THERAPEUTIC WRAP
Temperature-controlled therapy wrap for treatment of at least a portion of an animate body including a fluid bladder including an inlet, an outlet, and at least one fluidic channel connecting the inlet to the outlet; and a thermal insulating member on the fluid bladder only directly adjacent the inlet and extending along the at least one fluidic channel. The therapy wrap may be adapted to compensate for a temperature delta in the wrap. The therapy wrap may include an insulating layer of one or more insulating members. The insulating layer is dimensioned and configured to have different coefficients of heat transfer. The insulating layer may have varying thicknesses and materials to achieve varying heat transfer rates. Also disclosed is a method of administering a temperature-controlled treatment to an anatomical body part.
This application claims priority to U.S. Provisional Application No. 61/254,064 filed on Oct. 22, 2009, entitled, “TEMPERATURE AND FLOW CONTROL METHODS IN A THERMAL THERAPY DEVICE.”
FIELD OF THE INVENTIONThe present invention relates generally to therapy of an animate body, and more particularly a therapeutic wrap of the type having circulating fluid to provide cooling, heating, and/or compression to a human or animal body part.
BACKGROUND OF THE INVENTIONIt is now common to apply cold and compression to a traumatized area of a human body to facilitate healing and prevent unwanted consequences of the trauma. In fact, the acronym RICE (Rest, Ice, Compression and Elevation) is now used by many.
Cold packing with ice bags or the like traditionally has been used to provide deep core cooling of a body part. Elastic wraps are often applied to provide compression.
It will be appreciated that these traditional techniques are quite uncontrollable. For example, the temperature of an ice pack will, of course, change when the ice melts, and it has been shown that the application of elastic wraps and, consequently, the pressure provided by the same, varies considerably even when the wrappers are experienced individuals.
Because of these and other difficulties, many in the field have turned to a more complicated animate body heat exchanger. Most effective animate body heat exchangers typically include two major components, an external compliant therapy component covering a body part to be subjected to heat exchange, and a control component for producing a flowing heat exchange liquid. Many control units also produce and supply an air or other gas pressure needed to apply pressure to a body part and to press the heat exchange liquid toward such body part. This air pressure is directed to another compliant bladder of the therapy component, which air pressure bladder overlays the liquid bladder to press such liquid bladder against the body part to be subjected to heat exchange, as well as apply compression to the body part to reduce edema.
As can be seen, a commonly used external therapy component uses a pair of compliant bladders to contain fluids; that is, it preferably has both a compliant bladder for containing a circulating heat exchange liquid and a gas pressure bladder which overlays the liquid bladder for inhibiting edema and for pressing the liquid bladder against the body part to be subjected to heat exchange.
In general, the body heat exchanging component(s) of such an apparatus has a pair of layers defining a flexible bladder through which a liquid is circulated. This component is often referred to as a “wrap.” The liquid fed to the wrap is maintained at a desired temperature. Generally, the desired temperature is lower than the temperature expected for the body part, and typically is achieved, at least in part, by passing the liquid through a heat exchanging medium, such as by passing the same through an ice bath, or a refrigeration unit. One such system is disclosed, for example, in U.S. Pat. No. 6,178,562, the disclosure of which is herein incorporated for all purposes by reference.
One issue with these types of therapeutic wraps is that the fluid warms from the body part heat as it passes through the wrap. Accordingly, the average temperature fluctuates and the amount of heat transfer is inconsistent. In some cases, the fluid warms to a degree that a portion of the wrap no longer provides therapy. To counteract this effect, the flow rate can be increased or the fluid can be cooled to a lower temperature. Increasing the flow rate reduces the cooling effect of the wrap. Lowering the inlet temperature leads to very low temperatures in the inlet area of the wrap. If the temperature is too low, the wrap becomes uncomfortable for the patient and can even lead to burns during extended periods of use.
There is a need for a wrap that provides efficient heat transfer over all of the treatment surface. There is a need for a wrap that provides efficient heat transfer while reducing the need to significantly increase or decrease the fluid temperature from the reservoir. There is the need to provide a wrap that improves patient comfort and/or reduces risks of injury to the body part treated.
There remains a need to provide improved temperature-controlled therapy apparatus and methods for their use.
SUMMARY OF THE INVENTIONThe present invention involves improvements in heat transfer therapy apparatus and avoids disadvantages in the prior art.
Various aspects of the invention are directed to a therapy wrap including a fluid bladder including an inlet, an outlet, and at least one fluidic channel connecting the inlet to the outlet; and a thermal insulating member on the fluid bladder only directly adjacent the inlet and extending along the at least one fluidic channel.
In various embodiments, the wrap includes another thermal insulating member on the fluid bladder extending along the at least one fluidic channel and separated from the thermal insulating member.
The insulating member and the another insulating member may be modified to achieve the desired variation in insulating effect. In various embodiments, the insulating member is configured to decrease the rate of heat transfer by a greater degree than the another thermal insulating member. In various embodiments, the insulating member and the another insulating member have different coefficients of heat transfer. In various embodiments, the insulating member and the another insulating member have essentially equal thickness.
In various embodiments, the insulating member and the another insulating member are contiguous. The insulating member and the another insulating member may be integrally formed in an insulating layer. The insulating member and the another insulating member may be monolithically formed as the insulating layer.
In various embodiments, the wrap includes an expandable bladder on a side of the bladder opposite the insulating member for exerting a compressive force on the bladder.
Various aspects of the invention are directed to a therapy wrap including a fluid bladder including an inlet, an outlet, and at least one fluidic channel connecting the inlet to the outlet; and a thermal insulating layer affixed to the fluid bladder and having a shape dimensioned and configured to correspond to a perimeter of the bladder, the thermal insulating layer comprising a thermal insulating member extending along the at least one fluidic channel and positioned only directly adjacent the inlet when the layer is affixed to the bladder.
In various embodiments, the thermal insulating layer further comprises another insulating member extending along the at least one fluidic channel and separated from the thermal insulating member. The insulating member and the another insulating member may be contiguous. In various embodiments, the insulating member and the another insulating members are monolithically formed in the insulating layer.
In various embodiments, the insulating layer is printed. In various embodiments, the insulating layer is bonded to the bladder. In various embodiments, the wrap includes a pocket for removably securing the insulating layer.
In various embodiments, the at least one fluidic channel has a serpentine shape, and the insulating member and the another insulating member are positioned in a pattern corresponding to the at least one fluidic channel. In various embodiments, the at least one fluidic channel extends from wall-to-wall in a width direction.
Various aspects of the invention are directed to a method of administering a temperature-controlled treatment to an anatomical body part. The method includes applying a therapy wrap to an anatomical body part, the wrap including an inlet; an outlet; at least one fluidic channel connecting the inlet and the outlet; and a thermal insulating layer between the wrap and the body part extending along a flowpath of the at least one fluidic channel in a first region only directly adjacent the inlet; flowing a heat exchanging fluid from a reservoir through the inlet to the at least one fluidic channel; and returning the fluid to the reservoir from the outlet.
In various embodiments, the method includes flowing the fluid through a second region downstream from the first region, wherein an overall coefficient of heat transfer in the second region is more than an overall coefficient of heat transfer in the first region.
In various embodiments, the method includes decreasing the thickness of the insulating layer downstream from the first region to compensate for a temperature delta in the at least one fluidic channel.
The wrap and method of the present invention have other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated in and form a part of this specification, and the following Detailed Description of the Invention, which together serve to explain the principles of the present invention.
Before the present invention is described, it is to be understood that this invention is not intended to be limited to particular embodiments or examples described, as such may, of course, vary. Further, when referring to the drawings, like numerals indicate like elements.
I) General DescriptionVarious aspects of the invention are similar to the subject matter described in: U.S. patent application Ser. No. 09/127,256 (filed Jul. 31, 1998) entitled, “Compliant Heat Exchange Panel” issued on Apr. 3, 2007 as U.S. Pat. No. 7,198,093; U.S. patent application Ser. No. 09/798,261 (filed Mar. 1, 2001) entitled, “Shoulder Conformal Therapy Component of an Animate Body Heat Exchanger”; U.S. patent application Ser. No. 09/901,963 (filed Jul. 10, 2001) entitled, “Compliant Heat Exchange Splint and Control Unit”; U.S. patent application Ser. No. 09/771,123 (filed Jan. 26, 2001) entitled, “Wrist/Hand Conformal Therapy Component of an Animate Body Heat Exchanger”; U.S. patent application Ser. No. 09/771,124 (filed Jan. 26, 2001) entitled, “Foot/Ankle Conformal Therapy Component of an Animate Body Heat Exchanger”; U.S. patent application Ser. No. 09/771,125 (filed Jan. 26, 2001) entitled, “Conformal Therapy Component of an Animate Body Heat Exchanger having Adjustable Length Tongue”; U.S. patent application Ser. No. 10/784,489 (filed Feb. 23, 2004) entitled, “Therapy Component of an Animate Body Heat Exchanger” which is a continuation of U.S. patent application Ser. No. 09/765,082 (filed Jan. 16, 2001) entitled, “Therapy Component of an Animate Body Heat Exchanger and Method of Manufacturing such a Component” issued on Feb. 24, 2004 as U.S. Pat. No. 6,695,872 which is a continuation-in-part of U.S. patent application Ser. No. 09/493,746 (filed Jan. 28, 2000) entitled, “Cap And Vest Garment Components Of An Animate Body Heat Exchanger” issued on Jan. 30, 2001 as U.S. Pat. No. 6,178,562; U.S. patent application Ser. No. 10/122,469 (filed Apr. 12, 2002) entitled, “Make-Break Connector For Heat Exchanger” issued on Mar. 29, 2005 as U.S. Pat. No. 6,871,878; U.S. patent application Ser. No. 10/637,719 (filed Aug. 8, 2003) entitled, “Apparel Including a Heat Exchanger” issued on Sep. 19, 2006 as U.S. Pat. No. 7,107,629; U.S. patent application Ser. No. 12/208,240 (filed Sep. 10, 2008) entitled, “Modular Apparatus for Therapy of an Animate Body” which is a divisional of U.S. patent application Ser. No. 10/848,097 (filed May 17, 2004) entitled, “Modular Apparatus for Therapy of an Animate Body”; U.S. patent application Ser. No. 11/707,419 (filed Feb. 13, 2007) entitled, “Flexible Joint Wrap”; U.S. patent application Ser. No. 11/854,352 (filed Sep. 12, 2007) entitled, “Make-Break Connector Assembly with Opposing Latches”, U.S. patent application Ser. No. 10/848,097 (filed May 17, 2004) entitled “Modular Apparatus for Therapy of An Animate Body”, published on Nov. 17, 2005 as Publication No. 2005/0256556, which is incorporated herein for all purposes by reference.
The above described applications and patents generally describe thermal therapy devices, typically for cooling or heating a body part. Performance of the thermal therapy device may be improved by adjusting the flow rate, adjusting the temperature, and/or providing additional features to the thermal therapy device. In a typical return flow arrangement, the velocity of the fluid is proportional to the flow rate.
Reducing the flow rate of the fluid of a given temperature through the thermal therapy device will also reduce the amount of energy removed from (or added to) the patient. Conversely, increasing the flow rate will increase the amount of energy removed from (or added to) a patient. In a cold therapy device, with the wrap applied to a mammalian body, the temperature of the fluid leaving the wrap is warmer than the temperature of the fluid entering the wrap because the mammalian body is typically warmer than the thermal fluid.
As the fluid flow rate into the wrap becomes slower, the temperature delta increases as does the average wrap temperature. To decrease the average wrap temperature, the flow may be increased sufficiently. A slower flow rate, however, may lead to less efficient heat transfer and other performance problems.
Lowering the temperature from the reservoir and entering the wrap inlet generally leads to a lower average wrap temperature and increased heat transfer. For example, if an average wrap temperature of 5° C. is desired, then a wrap inlet temperature of 1° C. may be needed. In this example, the temperature delta across the wrap may be 10° C., which is quite large. Moreover, the inlet temperature is near freezing. For use with humans, this may be uncomfortable at best and, at worst, cause cold burns during extended periods of use.
As used herein, the “average temperature” of the wrap refers to the average of the wrap inlet temperature and the wrap outlet temperature. The difference between the wrap outlet temperature and the wrap inlet temperature will be referred to as “temperature delta” through the wrap. The temperature delta through the wrap depends on the fluid flow rate, the heat load, and the specific heat of the thermal fluid. The “maximum temperature” and “minimum temperature” refers to the maximum and minimum temperatures at any point in the wrap, and more specifically the fluidic channels.
II) General Therapy WrapTurning to the figures,
Referring to
In
More specifically, outer bladder 106 is adapted to receive a first fluid such as a gas (e.g., air), which can be regulated to provide the desired amount of inflation of the bladder or pressure therein. This inflation or pressure affects the compressive force applied to the animate body during use as will be further described below. Inner bladder 108 is adapted to receive a fluid, such as a coolant, which can be in the form of a cold liquid, to transfer heat away from the animate body part. Alternatively, the fluid supplied to inner bladder 108 can have a temperature higher than ambient so as to heat the animate body part. In the example illustrated in
Referring to
The connections in the interior of heat exchange liquid bladder 108 include a relatively uniform distribution of dot connections as shown in
During the manufacturing process, sheets of material defining the walls 152 and 154 are RF welded together at the dot connections and at the interior fences. At a later time, the wall 150 is RF welded to the other walls at the perimeter of the bladder. This RF welding will also form a common border for walls 150, 152, and 154.
Referring to
Each of the walls 150, 152 and 154 can be made of a nylon material suitably coated with polyurethane to provide both the RF welding qualities and the needed liquid or air impermeability. In one embodiment of the invention, the heat transfer or heat exchange device can comprise fabrics (e.g., nylon fabric) that are laminated with asymmetric amounts of polyurethane. That is, the inner surface of the outer wall of the coolant chamber has an extra heavy coating, which corresponds to about a 5 oz coating of polyurethane, while the inner surfaces of the other walls have standard coatings corresponding to about 3 oz coatings of polyurethane. Accordingly, the surfaces of the inner wall of the coolant and air chambers and the inner surface of the outer wall of the air chamber have standard 3 oz coatings. This construction only requires one non-standard fabric (the fabric having the 5 oz coating), while providing the extra polyurethane necessary to produce an extremely robust weld capable of taking or withstanding over 25,000 cycles at 30 psi. This construction can reduce manufacturing costs. It also facilitates using a lighter weight fabric, which can result in a more flexible heat exchanger that can better fit to the body. In another embodiment of the invention, the inner wall of the coolant chamber has a 5 oz coating of polyurethane in order to facilitate a yet stronger bond at the expense of increased manufacturing costs due to the use of a second non-standard fabric. A finish on the nylon material can also provide a permanent antimicrobial finish to prevent mold growth.
Referring to
Outer back side portion 114 of second modular member has an opening 124 formed therein for receiving first modular member 102 as shown in
Second modular member 104 also includes a fastener for holding the apparatus in the desired location on the animate body. Accordingly, when the apparatus is wrapped around a portion of or the entire region being treated, the fastener holds the apparatus in place during treatment. In the illustrative embodiment, a hook and loop fastener is used. It should be understood that if the hook and loop fastener wears out, the removable second modular member or sleeve can be readily replaced.
Referring to
In the illustrative embodiment, the active areas of the hook and loop fastener are outside the seams forming pouch 122. When compression increases, the forces may tend to resolve as shear forces as compared to other forces that can peel the hook portion from the loop portion.
According to one embodiment, loop portion 128 is non-stretch material. What is meant by non-stretch material or non-stretchable material is material that stretches less than or equal to 3% of its length when held in tension under a load of no more than 10 pounds. The non-stretch loop portion can improve the efficacy of compression on the animate body when the apparatus is in place. Loop portion 128 can be made of non-stretch material, which can be woven or non-woven fabric. Alternatively, loop portion 128 can be made by securing loop material or fabric to non-stretch backing material, which can be woven or non-woven fabric. The non-stretch backing material, for example, can be made of nylon or Tyvek™ (strong yarn linear polyethylene). The non-stretch and loop materials can be sewn, fused, or laminated together. Accordingly, outer back side portion 114 can comprise first and second materials where the first material is non-stretch material (e.g., non-stretch woven or non-woven fabric), the second material is loop material and the non-stretch material forms backing for the loop material.
The second modular member 104 or sleeve also can have a permanent antimicrobial finish to prevent mold growth, such as finishes made according to military specification MIL.STD.810D. The finish can be applied by placing the fabric in a chemical dip as is known in the art. The second modular member or sleeve can act as a blood barrier to prevent contamination of the heat exchanger and reduce transmission of bacteria from patient to patient. For example, the inner faces of the second modular member that form the pouch and contact first modular member 102 can be nylon with a durable water repellency (DWR) coating, which is typically a ½ ounce polyurethane coating.
An exemplary use of modular therapy apparatus 100 will be made with reference to
The control unit includes a mechanism for cooling and circulating a liquid coolant, which includes a reservoir for containing ice water. In a practical realization of this embodiment, the liquid is normal tap water. This liquid was cooled by placing ice into the ice box portion of the control unit, resulting in temperatures ranging typically between 40° F. and 50° F. In this connection, the control unit accepts liquid that has been returned from the heat exchange bladder 108. Before reintroducing the heat exchange liquid into bladder 108, it can be mixed with the liquid in the reservoir or it can be directed to bypass the reservoir. That is, the control unit is capable of supplying liquid at other controlled temperatures by means of mixing liquid chilled in the ice box and liquid warmed in the bladder by means of contact with an animate body and returning the mixed liquid to the bladder. The pressure of air furnished by the control unit is generally about 0.25 to 1.5 psig.
It should be noted that the invention is applicable to many other types of therapy components, and the particular liquid, its temperature and pressure will be dependent upon the design and purpose of such therapy components. This is also true of the air pressure and in some instances it is cycled between two pressures (typically between 1.5 and 0.25 psig). Similarly, the second modular member can have various shapes to accommodate different areas of an animate body. Typically, the area of one side of the second modular member will range from about 1 to 6 square ft. In the case of the knee application, this area will be about 6 square ft. In the case of an elbow, this area will be about 1 to 1.5 square ft.
Although apparatus 100 has been described with a dual bladder heat exchange device, a single bladder heat exchange device can be used. In the single bladder embodiment, the bladder is adapted circulate liquid or coolant.
Referring to
Referring to
Apparatus 300 comprises first modular member 302 and second modular member 304. First modular member 302 includes gas bladder 306 and fluid or coolant bladder 308. Bladders 306 and 308 form chambers 306a and 308a, respectively. Except for the configuration of first modular member 302, first modular member 302 is the same as first modular member 102 and can be made in the same manner, with the exception that a plurality of connections between the walls defining the modular member or air bladder 302 can be provided.
More specifically, and with reference to
In the illustrative embodiment, the shape of gas pressure bladder 306 conforms to the shape of the heat exchange bladder 308. Fences or dividers in the heat exchange bladder to direct fluid flow can be also provided in the gas pressure bladder. These control fences are indicated by the reference numeral C in
During the manufacturing process, sheets of material defining the walls 352 and 354 are RF welded together at the dot connections and if desired, at the interior fences. At a later time the wall 350 is RF welded to the other walls at the perimeter of the bladder with any interior fences being formed as needed. Such fences C will thereby be formed in both bladders providing the desired liquid flow directors in the liquid bladder and the connections in the air bladder. This RF welding will also form a common border for walls 350, 352, and 354.
The inner fences construction also can be provided in the gas bladder of the embodiment of
Second modular member 304 is the same as second modular member 104 with the exception that second modular member is differently configured and includes central portion 304a, and straps or strap portions 304b and 304c. Strap portions 304b and 304c are secured to central portion 304a as will be described in more detail below. Second modular member central portion 304a comprises an inner or front side portion 312 and an outer or back side portion 314. Central portion 304a can be made from various materials and can comprise inner and outer sheets of material that are sewn or fused together as previously described in connection with member 104 and can include seam 316 which defines the perimeter of pouch 322. Pouch 322 is adapted to receive first modular member 302. Strap portions 304b and 304c can comprise one or more layers of material. When more than one layer is used, the layers can be sewn or fused together as would be apparent to one skilled in the art.
Outer back side portion 314 of central portion 304a has an opening 324 formed therein for receiving first modular member 302 as shown in
Second modular member 304 also includes a fastener for holding the apparatus in the desired location on the animate body. Accordingly, when the apparatus is wrapped around a portion of or the entire region being treated, the fastener holds the apparatus in place during treatment. As in the embodiments described above, a hook and loop fastener is be used in this illustrative embodiment.
Referring to
The hook material portion of the hook and loop fastener that fastens the apparatus to the animate body is shown in
In the illustrative embodiment, the active areas of the hook and loop fastener on the outer end portions straps 304b and 304c are outside the seam forming pouch 122. When compression increases, the forces may tend to resolve as shear forces as compared to other forces that can peel the hook portion from the loop portion. The hook and loop fastener that operates between the inner end portions of strap portions 304b and 304c and center portion 304a facilitate removal of the strap portions. This, in turn, facilitates replacement of either or both straps or repositioning of the straps. For example, the straps can be portioned as shown in
Referring to
Apparatus 400 comprises first modular member 402 and second modular member 404. First modular member 402 includes gas bladder 406 and fluid or coolant bladder 408. Bladders 406 and 408 form chambers 406a and 408a, respectively. Except for the configuration of first modular member 402, first modular member 402 is the same as first modular member 102 and can be made in the same manner.
Second modular member 404 is the same as second modular member 104 with the exception that second modular member is differently configured, has differently positioned hook portions and has heel alignment marker 405. Accordingly, member 404 can be made from various materials and can comprise inner and outer sheets of material that are sewn or fused together as previously described in connection with member 104 and can include seam 416, which in combination with seams 418, defines the perimeter of pouch 422. Pouch 422 is adapted to receive first modular member 402.
Outer back side portion 414 has an opening 424 formed therein for receiving first modular member 402 as shown in
Second modular member 404 also includes a fastener for holding the apparatus in the desired location on the animate body and can include the hook and loop fastener system described in connection with apparatus 100. Referring to
The hook material portion of the hook and loop fastener that fastens the apparatus to the animate body is shown in
Referring to
Apparatus 500 comprises first modular member 502 and second modular member 504. First modular member 502 includes gas bladder 506 and fluid or coolant bladder 508. Bladders 506 and 508 form chambers 506a and 508a, respectively.
First modular member 502 is the same as first modular member 102 except for the configuration of modular member 502, including flap portions 562, and that it can include the inner fence construction described above in connection with the embodiment of
Second modular member 504 is the same as second modular member 104 with the exception that second modular member is differently configured and includes central portion 504a, and straps or strap portions 504b, 504c, and 504d. Strap portions 504b, c & d are secured to central portion 504a as will be described in more detail below. Second modular member central portion 504a comprises an inner or front side portion 512 and an outer or back side portion 514. The arm sling 540 can be coupled to second modular member 504 through a plurality of snap connectors “S” or any other suitable connector including but not limited to hook and loop fasteners. Central portion 504a can be made from various materials and can comprise inner and outer sheets of material that are sewn or fused together as previously described in connection with member 104 and can include seam 516, which in combination seam 518, define the perimeter of pouch 522. Pouch 522 is adapted to receive first modular member 502. Strap portions 504b, c, and d can comprise one or more layers of material. When more than one layer is used, the layers can be sewn or fused together as would be apparent to one skilled in the art.
Outer back side portion 514 has an opening 524 formed therein for receiving first modular member 502 as shown in
Second modular member 504 also includes a fastener for holding the apparatus in the desired location on the animate body and can include the hook and loop fastener system described in connection with apparatus 100. Referring to
The hook material portion of the hook and loop fastener that fastens the apparatus to the animate body and generally designated with reference numeral 530. The hook portion of strap portion 504b can comprise two sections, each having a length extending along the length of the strap of about 4 or 5 inches. These sections can be spaced apart by about 1 inch to facilitate or improve flexibility of the end portion of the strap. In this manner, the strap can be readily folded to provide length adjustment for differently sized users. In the illustrative embodiment, the active areas of the hook portion of the hook and loop fastener are outside the seams forming pouch 522, which can provide similar advantages to those described above regarding force resolution when the apparatus is under compression.
Referring to
Second modular member 604 is the same as second modular member 104 with the exception that second modular member is differently configured including differently configured hook portions 630. Accordingly, member 604 can be made from various materials and can comprise inner and outer sheets of material that are sewn or fused together as previously described in connection with member 104 and can include seam 616, which defines the perimeter of pouch 622. Pouch 622 is adapted to receive first modular member 602. Inner side portion 612 is placed against the portion of the body being treated and outer back side portion 614 has an opening formed therein for receiving first modular member 602. The opening is shown closed with zipper 627 in
Second modular member 604 also includes a fastener for holding the apparatus in the desired location on the animate body and can include the hook and loop fastener system described in connection with apparatus 100. Referring to
The hook material portion(s) of the hook and loop fastener that fastens the apparatus to the animate body is shown in
Regarding manufacture, it can be specialized to make the first modular member, second modular member and any desired configuration thereof. Further, a plurality of any of apparatus 200, 300, 400, 500, and 600 can be provided with differently sized second modular members, but with same sized pouches and same sized first modular members to facilitate component interchangeability in a manner similar to that described in connection with
Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations, are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto. Any feature described in any one embodiment described herein can be combined with any other feature of any of the other embodiment whether preferred or not.
III) Variable InsulationIn the case of cold wraps, a problem arises when the temperature in the wrap rises above a therapeutic range. The effectiveness of the wrap decreases when the average temperature or the temperature near the outlet is too high. This can be counterbalanced by increasing the flow rate and/or lowering the inlet temperature. The lower the flow rate, the slower the fluid velocity and the more the return fluid temperature will differ from the inlet temperature. In this condition, the temperature of the return flow is warmer. Another method to achieve a desired temperature in the wrap and at the outlet is to use relatively slow flow rates. Low flow rates, however, cause higher temperature deltas between the inlet and outlet of the wrap, which provides for uneven cooling. By contrast, lowering the temperature may lead to patient discomfort and injury. Exceptionally low temperatures may also require specialized equipment for greater cooling. Similar problems may arise with hot therapy wraps. Although it is easier to raise the reservoir temperature, excessively hot inlet temperatures lead to patient discomfort and potential for severe burns.
A therapy wrap in accordance with various aspects of the invention includes a variable insulating layer. “Variable insulating” generally refers to providing an insulating element in targeted locations and/or providing a variable thermal resistivity along the wrap.
The insulating layer may improve the performance of the wrap by, among other things, compensating for the temperature delta and protecting the body part in selected areas. The insulating layer may also serve to reduce the temperature delta by insulating a portion of the flowpath from heat loss.
Turning to
Wrap 800a includes a fluid bladder 808 and one or more thermal insulating members 880. The fluid bladder includes an inlet 860 and outlet 862. A heat exchanging fluid from a reservoir is introduced to the bladder through the inlet, typically using a pump. Exemplary outlet 862 is connected to the reservoir so fluid is returned and recirculated. The insulating members are attached to one side of the fluid bladder.
Fluid bladder 808 is configured and constructed similar to fluid bladder 108 described above and shown in
As shown in
“Fluidic channel” is to be understood as generally used in the art. In various respects, “fluidic channel” refers to the fluid pathway defined by the walls, fences, weld lines, dots, and the like. Referring to
In various embodiments, each of the insulating members are dimensioned to correspond to a respective one or more fluidic channels. In various embodiments, the insulating members are positioned in a pattern corresponding to a flowpath defined by one or more fluidic channels. For example, the illustrated wrap includes a serpentine shaped flowpath and the insulating members have a corresponding pattern. The exemplary insulating members are positioned entirely within the width of the fluidic channel. One will appreciate from the description herein, however, that the insulating members may have varying dimensions and be positioned in varying locations along the fluid channels. As will be described in more detail below, the wrap may also include one or more insulating members positioned independently of the fluidic channels.
In operation and use, the wrap including the insulating members is used in a similar manner to the wrap and therapy systems described above. A user applies the wrap similar to the non-variable insulating wrap shown, for example, at least in
In the case of cold wraps, the lowest temperature of the fluid is generally at the inlet where the fluid from the reservoir first enters the bladder. The fluid starts to warm as it exchanges (receives) heat from the body part. Although the insulating member extends downstream from the inlet, a key feature of the exemplary insulating member is the fact that the insulating member starts at the inlet where the fluid is coldest. Accordingly, the insulating member provides an insulating effect in the region where the fluid is coldest. This provides several benefits. For one, the body part is thermally shielded from the fluid in the region of the lowest temperature. This reduces the likelihood of frost bite or cold burn. Second, the insulating member generally increases patient comfort. Although the temperature delta in the wrap may be large, the heat exchange in the inlet region is generally reduced, essentially equilibrating or normalizing the heat transfer. In turn, the “feel” of the wrap is more comfortable in the inlet region. Alternatively, the inlet temperature may be decreased while maintaining the same “feel” in the inlet region for the user. In various aspects, the variable insulating layer compensates for the temperature delta such that the surface temperature is consistent or at least “feels” consistent to the user.
Insulating member 880 may be modified and varied using conventional techniques as would be understood from the description herein.
As shown in
Suitable materials for the insulating member include, but are not limited to, a foam, a plastic, a fibrous material, and other insulating materials known in the art. For example, the insulating member may be composed of a fabric, spray-on rubber (e.g., poly(urethane)), glass fibers, and more. The insulating member may also include structures and configurations for controlled insulating effect. For example, in place of an insulating member of a solid material, a housing may be provided that encloses a defined volume of gas (e.g. air) of a known thermal resistance. In another example, the insulating member may comprise a bladder filled with a thermo-resistive gel with a predetermined thermal resistance value.
In various embodiments, the insulating member is configured and selected to compensate for a temperature delta in the wrap and/or fluid temperature in the respective portion of the fluid channel. In various embodiments, the insulating member is configured or selected to have a predetermined overall coefficient of heat transfer. By corollary, the insulating member may be selected based on the material properties including, but not limited to, thermal resistance (R-value). Generally, the material properties, dimensions, and configuration are adjusted to provide the desired insulating of the wrap at the desired location and/or a variable amount of insulating.
Referring to
The wraps of
The method of making and assembling the variable insulating wrap above will now be described. The wrap may be manufactured using the techniques described above and known in the art in accordance with the description herein.
The wrap includes a bladder 808c and compression bladder 806c. Bladder 808c and compression bladder 806c are fitted within a sleeve body 872. The sleeve includes a connector 867 for quick and easy connection of fluid inlet 860c, fluid outlet 862c, and a port 870 to compression bladder 806c. The sleeve is similar in many respects to temperature therapy pads described above. The illustrated sleeve is composed of nylon on one side and a loop material (e.g. pile) on an opposite side.
In a region directly adjacent the inlet/outlet, an insulating layer 880c′ is positioned on the bladder. In a thickness direction, the insulating layer is sandwiched between the fluid bladder 808c and an inner surface of sleeve body 872. On an opposite side, the compression bladder is sandwiched between the fluid bladder and the sleeve body.
In part for ease of assembly, the exemplary insulating layer includes a substrate 874c supporting an insulating member 880c. The substrate and insulating member may be joined together permanently, removable, or otherwise separate. In various embodiments, the substrate dimensions correspond to the bladder periphery. In the exemplary wrap of
In the exemplary embodiment, the insulating member is bonded to the bladder with an adhesive. As will be described below, however, the insulation member may be attached to the bladder in other manner. In some cases, the insulation is not attached to the bladder at all. For example, the sleeve may be elastomeric with an abrasive inner surface such that the insulation member is held in a desired location with respect to the bladder without bonding and the like.
In various embodiments, the one or more insulating members are integrally formed in insulating layer 880c′. In various embodiments, the insulating layer is monolithically formed in essentially one step. By example, the insulating layer may be formed by blow molding whereby the insulating members are formed essentially simultaneously. The insulating members may also be separately formed and thereafter joined to the substrate. Similarly, the insulating layer and/or insulating member may be formed concurrently with the bladder. Other manufacturing techniques include, but are not limited to, spraying, molding, silk screening, and adhesives. One will appreciate that manufacturing techniques common in the polymer and semiconductor fields may also be used such as etching, deposition, and lithography. Further details regarding the components and manufacturing techniques that may be used are disclosed in U.S. Pat. No. 7,198,093 to Elkins, the entire contents of which are incorporated herein for all purposes.
The wrap 800d is assembled by inserting the bladder into the sleeve 872d. The sleeve, sleeve pocket, and bladder have corresponding shapes and dimensions such that the bladder is automatically aligned in the sleeve when inserted into the pocket.
As shown in
To assemble the wrap, one simply inserts a bladder 808e having a desired variable insulating member pattern into the insulating sleeve. In this manner, a user may customize the wrap for his or her own comfort and needs. The insulating members may be formed and attached to the sleeve using techniques similar to those described above and shown at least in
The above described embodiment may also provide manufacturing and economic efficiencies. For example, a number of the components may be standardized and supplied off-the-shelf or sold as kits. In various embodiments, the wrap is assembled by providing a plurality of insulating sleeves, each with a pouch adapted to receive a bladder, selecting one of the insulating sleeves, and inserting the bladder into the sleeve. The plurality of sleeves may be dimensioned the same but include different insulating member patterns. Thus, a user may select a desired sleeve based on the variable insulating member pattern and then assemble the wrap by inserting a standard bladder. The user may further customize the wrap by inserting, removing, and/or modifying insulating members. Conversely, the bladder may be configured to receive a selected one of a set of insulating layers having one or more insulating members.
Additionally, one will appreciate from the description herein that the above described insulating members may be used with a variety of other temperature-controlled therapy devices. For example,
In contrast to the wrap 800 above which includes a compressive bladder, pad 810 is designed to carry a heat exchanging fluid only. The pad does not include a compression device for applying a compressive force. Instead, the device is coupled to the body part with a hook and loop fastener.
The exemplary fluid pad is a designed to fit over a knee or shoulder. The pad includes a fluidic channel 865f for promoting a desired flow even during joint flexure. In various embodiments, the fluid channel and pad are dimensioned and configured to provide kink resistance during flexure.
In the exemplary embodiment of
As will be clear from the above example, the insulating layer may be a separately-formed, independent member for use with a variety of temperature-controlled therapy systems in accordance with the invention.
For convenience in explanation and accurate definition in the appended claims, the terms “up” or “upper”, “down” or “lower”, “inside” and “outside” are used to describe features of the present invention with reference to the positions of such features as displayed in the figures.
In many respects the modifications of the various figures resemble those of preceding modifications and the same reference numerals followed by apostrophes or subscripts “a”, “b”, “c”, and “d” designate corresponding parts.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
Claims
1. A therapy wrap comprising:
- a fluid bladder including an inlet, an outlet, and at least one fluidic channel connecting the inlet to the outlet; and
- a thermal insulating member on the fluid bladder only directly adjacent the inlet and extending along the at least one fluidic channel.
2. The wrap of claim 1, further comprising another thermal insulating member on the fluid bladder extending along the at least one fluidic channel and separated from the thermal insulating member.
3. The wrap of claim 2, wherein the insulating member is configured to decrease the rate of heat transfer by a greater degree than the another thermal insulating member.
4. The wrap of claim 2, wherein the insulating member and the another insulating member have different coefficients of heat transfer.
5. The wrap of claim 4, wherein the insulating member and the another insulating member have essentially equal thickness.
6. The wrap of claim 2, wherein the insulating member and the another insulating member are contiguous.
7. The wrap of claim 2, wherein the insulating member and the another insulating member are integrally formed in an insulating layer.
8. The wrap of claim 1, further comprising an expandable bladder on a side of the bladder opposite the insulating member for exerting a compressive force on the bladder.
9. A therapy wrap comprising:
- a fluid bladder including an inlet, an outlet, and at least one fluidic channel connecting the inlet to the outlet; and
- a thermal insulating layer affixed to the fluid bladder and having a shape dimensioned and configured to correspond to a perimeter of the bladder, the thermal insulating layer comprising a thermal insulating member extending along the at least one fluidic channel and positioned only directly adjacent the inlet when the layer is affixed to the bladder.
10. The wrap of claim 9, wherein the thermal insulating layer further comprises another insulating member extending along the at least one fluidic channel and separated from the thermal insulating member.
11. The wrap of claim 10, wherein the insulating member and the another insulating member are contiguous.
12. The wrap of claim 10, wherein the insulating member and the another insulating members are monolithically fanned in the insulating layer.
13. The wrap of claim 12, wherein the insulating layer is printed.
14. The wrap of claim 9, wherein the insulating layer is bonded to the bladder.
15. The wrap of claim 9, further comprising a pocket for removably securing the insulating layer.
16. The wrap of claim 9, wherein the at least one fluidic channel has a serpentine shape, and the insulating member and the another insulating member are positioned in a pattern corresponding to the at least one fluidic channel.
17. The wrap of claim 9, wherein the at least one fluidic channel extends from wall-to-wall in a width direction.
18. A method of administering a temperature-controlled treatment to an anatomical body part, the method comprising:
- applying a therapy wrap to an anatomical body part, the wrap comprising: an inlet; an outlet; at least one fluidic channel connecting the inlet and the outlet; and a thermal insulating layer between the wrap and the body part extending along a flowpath of the at least one fluidic channel in a first region only directly adjacent the inlet;
- flowing a heat exchanging fluid from a reservoir through the inlet to the at least one fluidic channel; and
- returning the fluid to the reservoir from the outlet.
19. The method of claim 18, further comprising flowing the fluid through a second region downstream from the first region, wherein an overall coefficient of heat transfer in the second region is less than an overall coefficient of heat transfer in the first region.
20. The method of claim 18, further comprising decreasing the thickness of the insulating layer downstream from the first region to compensate for a temperature delta in the at least one fluidic channel.
Type: Application
Filed: Oct 22, 2010
Publication Date: Apr 28, 2011
Inventors: Mark H. Lowe (Danville, CA), Krister Bowman (Oakland, CA)
Application Number: 12/910,743