WARHEAD BOOSTER EXPLOSIVE LENS
A cost-effective solution is proposed to improve explosive transfer between booster and warhead that is compatible with the existing base of general purpose warheads and flexible to work with new warhead configurations. A booster lens is placed in the fuze well that concentrates the pressure wave to penetrate the fuze well with a peak pressure that exceeds the detonation threshold and detonate the warhead explosive. The booster lens can be configured to control the direction of the concentrated lobe to penetrate the fuze well where the barriers are low.
Latest Patents:
This application claims benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/823,874 entitled “Warhead Booster Explosive Lens” filed on Aug. 29, 2006, the entire contents of which are incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates to the explosive transfer between a booster and a warhead.
2. Description of the Related Art
The detonation of a warhead in a munition e.g., a missile, projectile, artillery shell, bomb, etc. is typically a multi-stage process to ensure both reliability and safety. It is important that the warhead detonate when triggered and not detonate accidentally due, for example, to mishandling or exposure to fire. The consequences of accidental detonation at a munitions depot or on-board a ship could be devastating. The explosive transfer between the booster and warhead can be a very challenging problem when trying to satisfy cost, interoperability, reliability and safety concerns.
As shown in
To detonate the warhead, fuze 14 detonates its small explosive pellet 34, which transfers a pressure wave to the booster causing the booster explosive pellet 26 to detonate. Detonation of the booster generates a much larger pressure wave that is transferred to the warhead causing the warhead explosive 24 to detonate. In order to detonate the warhead explosive, the booster pressure wave that is transferred to the explosive material must exceed a characteristic ‘detonation threshold’ of the material. To address safety concerns, modern insensitive munitions (IM) compliant explosives are switching to explosive materials in the warhead that have a higher detonation threshold. The other factor that affects detonation transfer is the ‘barrier’ between the booster detonation and the warhead's explosive material. This barrier includes the steel fuze well and asphalt lining and the charge tube fitting that attenuate the pressure wave. The barrier also includes any airgap between the fuze well and explosive materials that will occur at low temperatures, which also attenuates the pressure wave. To ensure reliability, explosive transfer must be designed for the worst case conditions including thickness of the barriers and extreme cold.
By raising the detonation threshold to address accidental detonation, modern IM compliant explosives have made the task of reliable explosive transfer between the booster and warhead more difficult. A cost-effective solution for improving explosive transfer that can be used with general purpose warheads and fuzes is needed.
SUMMARY OF THE INVENTIONThe present invention provides a cost-effective solution to improve explosive transfer between booster and warhead that is compatible with the existing base of general purpose warheads and flexible to work with new warhead configurations.
This is accomplished by placing a booster lens in the fuze well that concentrates the pressure wave to penetrate the fuze well with a peak pressure that exceeds the detonation threshold and detonate the warhead explosive. The booster lens can be configured to control the direction of the concentrated lobe to penetrate the fuze well where the barriers are low. In an embodiment for a general purpose warhead, a radial lens re-directs a portion of the axial component of the booster detonation in the radial direction away from the charge tube fittings to penetrate and detonate the warhead explosive approximately radially from the lens. The radial lens is suitably positioned between the booster and the closed end of the fuze well and has an annular surface that forms an angle with the booster to re-direct the explosive force radially. In another embodiment, an axial lens re-directs a portion of the radial component of the booster detonation in the axial direction to penetrate and detonate the warhead explosive approximately axially from the lens. The axial lens is suitably positioned around the booster in the fuze well and has a parabolic shape. The booster-lens assembly may be designed to occupy no more space than a standard booster and yet produce higher peak pressure and a more reliable explosive transfer. As such, the booster-lens assembly is ideally suited for use with general purpose warheads and existing fuzes.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
The present invention provides a cost-effective solution to improve explosive transfer between booster and warhead that is compatible with the existing base of general purpose warheads and flexible to work with new warhead configurations. A booster lens is placed in the fuze well that concentrates the pressure wave to penetrate the fuze well with a peak pressure that exceeds the detonation threshold and detonate the warhead explosive. The booster lens can be configured to control the direction of the concentrated lobe to penetrate the fuze well where the barriers are low.
To illustrate the ease with which the booster lens can be implemented with a general purpose warhead and standard fuze and the effectiveness of the lens, the invention will be described with reference to the munition 10 illustrated in
As shown in
The booster and lens can be discrete components as shown above or they can be integrated into a booster-lens assembly 70 as shown in
As shown in
The simulation was ran for a range of lens angles and the time to detonation was plotted 106, 108 for both a steel lens and an aluminum lens as shown in
Although the booster-lens assembly of the current invention is particularly well-suited for use with the general purpose warhead and interchangeable fuze, it is not so limited. The principle of using the lens to concentrate and redirect the pressure to penetrate a portion of the fuze well having a low barrier can be extended to other existing or new warhead designs. The lens can be used to increase the reliability of explosive transfer for a given booster or can be used to provide reliable explosive transfer for a smaller booster. The booster-lens assembly can be configured to fit into a predefined space in the fuze well or configured for use in a new design that is not so constrained.
As illustrated in
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Claims
1. A munition, comprising:
- a warhead including a fuze well and a warhead explosive around the fuze well;
- a booster including a booster explosive placed inside the fuze well, said fuze well providing a barrier between the booster explosive and warhead explosive;
- a fuze behind the booster inside the fuze well that detonates the booster explosive creating a pressure wave with a peak pressure, said pressure wave having a forward axial component and a radial component; and
- a booster lens having a surface, said booster lens positioned in the fuze well to re-direct a portion of the radial component of the pressure wave off of the lens surface in the axial direction to concentrate the pressure wave into a lobe in a predetermined direction with increased peak pressure to penetrate the barrier provided by the fuze well and directly detonate the warhead explosive approximately axially from the booster.
2. The munition of claim 1, wherein the peak pressure of the booster pressure wave does not exceed a pressure threshold to detonate the warhead explosive, said increased peak pressure of the lobe exceeding the pressure threshold to directly detonate the warhead explosive.
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. The munition of claim 1, wherein said warhead and fuze are standardized components having a standardized fuze well length and fuze length, which define a length at the closed end of the fuze well for a booster to detonate the warhead explosive, said booster having less booster explosive such that said booster and said lens fit in the defined length and produce a concentrated pressure wave in the lobe having a peak pressure at least equal to that of the larger booster.
9. (canceled)
10. (canceled)
11. The munition of claim 1, wherein said booster lens surface has a parabolic shape around the booster explosive.
12. The munition of claim 11, wherein the booster further comprises a housing for the booster explosive, said lens being formed into said housing.
13. A fuze assembly for use in a fuze well of a warhead including a warhead explosive around the fuze well, comprising:
- a booster including a booster explosive;
- a fuze configured to detonate the booster explosive to create a pressure wave having a forward axial component and a radial component; and
- a booster lens having a surface configured to re-direct a portion of the radial component of the pressure wave off of the lens surface in the axial direction to concentrate the pressure wave into a lobe with increased peak pressure to penetrate the fuze well and directly detonate the warhead approximately axially from the booster.
14. The fuze assembly of claim 13, wherein the peak pressure of the booster pressure wave does not exceed a pressure threshold to detonate the warhead explosive, said increased peak pressure of the lobe exceeding the pressure threshold to directly detonate the warhead explosive.
15. (canceled)
16. (canceled)
17. A booster for use with a fuze in a warhead, comprising:
- a housing;
- an explosive pellet placed inside the housing; and
- a lens formed into the walls of the housing having a surface configured to re-direct and—concentrate a portion of a radial component of a pressure wave caused by the detonation of the explosive pellet off of the lens surface in the axial direction into a lobe in a predetermined direction with increased pressure to penetrate and directly detonate the warhead approximately axially from the booster.
18. (canceled)
19. (canceled)
20. (canceled)
21. The booster of claim 17, wherein said lens surface has a parabolic shape around the booster.
22-26. (canceled)
Type: Application
Filed: Jul 18, 2007
Publication Date: Apr 7, 2011
Applicant:
Inventors: E. RUSS ALTHOF (Tucson, AZ), William R. Hawkins (Abilene, TX), Henri Y. Kim (Tucson, AZ)
Application Number: 11/779,568
International Classification: F42C 19/08 (20060101); F42C 19/00 (20060101); F42C 19/02 (20060101);