BREATHABLE COATED AND PERFORATED GLOVES

A protective glove includes a hand covering shell and a polymer coating that covers at least the palm area of the hand covering shell, wherein the coating has perforations in the palm area of the glove, and wherein the size of the perforations, the number of the perforations, and the overall area encompassed by the perforations provide breathability. These features provide an improved protective glove that keeps the hand at a lower temperature and causes less perspiration than existing gloves, but which still can provide a desired level of protection against cuts, abrasions, and/or puncture.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit under 35 USC §119(e) of provisional application Ser. No. 61/299,003, filed Jan. 28, 2010, entitled BREATHABLE COATED AND PERFORATED GLOVES, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to the field of coated or “rubberized” gloves.

BACKGROUND OF THE INVENTION

Protective gloves are commonly used by workers in many industries to prevent or minimize hand injuries. One popular type of protective glove is a knit glove made from yarns of cotton, aramids, Vectran steel wire, fiberglass, HDPE, polycotton, etc. Such knit gloves are often combined with a rubbery coating layer in and around the palm area, to provide grip and also for wear resistance. Another popular style of a glove is those that are cut and sewn together. These may also contain materials such cotton, aramids, Vectran, steel wire, fiberglass, HDPE, polycotton, etc. These might have a rubbery coating on the palm or a full dip coating. Usually, this coating consists of nitrile rubber, polyurethane, PVC, natural rubber or other coatings. The application of coating is usually done through a well-known dipping process. These gloves provide durability, cut protection and abrasion protection, as well as chemical, water or moisture resistance, while also maintaining the benefit of form-fitting and comfort of a knit construction. Typically, the coating used on the glove will cover an area of 30% to 100% of the total glove area.

SUMMARY OF THE INVENTION

A protective glove with a coating on it that covers some portion of the glove, but that has holes or perforations through the coating to allow the hand to breathe through the polymer coating thus increasing user comfort is provided. This produces a glove that has significantly better breathability and keeps the hand at a lower temperature and causes less perspiration than existing gloves, but still can provide the necessary cut, abrasion and/or, depending on the size of the perforations, puncture resistance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of the palm surface of a rubberized glove made in accordance with the present invention;

FIG. 2 is a view of the back of the glove; and

FIG. 3 is a view of the back of the glove with a portion of the back of the glove cut away to reveal the inside of the palm area of the glove.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Protective glove 1 comprises shell 10, which can be entirely knitted using an automatic knitting machine. Alternatively, shell 10 can be made by cutting a knitted fabric, a woven fabric, or a combination of knitted and woven fabrics into appropriate sections that are sewn or otherwise affixed together, generally along edges of the cut fabric sections. The yarns or fibers used to make shell 10 can be cotton, cotton/lycra, polyamide (Nylon), polyaramid (Kevlar®), ultra-high molecular weight polyethylene (UHMWPE, Spectra®, Dyneema®), glass, or other high performance fibers. Optionally, combinations of these fibers and sometimes steel fibers fiberglass can be used.

Shell 10 is sent through a dip-coating station to form polymer coating 11 on at least the palm portion of the glove. The glove is first placed over a three dimensional hand mold and is then dipped into a coating bath containing the uncured rubbery polymer. Afterwards, it is sent through an oven drying station for drying and final curing.

The preferred embodiment glove shown in FIGS. 1-3 has a palm coating, which covers predominantly the palm, the palm side of the fingers and the sides of the fingers up to the wrist. However in broader aspects of the invention, any level of dip coating may be used, including, but not limited to the three-quarter dip, which covers the fingers up to the first knuckle, and a full dip, which covers the palm, fingers and back of the hand completely.

The rubbery coating layer 11 comprises a nitrile rubber, polyurethane, PVC or natural rubber coating, or other comparable coating. It provides grip, keeps out dirt, provides puncture protection and provides added wear resistance.

The palm area of the almost completed glove is then perforated with holes 12, which can be of various sizes and locations. The perforations can be made using a variety of methods including, laser, mechanical die cutting, water jet cutting. The perforations or holes should be in the 0.001 mm to 20 mm size range. This does not eliminate the possibility that the sizes of the holes can be smaller or larger. Use can achieve a hole in different configurations. (i.e., round, square or any angle.)

Laser cutting may be used for cutting fabrics into panels or sections that are sewn or otherwise affixed together to make shell 10, and/or to create perforations 12. Laser cutting heats and singes the cut ends of the knit and/or woven fabric(s) that are cut into sections and sewn or otherwise affixed together along the edges of the sections to make shell 10 so there is less chance of unraveling of the glove structure. Laser cutting also eliminates the need to clean away debris. In laser cutting, the glove is placed on a fixture or glove former, and then the laser cuts a series of holes 12 in the gloves to provide the required ventilation. A laser perforator is disclosed in U.S. Pat. No. 5,550,346 to Andriash et al., issued Aug. 27, 1996.

Another method for creating the perforations is by a water jet system using a high pressure water to make perforations.

A third method for creating the perforations employs a die cutting operation.

The perforations 12 may extend only through the polymeric coating layer. This leaves the underlying knitted layer intact to provide protection for the user's palm, but still provide breathability through the knit structure. However, the perforations or holes 12 can extend through the knit structure 10, as well as the polymeric coating 11, as indicated by reference to FIG. 3. The holes 12 are sufficiently large in area to provide cooling and ventilation to the user's hand, but are sufficiently small that they do not diminish cut resistance, puncture resistance, abrasion resistance, and the like. If made sufficiently small, the holes can still provide a measure of protection against liquids. For smaller diameter holes, the perforations preferably extend through not only the polymerized coating, but also through the fabric layer, in order to minimize the possibility of portions of the fibers completely blocking ventilation through the smaller holes.

The holes or perforations in the palm of a given glove may all be of the same size, or they may be of varying sizes as shown in FIGS. 1 and 3. The number of holes and the overall area encompassed by the holes may vary as well. The size of the holes, the number of holes and overall area are selected to provide a balance between ventilation and breathability on the one hand, and cut resistance, puncture resistance, abrasion resistance and protection from liquids on the other hand.

Claims

1. A protective glove comprising:

a hand covering shell;
a polymerized coating covering at least the palm area of the shell, the coating having perforations in the palm area of the glove, wherein the size of the perforations, the number of the perforations, and the overall area encompassed by the perforations provide breathability.

2. The protective glove of claim 1 wherein the perforations extend through both the shell and the coating layer.

3. The protective glove of claim 1 wherein the perforations extend only through the polymeric coating.

4. The protective glove of claim 1 wherein the shell is comprised of a knit fabric.

5. The protective glove of claim 1 wherein the shell is comprised of a woven fabric.

6. The protective glove of claim 1, wherein the shell is comprised of a combination of knit and woven fabrics.

7. The protective glove of claim 1, wherein the shell is entirely knitted.

8. The protective glove of claim 1, wherein the shell is comprised of cotton and/or polyurethane fibers.

9. The protective glove of claim 1, wherein said shell comprises polyaramid fibers.

10. The protective glove of claim 1, wherein said shell comprises ultra high molecular weight polyethylene fibers.

11. The protective glove of claim 1, wherein said shell comprises glass fibers.

12. The protective glove of claim 1, wherein the outer rubbery coating comprises nitrile rubber.

13. The protective glove of claim 1, wherein the outer rubbery coating comprises polyurethane.

14. The protective glove of claim 1, wherein the outer rubbery coating comprises PVC.

15. The protective glove of claim 1, wherein the outer rubbery coating comprises natural rubber.

16. A method of making a protective glove, comprising:

selecting a glove shell;
applying a protective polymeric coating to some portion of said glove shell; and
creating perforations at least through the polymeric coating in the palm area of the glove, wherein the size of the perforations, the number of the perforations, and the overall area encompassed by the perforations are selected to provide breathability.
Patent History
Publication number: 20110179551
Type: Application
Filed: Jan 27, 2011
Publication Date: Jul 28, 2011
Inventor: Steven R. VanErmen (Grand Rapids, MI)
Application Number: 13/015,009
Classifications
Current U.S. Class: Work Glove (2/161.6); Rubber (2/168)
International Classification: A41D 19/015 (20060101); A41D 19/04 (20060101);