METHOD FOR PRODUCING PERFORATED OR PARTIALLY PERFORATED STENCILS WITH A RELIEF
A method for producing a stencil, which has on its upper side a relief with a multiplicity of openings, the contours of which correspond to a desired pattern, and to a stencil of this type. In order to permit greater relief heights, and consequently increased freedom of design of patterns to be applied, the stencil is provided with a body having at least one non-perforated non-metal relief layer. The material of the relief layer is removed according to the pattern by laser or plasma radiation to form the multiplicity of openings of the relief. Through-openings which extend to a rear side opposite from the upper side are provided at least in the bottom region of the openings of the relief. A stencil with a stencil body (10) may be obtained, which has at least one non-metal relief layer, formed in the upper side of which is a relief with a multiplicity of openings, the contours of which correspond to a desired pattern. Through-openings which extend to a rear side opposite from the upper side are provided here at least in the bottom region of the openings of the relief.
This application is a Continuation of co-pending International Application No. PCT/EP2009/007608, filed on Oct. 23, 2009, and for which priority is claimed under 35 U.S.C. §120, the entire contents of all of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The invention relates to a method for producing perforated or partially perforated stencils which have on their upper side a relief with a multiplicity of openings, the contours of which correspond to a desired pattern, and relates to stencils of this type.
2. Brief Discussion of the Related Art
EP 1 884 582 B1 already discloses a method for producing a stencil or a screen in which a screen body is first provided, having a multiplicity of through-openings which extend from the upper side to the rear side. In order to form a relief in the upper side, lower-lying regions or openings are removed by a chemical process by etching or by means of laser radiation in accordance with a desired pattern. The screen body that is provided with a multiplicity of through-openings may in principle consist here of non-metallic materials, such as for example plastic, ceramic, natural resin or lacquer materials that are suitable for forming stable sheet-like elements, composite materials or a combination thereof, but only the production of screen bodies made of metal, such as nickel, copper or aluminum, or alloys thereof, is described in detail here.
US 2008/0193790 A1 discloses a screen drum which serves for producing nonwovens by means of a liquid jet bonding process. The screen drum has here on its upper side, to which the fibrous material is applied, lower-lying regions or openings, the contours of which correspond to a desired pattern. The screen drum is galvanically produced in two phases. In a first phase, a carrier screen with a multiplicity of through-openings is created. After achieving the desired thickness, then, in a second phase, the thickness of the screen drum is further increased only where raised regions are intended, so that lower-lying regions or openings of a relief occur. The walls of the openings of the relief are slightly inclined outwardly.
DE 10 2007 059 794 A1 discloses a method for producing a screen printing stencil in which recesses are machined out of a metallic carrier substrate from the later scraper side, in order to create a carrier network. On the later substrate side, the structure to be printed is then machined in the form of further recesses, so that openings for the pasty screening material form at the places at which the fronts of the recesses on both sides meet in the stencil body. The production of the stencil is performed here by micro-etching or laser ablation.
However, production methods of this type only permit limited relief heights. In the case of galvanic stencils, it is also disadvantageous that the through-openings become increasingly narrow with increasing thickness, which further restricts relief heights.
Against this background, the invention is based on the object of providing a further method for producing stencils and improved stencils that permits greater relief heights and consequently greater freedom of design for patterns to be applied.
SUMMARY OF THE INVENTIONAccording to the invention, therefore, a stencil is produced by removing material to form the relief by means of laser or plasma radiation from a stencil body which has a relief layer of non-metallic material. Through-openings are provided here at least in the region of the bottom of the openings of the relief.
Depending on the application and the thickness of the relief layer, direct removal of material from the relief layer allows relief depths of up to several millimeters to be readily achieved. The use of laser or plasma radiation, in particular of laser or plasma radiation of a high energy density, provides a great freedom of design for stencils with patterns for a wide variety of applications. In particular, the freedom of design for creating desired patterns is improved by the fact that the use of radiation for structuring the stencils allows a wide variety of materials to be provided for the stencils.
According to the invention, therefore, a stencil body which has at least one non-metal relief layer, particularly a non-perforated layer, is provided, and the material of the relief layer is subsequently removed according to the pattern by means of laser or plasma radiation to form the multiplicity of openings of the relief, through-openings which extend to a rear side opposite from the upper side being provided at least in the bottom region of the openings of the relief.
If the stencil body has no carrier layer or a non-perforated metal or non-metal carrier layer on the rear side of the relief layer, through-openings are introduced into the stencil body, at least in the bottom region of the openings of the relief, by means of laser radiation.
If, on the other hand, the stencil body has a perforated carrier layer, particularly a metal screen, on the rear side of the relief layer, through-openings are formed, at least in the bottom region of the openings of the relief, by at least partial exposure of the openings in the carrier layer by means of laser or plasma radiation, in particular the through-openings in the bottom region of the openings of the relief may be exposed by completely removing the relief layer.
The forming or exposing of the through-openings by means of suitable laser or plasma radiation has the advantage that the entire processing of the stencil body can be carried out in one or more steps in one and the same processing station.
Furthermore, if so required, as for example in the case of water jet bonding of wovens or nonwovens, it is possible that non-pattern-forming openings or perforations are introduced into the relief layer in a plateau region outside the openings of the relief by means of laser radiation, these non-pattern-forming openings being congruent with the openings of the carrier layer to form through-openings. However, it is also possible to form the non-pattern-forming openings or perforations in such a way that they differ in shape, size and/or arrangement from the openings of the carrier layer. In this way, the permeability of the stencil can be differently formed in different stencils or regions of the pattern, in order in this way to assist the pattern formation.
The possibilities for variation within patterns is further increased if material of the relief layer is also removed by means of laser radiation outside the openings, so that plateau regions outside the openings of the relief have different heights; as in the case where the plateau heights are the same, here, too, the walls of the openings may be inclined, beveled, rounded or graduated in the form of steps with respect to the surrounding plateau region when forming the openings, which expediently takes place by modulation of the radiation power density.
Furthermore, the surface of the plateau regions outside the openings may be provided with a regular, random or pseudo-random microstructure.
In addition, the surface of the plateau regions or the entire exposed surface of the relief layer may be provided with a coating, which preferably consists of metal or suitable Teflons, in order to adapt the surface properties to a desired intended use. Coatings of this type may be applied in various ways, in particular chemically, galvanically or by spraying or printing techniques.
A stencil according to the invention therefore has at least one non-metal relief layer, in the upper side of which a relief is formed with a multiplicity of openings, the contours of which correspond to a desired pattern, through-openings which extend to a rear side opposite from the upper side being provided at least in the bottom region of the openings of the relief.
The stencil body expediently has on the rear side of the relief layer a non-perforated metal or non-metal carrier layer, which is provided with through-openings at least in the bottom region of the openings of the relief.
The carrier layer may particularly consist here of glass- or carbon-fiber reinforced metal or non-metal.
A perforated carrier layer, for example a metal screen, may also be provided, the through-openings of which are at least partially exposed in the bottom region of the openings of the relief.
If the relief layer has non-pattern-forming through-openings or perforations that are introduced by means of laser radiation in a plateau region outside the openings of the relief, it is expedient if they are congruent with the openings of the carrier layer.
However, it is also possible that the non-pattern-forming through-openings or perforations differ in shape, size and/or arrangement from the openings of the carrier layer.
A development of the invention is distinguished by the fact that the metal screen is produced galvanically.
If, instead of a galvanic metal screen, a metal screen of wire gauze is used, it is advantageous if it is provided with a galvanic surface coating. However, it is also conceivable to use a screen made of stainless steel. In the case of a surface coating, however, the metal screen is particularly stable, which is advantageous under compressive loading.
In order to further increase the possibilities for designing the patterns, it is provided in the case of an expedient refinement of the invention that plateau regions outside the openings of the relief have different heights, it being possible, as in the case of stencils with patterns of uniform plateau height, for the walls of the openings to be inclined, beveled, rounded or graduated in the form of steps with respect to the surrounding plateau region.
In order to adapt the surface properties of the stencil to the respective intended use, it is provided that the surface of the plateau regions outside the openings is provided with a regular, random or pseudo-random microstructure, and/or that the surface of the plateau regions or the entire exposed surface of the relief layer is provided with a coating.
The invention is explained in more detail below on the basis of exemplary embodiments that are represented in the drawing, in which:
In the various figures of the drawing, elements that correspond to one another are provided with the same designations.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSAs shown in
A main application area of the stencil according to the invention is the liquid jet bonding of fibrous fleeces in the production of nonwovens that are provided with patterns in the form of a relief. The openings 12 or recesses in the stencil body correspond here to the pattern to be impressed onto the nonwoven.
The stencil according to the invention can, however, also be used in scatter printing, where the stencil is then formed as a cylinder, to the inside of which a vacuum is applied. The openings 12 can then be filled with bulk material, that is to say with granules or small pellets, which are held in the openings 12 by the vacuum applied to the inside of the cylindrical stencil. With the aid of a sheet lying on the inside, the through-openings 14 can then be separated from the vacuum wherever the bulk material is intended to be discharged onto a substrate to be printed onto by the scatter printing process.
The stencil according to the invention can also be used as a printing plate or impression cylinder in screen printing, in particular wherever large amounts are to be applied to absorbent substrates, such as for example fabrics or carpets. Here, the printing ink is forced through the through-openings 14 in the bottom region 13 of the openings 12 into the latter and then transferred out of them onto the substrate.
In order to obtain protection here from wear caused by scraping forces, it is expedient if, as shown in
Furthermore, the perforating and embossing of foils with a cylindrical stencil is possible if the latter has a relief and a surface of an appropriate form, as can be produced according to the invention in a simple way.
To produce a stencil according to the invention, firstly a stencil body 10 is provided, formed as a plate or cylinder. The stencil body 10 consists here either of a continuous relief layer 11 with a carrier layer portion 11′ remote from its upper side 10′ or of a composite material in which the relief layer 11 is arranged on a carrier layer 15.
The relief layer consists of a non-metal, for example of a synthetic or natural polymer, rubber, hard rubber or other vulcanized materials, ceramic or suitable silicones. Particularly suitable for the carrier layer 15 are metals, but also glass- or carbon-fiber reinforced plastics. Apart from non-perforated metal layers, particularly suitable as the carrier layer 15 are metal screens made of nickel, copper or other metals, which can be galvanically produced, or which are formed as wire gauze. In the case of composite materials of this type, the non-metallic relief layer is materially bonded to the metallic carrier layer 15, in order to obtain the stencil body 10 formed as a laminate.
If radiation is used, particularly laser or plasma radiation, material of the relief layer is then removed in order to form the desired relief with the openings 12 and the plateau regions 16 lying outside the openings 12. After forming the relief or when forming the relief, the through-openings 14 are then produced in the bottom region 13 of the openings 12 in the carrier layer portion 11′ or the carrier layer 15 (cf.
If, as shown in
If, as shown in
If, when using a screen of wire gauze, the relief layer is exposed in the region of the openings, it is expedient if the wire gauze is galvanically coated, in order in each case to smooth the screen in the crossing region of the wires.
As shown in
As shown in
Depending on the application, the upper side 10′ of the stencil body 10 may also be provided with an additional surface structure, as is shown in
As shown in
If the coating 17 is also provided in the bottom region 13, exposure of the through-opening 14 in the carrier layer 15 is subsequently necessary. If, in a way similar to in
The previously described exemplary embodiments concern stencils in which the plateau regions 16 outside the openings 12 have no perforations or through-openings, as shown in the plan view of
However, it is also possible, depending on the application and the lateral size of the plateau regions, likewise to provide the latter with perforations or through-openings 18, as is shown in
As shown in
However, it is also possible that the density (number per surface area), distribution, and lateral size of the perforations or through-openings 18 in the pattern or plateau regions 16 of the relief layer 11 and/or of the openings in the carrier layer are different from one another, as long as some of the openings in the relief layer 11 and in the carrier layer 15 in each case have regions of overlap with one another.
For example,
The use of laser or plasma radiation with a high energy density allows any desired pattern-like reliefs and perforations or through-openings to be formed according to the invention in non-metallic portions of basic stencil bodies, as are required, for example, in the case of water jet bonding of nonwovens. The invention allows in particular large relief depths in the range of 2 or 3 or more millimeters, which cannot be achieved with conventional techniques.
Plasma radiation is used here for coarser structures, while fine and ultrafine structures, in particular cleanly formed embossed edges, can be produced with desired shaping by means of laser radiation. Particularly when forming fine and ultrafine structures, it is expedient here if the surface of the stencils is coated, that is metallized or provided with Teflons or the like, in order to obtain specific surface finishes and/or to protect the surface from wear.
Claims
1. A method for producing a stencil, which has on its upper side a relief (11) with a multiplicity of openings (12), the contours of which correspond to a desired pattern, with the following steps:
- providing a stencil body (10), which has at least one non-metal relief layer (11), and
- removing the material of the relief layer (11) according to the pattern by means of laser or plasma radiation to form the multiplicity of openings (12) of the relief, through-openings (14) which extend to a rear side opposite from the upper side being provided at least in the bottom region (13) of the openings (12) of the relief.
2. The method as claimed in claim 1, the stencil body (10) having no carrier layer (15) or a non-perforated metal or non-metal carrier layer on the rear side of the relief layer and the through-openings (14) that are provided at least in the bottom region (13) of the openings (12) of the relief being introduced into the stencil body (10) by means of laser radiation.
3. The method as claimed in claim 1, the stencil body (10) having a perforated carrier layer (15), particularly a metal screen, on the rear side of the relief layer (11) and the through-openings (14) that are provided at least in the bottom region (13) of the openings (12) of the relief being formed by at least partial exposure of the openings (14) in the carrier layer (15) by means of laser radiation.
4. The method as claimed in claim 3, the through-openings (14) in the bottom region (13) of the openings (12) of the relief being exposed by completely removing the relief layer (11).
5. The method as claimed in claim 3, non-pattern-forming openings or perforations being introduced into the relief layer (11) in a plateau region (16) outside the openings (12) of the relief by means of laser radiation, these non-pattern-forming openings being congruent with the openings (14) of the carrier layer (15), to form through-openings (14).
6. The method as claimed in claim 3, non-pattern-forming openings or perforations being introduced into the relief layer (11) in a plateau region (16) outside the openings (12) of the relief by means of laser radiation, these non-pattern-forming openings differing in shape, size and/or arrangement from the openings (14) of the carrier layer (15), to form through-openings (14).
7. The method as claimed in claim 1, material of the relief layer (11) also being removed by means of laser radiation outside the openings (12), so that plateau regions (16) outside the openings (12) of the relief have different heights.
8. The method as claimed in claim 1, walls of the openings (12) being inclined, beveled, rounded or graduated in the form of steps with respect to the surrounding plateau region (16) when forming the openings (12).
9. The method as claimed in claim 8, the transitions between the openings (12) and the plateau regions (16) of the relief layer (11) being inclined, beveled, rounded or graduated in the form of steps by modulation of the radiation power density.
10. The method as claimed in claim 1, the surface of the plateau regions (16) outside the openings (12) being provided with a regular, random or pseudo-random microstructure.
11. The method as claimed in claim 1, the surface of the plateau regions (16) or the entire exposed surface of the relief layer (11) being provided with a coating (17).
12. The method as claimed in claim 11, the coating (17) consisting of metal, which is applied chemically, galvanically or by spraying or printing techniques.
13. A stencil with a stencil body (10), which has at least one non-metal relief layer (11), in the surface of which there is formed a relief with a multiplicity of openings (12), the contours of which correspond to a desired pattern, through-openings (14) which extend to a rear side opposite from the upper side being provided at least in the bottom region (13) of the openings (12) of the relief.
14. The stencil as claimed in claim 13, the stencil body (10) having on the rear side of the relief layer (11) a non-perforated metal or non-metal carrier layer (15), which is provided with through-openings (14) at least in the bottom region (13) of the openings (12) of the relief.
15. The stencil as claimed in claim 14, the carrier layer (15) consisting of glass- or carbon-fiber reinforced metal or non-metal.
16. The stencil as claimed in claim 13, the stencil body (10) having on the rear side of the relief layer (11) a perforated carrier layer (15), particularly a metal screen, the through-openings (14) of which are at least partially exposed, at least in the bottom region (13) of the openings (12) of the relief.
17. The stencil as claimed in claim 16, the relief layer (11) having non-pattern-forming through-openings (18) or perforations in a plateau region (16) outside the openings (12) of the relief, these non-pattern-forming openings being introduced by means of laser radiation and congruent with the openings (14) of the carrier layer (15).
18. The stencil as claimed in claim 16, the relief layer (11) having non-pattern-forming through-openings (18) or perforations in a plateau region (16) outside the openings (12) of the relief, these non-pattern-forming openings being introduced by means of laser radiation and differing in shape, size and/or arrangement from the openings (14) of the carrier layer (15).
19. The stencil as claimed in claim 16, the metal screen being produced galvanically.
20. The stencil as claimed in claim 16, the metal screen consisting of a wire gauze with a galvanic surface coating.
21. The stencil as claimed in claim 13, plateau regions (16) outside the openings (12) of the relief having different heights.
22. The stencil as claimed in claim 13, walls of the openings (12) being inclined, beveled, rounded or graduated in the form of steps with respect to the surrounding plateau region (16).
23. The stencil as claimed in claim 13, the surface of the plateau regions (16) outside the openings (12) being provided with a regular, random or pseudo-random microstructure.
24. The stencil as claimed in claim 13, the surface of the plateau regions (16) or the entire exposed surface of the relief layer (11) being provided with a coating (17).
Type: Application
Filed: Nov 1, 2010
Publication Date: Apr 28, 2011
Inventors: Lothar Wefers (Oberaudorf), Josef Juffinger (Thiersee)
Application Number: 12/917,096
International Classification: B05C 17/06 (20060101); B41C 1/14 (20060101);