ISOLATED REFUGE CABIN
The present invention relates a refuge used in underground mines, and more particularly to a type of isolated refuge cabin used in underground mines, including the supporting airbag (1), the body shell (2) equipped outside the supporting air bag (1), a breathable air supplier (4) and an air inflation device (3); the air outlet (5) of the air inflation device (3) is linked with an air outlet (7) of the supporting air bag (1) through an air supply passage(6); the air inlet (8) of the breathable air supplier (4) is connected to the interior cavity of the body shell (2) through an air intake passage (9); the air outlet (10) of the breathable air supplier (4) is linked with the lower part of the interior cavity of the body shell (2) through the air outlet passage(11); the breathable air supplier (4) includes a shell (12), the oxygen generating agent (13) equipped inside the shell (12); the emergency exit (14) is installed on the body shell (2). The present invention provides an isolated refuge cabin of a simple structure, which can be operated safely and easily to effectively separate the exterior environment of the mining accident areas and provide conditions for survival for human beings involved in the mine accidents.
The present invention relates to a refuge used in underground mines, and more particularly to a type of isolated refuge cabin used in underground mines.
BACKGROUND TECHNOLOGYAt present, there has been no existing rescue equipment that can be used to accommodate a large group of people and provide oxygen for over 72 hours in underground mines in China. When an accident occurs in an underground mine, a large amount of the toxic gas is usually generated. The composition of the gas which has toxic effects on humans basically falls into 3 types:
1. Compositions causing asphyxiation or coma;
2. Compositions causing irritation to sensory organs or respiratory system;
3. Other toxic compositions.
From the death toll statistic information of mine accidents, most of the victims died of inhalation of toxic gas such as carbon monoxide. Due to the block-up or submergence of the mining tunnels, the miners could not flee through the mining passageways and the possibility of their survival is minimal. This is one of the major reasons that there have been so many deaths in mining accidents in China.
SUMMARY OF THE INVENTIONOne of the objectives of the present invention is to provide an isolated-refuge cabin of a simple structure, which can be operated safely and easily to effectively separate the exterior environment of the mining accident areas and provide conditions for survival for human beings involved in the mine accidents.
Example embodiments of the present invention provide an isolated refuge cabin including a supporting air bag, a body shell equipped outside of the supporting air bag, a breathable air supplier and an air inflation device. The air outlet of the air inflation device is linked with the air inlet of the supporting air bag through an air supply passage. The air inlet of the breathable air supplier is connected to the interior cavity of the body shell through an air intake passage. The air outlet of the breathable air supplier is linked to the lower part of the interior cavity of the body shell through an air outlet passage. The breathable air supplier includes a shell and oxygen generating agent equipped between the air inlet and the air outlet. An emergency exit is installed on the body shell.
In a preferred example embodiment of the present invention, the oxygen generating agent is of a flaky structure. Installation racks are installed in the shell. The installation grids are installed on the installation racks. The oxygen generating agent is stored between the installation grids.
Heat dissipation fins are installed outside the breathable air supplier.
The supporting air bag has a relief valve and a one-way intake valve is installed at the air inlet
In order to obtain the pressure balance between the body shell and the exterior environment, an adjuster is installed in the body shell and contains the toxic gas filtering agent. The exterior end and the body shell end of the adjuster are connected respectively to the toxic gas filtering agent. The body shell end of the adjuster is connected to the interior cavity of the body shell.
In order to form an air circulation, a blowing mechanism is installed at the joint of the air outlet and the lower part of the interior cavity of the body shell.
The blowing mechanism includes a blower body shell, a spring drive mechanism installed in the blower body shell, and a power output shaft mounted with a power output gear. A transmission gear and a drive spring are mounted on the centre shaft of the spring drive mechanism. The drive spring is installed in an assembly housing. A drive gear and a power transmission gear are engaged. The power output shaft is installed in the blower body shell and the blower blades are mounted at the top end of the power output shaft.
In an example embodiment of the present invention, a transitional shaft is installed in the blower body shell. A transitional gear and a power transmission gear are mounted on the transitional shaft. The power transmission gear is engaged with the transitional gear. The power transitional transmission gear is engaged with the power output gear.
In order to control the blowing force of the blowing mechanism, a speed controlling shaft is installed in the blower body shell. A speed controlling drive gear is mounted on the speed controlling shaft. A speed controlling transmission gear is engaged with the power output gear and also engaged with the speed control drive gear. A speed controlling mechanism is mounted on the speed controlling shaft. The speed controlling mechanism includes a speed controlling sheath, which is installed in the blower body shell, and a speed controlling chuck, which is mounted on the speed controlling shaft. A concave groove is formed on the speed controlling chuck. A speed controlling terminal is installed in the concave groove. The speed controlling chuck and the speed controlling terminal are both installed in the speed controlling sheath.
The body shell of the present invention includes an aluminum foil layer, a fire-proof fabric layer, a rubber layer, and a fabric layer. The fire-proof fabric layer is disposed between the aluminum foil layer and the rubber layer, and the rubber layer is disposed between the fire-proof fabric layer and the fabric layer.
Example embodiments of the present invention provide an isolated refuge cabin of a simple structure, which can be operated safely and easily to effectively separate the exterior environment of the mining accident areas and provide conditions for survival for human beings involved in the mine accidents. In emergent circumstance, the air inflation device can be turned on immediately and the supporting air bag will prop up the body shell. The whole system will enter working status immediately. In example embodiments of the present invention, the conversion between carbon dioxide and oxygen can be realized so as to provide conditions for survival for human beings involved in the mine accidents. In order to control the blowing force of the blowing mechanism, a speed control mechanism is installed in the blowing mechanism. In the speed control mechanism, a speed controlling terminal generates torque to the power output shaft based on the rotation speed of the power output shaft based by using the friction between the speed controlling terminal and the speeding controlling sheath. Thus, the blowing force of the blowing mechanism can be effectively controlled.
As shown in
The body shell 2 of the present invention includes an aluminum foil layer 64, a fire-proof fabric layer 65, a rubber layer 66 and a fabric layer 67. The fire-proof fabric layer 65 is disposed between the aluminum foil layer 64 and the rubber layer 66, and the rubber layer 66 is disposed between the fire-proof fabric layer 65 and the fabric layer 67.
Under normal conditions, all components in the present invention will be integrated in a package. In emergent circumstances, the air inflating device 3 can be turned on immediately, and the supporting sir bag 1 is then inflated and props up the body shell 2. Thus, the whole system will enter working status immediately. As shown in
While in operation, the air inflation device 3 can be turned on quickly and the compressed air in the air inflation device 3 can be supplied to the supporting air bag 1 through the air supply passage 6 and the air inlet 7 of the supporting air bag 1. The supporting air bag 1 will immediately prop up the body shell 2 to form a safety tank and the whole system will enter into working status immediately. The miners underground will enter the body shell 2 through the emergency exit 14 and then close the emergency exit 14. The oxygen generated from the breathable air supplier 14 is supplied to the interior of the body shell 2 through the air inlet 8 and the air inlet passage 9. The carbon dioxide that the miners breathe out is blown into the breathable air supplier 4 through the air outlet passage 11 and the air outlet 10 by the blowing mechanism 25, and reacts with the oxygen generating agent 13 on the installation grids 16 to generate oxygen. The generated oxygen is supplied to the interior cavity of the body shell 2 through the air inlet 8, and a circulation is thus formed.
Claims
1. An isolated refuge cabin, comprising:
- a supporting air bag (1);
- a body shell (2) equipped outside the supporting air bag (1);
- a breathable air supplier (4); and
- an air inflation device (3);
- wherein an air outlet (5) of the air inflation device (3) is connected to an air inlet (7) of the supporting air bag (1), an air inlet (8) of the breathable air supplier (4) is connected to the interior cavity of the body shell (2) through an air intake passage (9), an air outlet (10) of the breathable air supplier (4) is linked to the lower part of the interior cavity of the body shell (2), the breathable air supplier (4) includes a shell (12) and an oxygen generating agent (13) equipped between the air inlet (8) and the air outlet (10), and an emergency exit (14) is installed on the body shell (2).
2. The isolated refuge cabin according to claim 1, further comprising installation racks (15) installed inside the shell (12), and installation grids (16) installed on the installation racks (15), and the oxygen generating agent (13) is stored between the installation grids (16), and wherein the oxygen generating agent (13) is of a flaky structure.
3. The isolated refuge cabin according to claim 1, further comprising heat dissipation fins (17) installed outside the breathable air supplier (4).
4. The isolated refuge cabin according to claim 3, wherein the supporting air bag (1) has a relief valve (18) and a one-way air intake valve (19) is installed at the air inlet (7).
5. The isolated refuge cabin according to claim 4, further comprising an adjuster (20) installed on the outside of the body shell (2), the adjuster (20) containing toxic gas filtering agent (24) and having an exterior end (21) and a body shell end (23), wherein both the exterior end (21) and the body shell end (23) are connected to the toxic gas filtering agent (24), and the body shell end (23) is connected to the interior cavity of the body shell (2).
6. The isolated refuge cabin according to claim 5, further comprising a blowing mechanism (25) installed at the joint of the air outlet (11) and the lower part of the interior cavity of the body shell (2).
7. The isolated refuge cabin according to claim 6, wherein the blowing mechanism (25) includes a blower body shell (26), a spring drive mechanism (27) installed in the blower body shell (26), and a power output shaft (28) mounted with a power output gear (29), a transmission gear (33) and a drive spring (35) mounted on a centre shaft (32) of the spring drive mechanism (27), wherein the drive spring is installed in an assembly housing (36), the transmission gear (33) is engaged with the power output gear (29), the power output shaft (28) is installed in the blower body shell (26) with blower blades (34) mounted at the top end of the power output shaft (28).
8. The isolated refuge cabin according to claim 7, further comprising a transitional transmission shaft (30) installed in the blower body shell (26), a driver gear (37) and a power transmission gear (38) mounted on the transitional transmission shaft (30), wherein the transmission gear (33) is engaged with the drive gear (37) and the power transmission gear (38) is engaged with the power output gear (29).
9. The isolated refuge cabin according to claim 8, further comprising a speed controlling shaft (39) installed in the blower body shell (26), a speed controlling drive gear (40) mounted on the speed controlling shaft (39), a speed controlling transmission gear (41) engaged with the power output gear (29) and also engaged with the speed controlling drive gear (40), and a speed controlling mechanism (42) mounted on the speed controlling shaft (39); wherein the speed controlling mechanism (42) includes a speed controlling sheath (43) installed in the blower body shell (26), a speed controlling chuck (63) mounted on the speed controlling shaft (39), a concave groove (64) formed on the speed controlling chuck (63), a speed controlling terminal (44) installed in the concave groove (64), wherein the speed controlling chuck (63) and the speed controlling terminal (44) are both installed in the speed controlling sheath (43).
10. The isolated refuge cabin according to claim 9, wherein the body shell (2) includes an aluminum foil layer (64), a fire-proof fabric layer (65), a rubber layer (66) and a fabric layer (67), wherein the fire-proof fabric layer (65) is disposed between the aluminum foil layer (64) and the rubber layer (66), and the rubber layer (66) is disposed between the fire-proof fabric layer (65) and the fabric layer (67).
11. The isolated refuge cabin according to claim 2, further comprising heat dissipation fins (17) installed outside the breathable air supplier (4).
12. The isolated refuge cabin according to claim 11, wherein the supporting air bag (1) has a relief valve (18) and a one-way air intake valve (19) is installed at the air inlet (7).
13. The isolated refuge cabin according to claim 12, further comprising an adjuster (20) installed on the outside of the body shell (2), the adjuster (20) containing toxic gas filtering agent (24) and having an exterior end (21) and a body shell end (23), wherein both the exterior end (21) and the body shell end (23) are connected to the toxic gas filtering agent (24), and the body shell end (23) is connected to the interior cavity of the body shell (2).
14. The isolated refuge cabin according to claim 13, further comprising a blowing mechanism (25) installed at the joint of the air outlet (11) and the lower part of the interior cavity of the body shell (2).
15. The isolated refuge cabin according to claim 14, wherein the blowing mechanism (25) includes a blower body shell (26), a spring drive mechanism (27) installed in the blower body shell (26), and a power output shaft (28) mounted with a power output gear (29), a transmission gear (33) and a drive spring (35) mounted on a centre shaft (32) of the spring drive mechanism (27), wherein the drive spring is installed in an assembly housing (36), the transmission gear (33) is engaged with the power output gear (29), the power output shaft (28) is installed in the blower body shell (26) with blower blades (34) mounted at the top end of the power output shaft (28).
16. The isolated refuge cabin according to claim 15, further comprising a transitional transmission shaft (30) installed in the blower body shell (26), a driver gear (37) and a power transmission gear (38) mounted on the transitional transmission shaft (30), wherein the transmission gear (33) is engaged with the drive gear (37) and the power transmission gear (38) is engaged with the power output gear (29).
17. The isolated refuge cabin according to claim 16, further comprising a speed controlling shaft (39) installed in the blower body shell (26), a speed controlling drive gear (40) mounted on the speed controlling shaft (39), a speed controlling transmission gear (41) engaged with the power output gear (29) and also engaged with the speed controlling drive gear (40), and a speed controlling mechanism (42) mounted on the speed controlling shaft (39); wherein the speed controlling mechanism (42) includes a speed controlling sheath (43) installed in the blower body shell (26), a speed controlling chuck (63) mounted on the speed controlling shaft (39), a concave groove (64) formed on the speed controlling chuck (63), a speed controlling terminal (44) installed in the concave groove (64), wherein the speed controlling chuck (63) and the speed controlling terminal (44) are both installed in the speed controlling sheath (43).
18. The isolated refuge cabin according to claim 17, wherein the body shell (2) includes an aluminum foil layer (64), a fire-proof fabric layer (65), a rubber layer (66) and a fabric layer (67), wherein the fire-proof fabric layer (65) is disposed between the aluminum foil layer (64) and the rubber layer (66), and the rubber layer (66) is disposed between the fire-proof fabric layer (65) and the fabric layer (67).
Type: Application
Filed: Jun 4, 2009
Publication Date: May 12, 2011
Inventor: Liancheng Zhang (Shanghai)
Application Number: 12/999,627
International Classification: E21F 11/00 (20060101); E04H 9/16 (20060101); E04H 15/20 (20060101);