ELECTRICALLY HEATED GARMENT

An article of clothing includes a garment body and a heater coupled to the garment body. A battery holder defines a cavity. A rechargeable battery pack is configured for use with at least one of a power tool and a sensing device. The rechargeable battery pack is slidably received within the cavity and detachably coupled to the battery holder by a latching arrangement. A controller selectively provides power from the rechargeable battery pack to the heater. A user input member for selecting a mode of the controller is coupled to the garment body.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This Application claims priority to U.S. Provisional Patent Application No. 61/258,714, filed Nov. 6, 2009, the entire contents of which are incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to garments, and in particular, to an electrically heated jacket for providing heat to a user wearing the jacket.

BACKGROUND

Garments, especially outwear such as jackets and parkas, may be insulated to protect a user from the cold. Insulated jackets rely on the user's own body heat to keep the user warm. If the insulation is too thin, the user may be cold. If the insulation is too thick, the user may overheat.

SUMMARY OF THE INVENTION

In one embodiment, the invention provides an article of clothing. The article of clothing includes a garment body and a heater coupled to the garment body. A battery holder defines a cavity. A rechargeable battery pack is configured for use with at least one of a power tool and a sensing device. The rechargeable battery pack is slidably received within the cavity and detachably coupled to the battery holder by a latching arrangement. A controller selectively provides power from the rechargeable battery pack to the heater. A user input member for selecting a mode of the controller is coupled to the garment body.

In another embodiment, the invention provides a method of operating a garment heated by an electric heater, powered by a battery pack received by a battery holder, and controlled by a controller via a control input. The method comprises actuating the control input to cause the electric heater to enter a pre-heat mode and maintaining the electric heater in a pre-heat mode for a first time period. The electric heater is automatically switched to a first thermal setting at the end of the first time period. The electric heater is selectively switched to a second thermal setting by actuating the control input.

In yet another embodiment, the invention provides an article of clothing. The article of clothing includes a garment body and a heater coupled to the garment body. A battery holder defines a cavity. The battery holder is disposed within the garment body and electrically coupled to the heater. A rechargeable battery pack is slidably received within the cavity and detachably coupled to the battery holder by a latching arrangement. A user input member is coupled to the garment body. A controller selectively provides power from the rechargeable battery pack to the heater in response to control signals from the user input member. The controller causes the heater to enter a pre-heat mode in response to a first signal from the user input member and maintains the heater in the pre-heat mode for a first time period. The controller automatically switches the heater to a first thermal setting at the end of the first time period, and selectively switches the heater to a second thermal setting in response to a second signal from the user input member.

Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a front view of a jacket according to one embodiment of the invention.

FIG. 2 is a rear view of the jacket of FIG. 1.

FIG. 3 is a detailed view of a rear compartment of the jacket of FIG. 2, and taken along line 3-3 of FIG. 2.

FIG. 4 is a perspective view of a battery holder according to one embodiment of the invention.

FIG. 5 is a perspective view of a battery pack for use with the battery holder of FIG. 4.

FIG. 6 is an exploded view of the battery pack of FIG. 5.

FIG. 7 is an electrical block diagram for the jacket of FIG. 1.

FIG. 8 is an image of a heated jacket including a heating module according to another embodiment of the invention.

FIG. 9 is an enlarged view of the heated jacket including the heating module of FIG. 8.

FIG. 10 is a top perspective view of a portion the heating module of FIG. 8.

FIG. 11 is a bottom perspective view of the portion of the heating module of FIG. 10.

FIG. 12 is a front view of a display for positioning in an aperture of the heating module of FIG. 10.

FIG. 13 is a perspective view of tools and devices usable with the battery pack of FIG. 5.

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.

DETAILED DESCRIPTION

FIG. 1 illustrates a heated jacket 10 according to one embodiment of the invention. The jacket 10 may be constructed in various sizes to fit a variety of users. The jacket 10 includes typical jacket features such as a torso body 12, arms 14, a collar 16, and front pockets 18. A front surface 20 of the jacket 10 includes a control input. In the illustrated embodiment, the control input is a button 22 that may be actuated by user. As explained in greater detail below, the button 22 includes a display portion 24 to indicate a status of the heated jacket 10.

As illustrated in cutaway portions of FIGS. 1 and 2, the jacket 10 includes a heater array 26. The heater array 26 is disposed in both a left portion 28 and a right portion 30 of the torso body 12. In some embodiments, the heater array 26 may extend into the arms 14 and/or collar 16. In other embodiments the jacket may include a first heater array and second heater array arranged as an upper module and a lower module, respectively. In the illustrated embodiment, the heater array 26 is controlled via the button 22 shown in FIG. 1. In other embodiments, multiple heater arrays may be controlled individually via a single control input or multiple control inputs. The heating array 26 may include resistive heating coils formed of carbon fibers, high density carbon fibers, or other heating devices. The heated jacket 10 is capable of maintaining a temperature of up to 110 degrees Fahrenheit, although in further embodiments lower or greater temperatures are possible depending upon the heat source.

As illustrated in FIG. 2, the heated jacket 10 includes a compartment 32 located on a lower portion of the back torso body. The compartment 32 houses an electrical component, such as a battery pack and battery holder. As illustrated in FIG. 3, the compartment 32 includes a zipper 34, providing selective access by a user to the compartment 32 in order to access the battery pack and other electrical components. FIG. 4 illustrates one example of a battery holder 36. The battery holder 36 is configured to receive a battery pack 38, such as the battery pack illustrated in FIG. 5.

Referring to FIG. 5, the battery pack 38 is a lithium-based, rechargeable battery pack. The battery pack 38 is removably and interchangeably connected to the battery holder 36 to provide power to the jacket 10 during operation and to facilitate recharging of the battery pack 38 when not in use. In some embodiments, the battery pack 38 may be used with other types of cordless, battery-powered tools or devices. FIG. 13, discussed below, illustrates exemplary tools and devices with which the battery pack 38 may be used. The battery pack 38 also may be used with other power tools or sensing devices not specifically discussed herein.

As illustrated in FIGS. 5 and 6, the battery pack 38 includes a casing 40, an outer housing 42 coupled to the casing 40, and a plurality of battery cells 44 positioned within the casing 40. The casing 40 is shaped and sized to fit within a cavity 46 of the battery holder 36 illustrated in FIG. 4, or alternatively, in a power tool or non-motorized sensing device to connect the battery pack 38 to the tool or device. The casing 40 includes an end cap 48 to substantially enclose the battery cells 44 within the casing 40. The illustrated end cap 48 includes two power terminals 50 configured to mate with corresponding power terminals 60 (FIG. 7) extending within the cavity 46 of the battery holder 36. In other embodiments, the end cap 48 may also include sense or communication terminals that are configured to mate with corresponding terminals within the battery holder or a tool. The outer housing 42 includes a latching arrangement 52 for positively engaging the battery pack 38 with the battery holder 36. The latching arrangement 52 includes latching tabs 54 and resilient actuating portions 56. The latching tabs 54 are configured to engage corresponding recesses within the cavity 46 of the battery holder 36. The resilient actuating portions 56 are coupled to the latching tabs 54 and are configured for a user to selectively disengage the latching tabs 54 from the battery holder 36.

As shown in FIG. 6, the battery pack 38 includes three battery cells 44 positioned within the casing 40 and electrically coupled to the terminals 50. The battery cells provide operational power (e.g., DC power) to the jacket 10 or other device. In the illustrated embodiment, the battery cells 44 are arranged in series, and each battery cell has a nominal voltage of approximately four-volts (4.0V), such that the battery pack 38 has a nominal voltage of approximately twelve-volts (12V). The cells 44 also have a capacity rating of approximately 1.4 Ah. In other embodiments, the battery pack 38 may include more or fewer battery cells 44, and the cells 44 can be arranged in series, parallel, or a serial and parallel combination. For example, the battery pack 38 can include a total of six battery cells in a parallel arrangement of two sets of three series-connected cells. The series-parallel combination of battery cells creates a battery pack having a nominal voltage of approximately 12V and a capacity rating of approximately 2.8 Ah. In other embodiments, the battery cells 44 may have different nominal voltages, such as, for example, 3.6V, 3.8V, 4.2V, etc., and/or may have different capacity ratings, such as, for example, 1.2 Ah, 1.3 Ah, 2.0 Ah, 2.4 Ah, 2.6 Ah, 3.0 Ah, etc. In other embodiments, the battery pack 38 can have a different nominal voltage, such as, for example, 10.8V, 14.4V, etc. In the illustrated embodiment, the battery cells 44 are lithium-ion battery cells having a chemistry of, for example, lithium-cobalt (Li—Co), lithium-manganese (Li—Mn), or Li—Mn spinel. In other embodiments, the battery cells 44 may have other suitable lithium or lithium-based chemistries.

The heated jacket 10 includes control circuitry for the heater array 26 and battery pack 38. FIG. 7 is a block diagram of the heated jacket 10. A battery controller 58 receives electricity from the battery pack 38 via battery terminals 60 (disposed within the battery holder 36). The battery controller 58 may be configured to monitor a state of charge of the battery pack 38 and, if necessary, shutdown the heater array 26.

A heater controller 62 receives inputs from the control button 22 and selectively powers the heater array 26 depending upon the selected thermal output. The display portion 24 is selectively illuminated based upon the selected thermal output setting. The heater controller 62 may be configured to monitor a plurality of conditions of the jacket 10 including, but not limited to, an amount of current drawn by the heater array 26. The controllers 58, 62 are, for example, microprocessors, microcontrollers, or the like, and are configured to communicate with one another. In the illustrated embodiment, the battery controller 58 provides information to the heater controller 62 related to a battery pack temperature or voltage level. The heater controller 62 and the battery controller 58 also include low voltage monitors and state-of-charge monitors. The monitors are used to determine whether the battery pack 38 is experiencing a low voltage condition, which may prevent proper operation of the heater array 26, or if the battery pack 38 is in a state-of-charge that makes the battery pack 38 susceptible to being damaged. If such a low voltage condition or state-of-charge exists, the heater array 26 is shut down or the battery pack 38 is otherwise prevented from further discharging current to prevent the battery pack from becoming further depleted.

The heated jacket 10 illustrated in FIGS. 1 and 2 may be operated as follows. To turn on the heated jacket 10, a user presses and holds the control button 22 for a first period (e.g., three seconds). When first turned on, the heater controller 62 causes the heated jacket 10 to enter pre-heat mode. The heated jacket 10 remains in a pre-heat mode for a period (e.g., five minutes) and then the heater controller 62 switches the heater array 26 to a medium thermal output setting. The user may adjust the thermal output setting by actuating the control button 22. Each press of the control button 22 will cycle the heater controller 62 through one of a sequence of thermal output settings (e.g., low, medium, high). In order to turn off the heated jacket 10 (or de-energize the heater array 26), the user presses and holds the control button 22 for a third period (e.g., three seconds).

As mentioned previously, the control button 22 includes an illuminated display portion 24 to indicate a status of the heaters. The display portion may be, for example, one or more LEDs. In the pre-heat mode, the display portion 24 flashes red. At a low thermal output setting, the display portion 24 glows blue. At a medium thermal output setting, the display portion 24 glows white. At a high thermal output setting, the display portion glows red. Other embodiments may use various other colors or light patterns to indicate thermal output settings. Still other embodiments may indicate a state of charge of the battery pack 38.

Various modifications of the control method or sequence are possible. For example, in other embodiments, the user may select a desired temperature rather than a thermal output setting.

FIG. 8 illustrates a heated jacket 110 according to another embodiment of the invention. The heated jacket 110 may be constructed in various sizes to fit a variety of users. FIG. 9 is an enlarged view of a heating module 164, which is coupled to an outside surface of the jacket 110 by way of a strap 166. Alternatively, the heating module 164 may be coupled to an inner surface of the jacket 110 or disposed inside of an inner pocket of the jacket 110.

The heating module 164 includes a battery pack holder 136 (FIGS. 10 and 11) and a battery pack 38 (FIG. 5). The heating module 164 is electrically coupled to one or more heating coils (not shown) positioned within the jacket 110 to heat the jacket and provide heat to a user wearing the jacket. In the illustrated embodiment, multiple heating coils are employed and positioned in various locations, or zones, within the jacket. For example, separate heating coils may be positioned in an upper torso area and a lower torso area, and may be separately controllable by the user. In further embodiments, a single heating coil may be used, or the heating coils may be positioned at other locations within the jacket, (e.g., the back, arms, etc.).

FIGS. 10 and 11 illustrate the battery holder 136 of the heating module 164 in greater detail. With reference to FIG. 11, the battery holder 136 includes an aperture 168 for receiving an end of a cord (not shown), the cord being connected to the one or more heating coils and including a male connector terminal. A female connector (not shown) is positioned within the battery holder 136 adjacent the aperture 168 to receive the male connector and form an electrical connection between the heating coils and the battery pack 38. The battery holder 136 also includes a hook 170 for securing the cord disposed between the connector and the jacket 110.

With further reference to FIG. 10, the battery holder 136 includes a housing portion 172 for electrical components, including a circuit board (not shown). The housing portion 172 includes a first button 174, a second button 176 and a display 178. The first button 174 and the second button 176 are capable of communicating with the electrical components. In the illustrated embodiment, the first button 174 is pressed by a user to increase the temperature of the heating coils, and the second button 176 is pressed by a user for lowering the temperature of the heating coils. In the illustrated embodiment of FIG. 12, the display 178 is a seven segment display for representing a heating level indicative of the temperature of the heating coils.

With reference to FIG. 11, the battery holder 136 includes a power indicator 182, such as a light emitting diode (LED) that displays to the user when lit that the battery is connected, the heating coils are on, or the like. A portion of the battery holder 136 defines a battery cavity 184 for receiving the battery pack 38 (FIG. 5).

In other embodiments, the battery holder 136 includes an on/off switch (such as the control button 22 discussed above), a fuel gauge that displays the amount of battery power remaining, and a user interface including heat zone controls to individually control the heating coils if multiple heating coils are employed.

FIG. 13 illustrates exemplary power tools and sensing devices with which the battery pack 38 may be usable. The battery pack 38 may be usable with power tools such as a drill 202, a pipe cutter 204, an impact driver 206, and a reciprocating saw 208. The battery pack 38 may also be usable with non-motorized sensing devices such as a visual inspection camera 212, an infrared sensor 214 (such as a thermometer or thermal imaging camera), a clamp-type multimeter 216, and a wall scanner 218 (such as a “stud finder”).

Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.

Claims

1. An article of clothing comprising:

a garment body;
a heater coupled to the garment body;
a battery holder defining a cavity;
a rechargeable battery pack configured for use with at least one of a power tool and a sensing device, the rechargeable battery pack slidably received within the cavity and detachably coupled to the battery holder by a latching arrangement;
a controller selectively providing power from the rechargeable battery pack to the heater; and
a user input member coupled to the garment body, the user input member for selecting a mode of the controller.

2. The article of clothing of claim 1, wherein the user input member is also configured for selecting a thermal output of the heater.

3. The article of clothing of claim 1, further comprising a display indicating a thermal output setting.

4. The article of clothing of claim 3, wherein the display is illuminated.

5. The article of clothing of claim 1, wherein the user input member includes a display indicating a thermal output setting.

6. The article of clothing of claim 5, wherein the display comprises a plurality of LED lights.

7. The article of clothing of claim 5, wherein the display further indicates a state of charge of the rechargeable battery pack.

8. The article of clothing of claim 1, wherein the user input member comprises a button.

9. The article of clothing of claim 1, wherein the user input member is coupled to an external surface of the garment.

10. The article of clothing of claim 1, wherein the garment body includes a pocket for receiving the battery holder and rechargeable battery pack.

11. The article of clothing of claim 1, wherein the rechargeable battery pack comprises a plurality of Li-ion battery cells.

12. The article of clothing of claim 11, wherein the rechargeable battery pack further comprises

a casing surrounding the plurality of Li-ion battery cells,
an end cap including a terminal, and
an outer housing including the latching arrangement.

13. The article of clothing of claim 12, wherein the latching arrangement includes latching tabs for engaging the battery holder.

14. The article of clothing of claim 1, wherein the controller monitors a state of charge of the rechargeable battery and de-energizes the heater in response to the state of charge.

15. A method of operating a garment heated by an electric heater, powered by a battery pack received by a battery holder, and controlled by a controller via a control input, the method comprising:

actuating the control input to cause the electric heater to enter a pre-heat mode;
maintaining the electric heater in a pre-heat mode for a first time period;
automatically switching the electric heater to a first thermal setting at the end of the first time period;
selectively switching the electric heater to a second thermal setting by actuating the control input.

16. The method of claim 15, further comprising selectively deenergizing the electric heater by actuating the control input.

17. The method of claim 15, further comprising monitoring a state of charge of the battery pack and automatically deenergizing the electric heater based upon a state of charge of the battery pack.

18. The method of claim 15, wherein the control input includes an illuminated portion, the method further comprising indicating a thermal setting with the illuminated portion.

19. The method of claim 19, wherein the battery pack comprises a plurality of lithium ion battery cells disposed within a housing, the housing including a latching arrangement for selectively coupling the battery pack to the battery holder.

20. An article of clothing comprising:

a garment body;
a heater coupled to the garment body;
a battery holder defining a cavity, the battery holder disposed within the garment body and electrically coupled to the heater;
a rechargeable battery pack slidably received within the cavity and detachably coupled to the battery holder by a latching arrangement;
a user input member coupled to the garment body; and
a controller for selectively providing power from the rechargeable battery pack to the heater in response to control signals from the user input member, the controller causing the heater to enter a pre-heat mode in response to a first signal from the user input member, maintaining the heater in the pre-heat mode for a first time period, automatically switching the heater to a first thermal setting at the end of the first time period, and selectively switching the heater to a second thermal setting in response to a second signal from the user input member.

21. The article of clothing of claim 20, wherein the rechargeable battery pack is configured for use with at least one of a power tool and a sensing device.

22. The article of clothing of claim 20, wherein the rechargeable battery pack comprises a plurality of Li-ion battery cells.

23. The article of clothing of claim 22, wherein the rechargeable battery pack further comprises

a casing surrounding the plurality of Li-ion battery cells,
an end cap including a terminal, and
an outer housing including the latching arrangement.

24. The article of clothing of claim 20, wherein the latching arrangement includes latching tabs for engaging the battery holder.

25. The article of clothing of claim 20, wherein the controller monitors a state of charge of the rechargeable battery and de-energizes the heater in response to the state of charge.

26. The article of clothing of claim 20, further comprising a display indicating a thermal output setting.

27. The article of clothing of claim 20, wherein the user input member includes a display indicating a thermal output setting.

28. The article of clothing of claim 20, wherein the user input member is coupled to an external surface of the garment.

Patent History
Publication number: 20110108538
Type: Application
Filed: Nov 5, 2010
Publication Date: May 12, 2011
Inventors: Rick Gray (Bothell, WA), Jonathan A. Zick (Waukesha, WI), Paul Fry (Sussex, WI)
Application Number: 12/940,429
Classifications
Current U.S. Class: Apparel (219/211)
International Classification: H05B 1/00 (20060101);