for communication with a communication device external to the host body using a second operating frequency, wherein the antenna assembly has the second radiation pattern for the communication at the second operating frequency.

3. The bio-medical unit of claim 1 further comprises:

the processing module further operable to: generate a continuous wave treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) continuous wave (CW) signal based on the transmit local oscillation and the continuous wave treatment signal; an output the RF CW signal to the antenna assembly, which transmits the RF CW signal in accordance with the radiation pattern.

4. The bio-medical unit of claim 1 further comprises:

the processing module further operable to: generate a pulse treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) pulse signal based on the transmit local oscillation and the pulse treatment signal; an output the RF pulse signal to the antenna assembly, which transmits the RF pulse signal in accordance with the radiation pattern.

5. The bio-medical unit of claim 1 further comprises:

the processing module determining a varying operating frequency such that the radiation pattern of the antenna assembly varies to produce a varying radiation pattern;
the communication unit including: a transmitter section operable to: generate an outbound radio frequency (RF) signal; and output the outbound RF signal to the antenna assembly, which transmits the outbound RF signal in accordance with the varying radiation pattern; and a receiver section operable to receive a representation of the outbound RF signal; and
the processing module operable to generate a radar image of a body object based on the outbound RF signal and the representation of the outbound RF signal.

6. The bio-medical unit of claim 1, wherein the antenna comprises:

a first conductive layer; and
a second conductive layer substantially parallel to the first conductive layer and separated by a distance from the first conductive layer, wherein the second conductive layer includes a plurality of substantially equally spaced non-conductive areas corresponding to a particular range of frequencies to facilitate the radiation pattern for the particular range of frequencies.

7. A bio-medical unit comprises:

a power harvesting module operable to generate a supply voltage from an electromagnetic signal;
a communication module powered by the supply voltage;
an antenna assembly having a radiation pattern based on an antenna control signal; and
a processing module powered by the supply voltage, wherein the processing module is operable to: receive, via the communication module, a command regarding a bio-medical function; when the bio-medical function includes a radio frequency transmission, determining antenna parameters for the antenna assembly; and generating the antenna control signal based on the antenna parameters, wherein the bio-medical unit is of a size for implanting into a host body.

8. The bio-medical unit of claim 7 further comprises:

the processing module determining a second antenna control signal for communication with a communication device external to the host body, wherein the antenna assembly has the second radiation pattern based on the second antenna control signal.

9. The bio-medical unit of claim 7 further comprises:

the processing module further operable to: generate a continuous wave treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) continuous wave (CW) signal based on the transmit local oscillation and the continuous wave treatment signal; an output the RF CW signal to the antenna assembly, which transmits the RF CW signal in accordance with the radiation pattern.

10. The bio-medical unit of claim 7 further comprises:

the processing module further operable to: generate a pulse treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) pulse signal based on the transmit local oscillation and the pulse treatment signal; an output the RF pulse signal to the antenna assembly, which transmits the RF pulse signal in accordance with the radiation pattern.

11. The bio-medical unit of claim 7 further comprises:

the processing module determining a varying antenna control signal such that the radiation pattern of the antenna assembly varies to produce a varying radiation pattern;
the communication unit including: a transmitter section operable to: generate an outbound radio frequency (RF) signal; and output the outbound RF signal to the antenna assembly, which transmits the outbound RF signal in accordance with the varying radiation pattern; and a receiver section operable to receive a representation of the outbound RF signal; and
the processing module operable to generate a radar image of a body object based on the outbound RF signal and the representation of the outbound RF signal.

12. The bio-medical unit of claim 7, wherein the antenna comprises:

a first conductive layer; and
a second conductive layer substantially parallel to the first conductive layer and separated by a distance from the first conductive layer, wherein the second conductive layer includes a plurality of substantially equally spaced non-conductive areas corresponding to a particular range of frequencies to facilitate the radiation pattern for the particular range of frequencies.

13. The bio-medical unit of claim 12, wherein the second conductive layer comprises:

a micro-electro mechanical assembly, wherein spacing of the substantially equally spaced non-conductive areas is adjusted in accordance with the antenna control signal.

14. A bio-medical unit comprises:

a power harvesting module operable to generate a supply voltage from an electromagnetic signal;
a communication module powered by the supply voltage;
an array of leaky antennas coupled to the communication module; and
a processing module powered by the supply voltage, wherein the processing module is operable to: receive, via the communication module, a command regarding a bio-medical function; when the bio-medical function includes a radio frequency transmission, determining desired radiation patterns for at least some of the antennas of the array of leaky antennas; and determining operating frequencies based on the desired radiation patterns, wherein, for the radio frequency transmission, the at least some of the antennas of the array of leaky antennas has a cumulative desired radiation pattern and wherein the bio-medical unit is of a size for implanting into a host body.

15. The bio-medical unit of claim 14, wherein the processing module is further operable to:

determining second radiation patterns for at least one other antenna of the array of leaky antennas;
determining a second operating frequency based on the second radiation pattern, wherein communication with a communication device external to the host body using the second operating frequency and wherein the at least one other antenna of the array of leaky antennas has a cumulative desired second radiation pattern.

16. The bio-medical unit of claim 14 further comprises:

the processing module further operable to: generate a continuous wave treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) continuous wave (CW) signal based on the transmit local oscillation and the continuous wave treatment signal; an output the RF CW signal to the array of leaky antennas, which transmits the RF CW signal in accordance with the cumulative desired radiation pattern.

17. The bio-medical unit of claim 14 further comprises:

the processing module further operable to: generate a pulse treatment signal in accordance with the bio-medical function; and generate a transmit local oscillation control signal in accordance with the bio-medical function; and
the communication module including: a local oscillation generator operable to generate a transmit local oscillation in accordance with transmit local oscillation control signal; and a transmitter section operably coupled to: generate a radio frequency (RF) pulse signal based on the transmit local oscillation and the pulse treatment signal; an output the RF pulse signal to the array of leaky antennas, which transmits the RF pulse signal in accordance with the cumulative desired radiation pattern.

18. The bio-medical unit of claim 14 further comprises:

the processing module determining a varying operating frequency such that the cumulative radiation pattern of the array of leaky antennas varies to produce a varying radiation pattern;
the communication unit including: a transmitter section operable to: generate an outbound radio frequency (RF) signal; and output the outbound RF signal to the array of leaky antennas, which transmits the outbound RF signal in accordance with the varying radiation pattern; and a receiver section operable to receive a representation of the outbound RF signal; and
the processing module operable to generate a radar image of a body object based on the outbound RF signal and the representation of the outbound RF signal.

19. The bio-medical unit of claim 14, wherein a leaky antenna of the array of leaky antennas comprises:

a first conductive layer; and
a second conductive layer substantially parallel to the first conductive layer and separated by a distance from the first conductive layer, wherein the second conductive layer includes a plurality of substantially equally spaced non-conductive areas corresponding to a particular range of frequencies to facilitate a corresponding radiation pattern for the particular range of frequencies.
Patent History
Publication number: 20110077716
Type: Application
Filed: Jul 1, 2010
Publication Date: Mar 31, 2011
Applicant: BROADCOM CORPORATION (Irvine, CA)
Inventor: Ahmadreza (Reza) Rofougaran (Newport Coast, CA)
Application Number: 12/829,291
Classifications
Current U.S. Class: Telemetry Or Communications Circuits (607/60)
International Classification: A61N 1/08 (20060101);