HEAT PUMP WATER HEATER
A heat pump water heater in which the number of components is small, a measure against drain pan freezing is realized with a simple structure, and a drain reservoir is difficult to be generated in the drain pan is obtained. This heat pump water heater is provided with a refrigerating cycle in which a compressor 1, a four-way valve 2 that switches a flow direction of a refrigerant, a water heat exchanger 3 that exchanges heat between the refrigerant and water, an expansion valve 4 that adjusts and decompresses a flow rate of the refrigerant, and an air heat exchanger 5 that exchanges heat between air and the refrigerant are connected sequentially by a refrigerant pipeline, a water circuit in which the water heat exchanger 3, a hot water tank 7 which reserves water heated by the water heat exchanger 3, and a pump 11 are connected sequentially, and a three-way valve 12 disposed between the pump 11 and the water heat exchanger 3 so that a water circuit flows to a lower-stage path 5a of the air heat exchanger and returns to the water heat exchanger 3, and a control portion that switches the three-way valve 12 of the water circuit so that high-temperature water in the hot water tank flows to the lower-stage path 5a of the air heat exchanger during defrosting operation is disposed.
Latest MITSUBISHI ELECTRIC CORPORATION Patents:
The present invention relates to a heat pump water heater which employs a reverse-type defrosting method.
BACKGROUND ARTIn a prior-art heat pump water heater which employs a reverse-type defrosting method, a method is proposed that freezing and growth on a drain pan of drained water dropped from the surface of an evaporator due to a defrosting operation function under a temperature condition of a low outside temperature is prevented by distributing a part of a high-pressure side refrigerant pipeline of a heat pump cycle or a part of a water pipeline for supplying hot water on the drain pan (See Patent Literature 1, for example).
CITATION LIST Patent Literature
- Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2004-218861 (pages 3 to 4, FIGS. 2, 4 to 5)
However, with the anti-freezing method using the drain pan of the above prior-art heat pump water heater, it is important to distribute the part of the high-pressure side refrigerant pipeline or the part of the water pipeline for supplying hot water in close contact on the drain pan for efficient heat transfer, but there is a problem that a mounting structure of the refrigerant pipeline or the water pipeline becomes complicated. Also, since the part of the high-pressure side refrigerant pipeline or the part of the water pipeline for supplying hot water is distributed on the drain pan, it is likely that a water discharge path of the drained water generated during the defrosting operation is blocked by the distributed refrigerant pipeline or the water pipeline or a gradient of the water distribution path becomes difficult, whereby a drain reservoir might be generated, which is a problem.
The present invention was made in order to solve the above problems and has a first object to obtain a heat pump water heater provided with a drain pan anti-freezing method with a smaller number of components and in a simple structure.
A second object of the present invention is to obtain a heat pump water heater provided with a drain pan anti-freezing method in which a discharge path of the drained water generated during the defrosting operation is not blocked and a drain reservoir is difficult to be generated.
Solution to ProblemA heat pump water heater according to the present invention is provided with a refrigerating cycle in which a compressor, a four-way valve that switches a flow direction of a refrigerant, a water heat exchanger that performs heat exchange between the refrigerant and water, an expansion mechanism that adjusts a flow rate of the refrigerant and decompresses, and an air heat exchanger that performs heat exchange between the air and the refrigerant are sequentially and circularly connected by a pipeline, a water circuit in which the water heat exchanger, a hot water tank that reserves water heated by the water heat exchanger, and a pump are sequentially and circularly connected by a pipeline, a water channel pipeline disposed in a lower stage of the air heat exchanger, a path switching valve disposed in the water circuit between the pump and the water heat exchanger, a bypass circuit connected between the path switching valve and an inlet of the water channel pipeline and connecting an outlet of the water channel pipeline to the water circuit between the path switching valve and an inlet of the water heat exchanger, and a control portion that executes switching control of the four-way valve and the path switching valve, in which the control portion switches the flow direction of the refrigerant in the refrigerating cycle by switching the four-way valve on the basis of predetermined information during the defrosting operation and allows high-temperature water in the hot water tank to flow through the water channel pipeline of the air heat exchanger via the bypass circuit by switching the path switching valve.
Advantageous Effects of InventionIn the heat pump water heater according to the present invention, since freezing of the drain pan is prevented by circulating the high-temperature circulating water in the hot water tank to a lower-stage path in the air heat exchanger during the defrosting operation and by heating the drained water generated in an upper stage of the air heat exchanger and then allowing it to flow into the drain pan, there is no need to distribute the part of the high-pressure side refrigerant pipeline or the part of the water pipeline for supplying hot water on the drain pan, which has an advantage that the mounting structure is simplified.
Also, since the part of the high-pressure side refrigerant pipeline or the part of the water pipeline for supplying hot water is not distributed on the drain pan, the discharge path of the drained water is not blocked, the drain reservoir is hardly generated, and the drained water is smoothly drained, which has an advantage that cooling and freezing of the drained water in the drain reservoir during the heating operation is suppressed.
As shown in
A water circuit 10 between the water heat exchanger 3 and a hot water tank 7 is connected at a water-outlet side connection joint 8 and a water-inlet side connection joint 9, and water is circulated by a pump 11. Between the water-inlet side connection joint 9 and the water heat exchanger 3, a three-way valve 12 that switches to the water heat exchanger 3 during a heating operation and to the water circuit 10 so as to be connected to the water heat exchanger 3 via a lower-stage path 5a of the air heat exchanger during the defrosting operation is disposed. The three-way valve 12 constitutes a path switching valve. Also, the lower-stage path 5a of the air heat exchanger constitutes a water channel pipeline. Also, a bypass circuit 14 is constituted by connecting the three-way valve 12 (path switching valve) to an inlet of the lower-stage path 5a of the air heat exchanger (water channel pipeline), and connecting an outlet of the lower-stage path 5a of the air heat exchanger (water channel pipeline) to the water circuit 10 between the three-way valve 12 (path switching valve) and an inlet of the water heat exchanger 3.
Also, bold arrows in
In
Reference numeral 25 designates a four-way valve driving portion, which drives switching of the four-way valve 2 on the basis of an instruction from the control portion 24. Also, reference numeral 26 designates a three-way valve driving portion, which drives switching of the three-way valve 12 on the basis of an instruction from the control portion 24. Reference numeral 27 designates a communication portion, which receives setting information from a remote controller (hereinafter referred to as remote in some cases) 28 and transmits it to the control portion through the input/output bus 24.
The lower-stage path 5a of the air heat exchanger constitutes a water channel pipeline.
Subsequently, a behavior of Embodiment 1 will be described.
While a power switch of the water heater is on, an operation of the water heater is performed, but since this operation is not related to the present application, it will not be described here. During the operation of the water heater, processing shown in
In the heat pump water heater, if an operation is performed at a low outside temperature, the air heat exchanger 5 which works as an evaporator performs heat exchanger between the air and a refrigerant becomes a low temperature at 0° C. or below, the air passing through the air heat exchanger 5 is cooled, and moisture in the air is condensed on surface of the air heat exchanger 5 and forms frost, which blocks the air passage. In order to ensure preferable performance of the air heat exchanger 5, an operation to remove the frost adhering to the surface of the air heat exchanger 5 is needed, and the defrosting operation should be performed. As for the defrosting operation, if a defrosting operation start instruction signal is transmitted from the remote controller 28 on the basis of a manipulation of the remote controller by a user and this instruction is received by the control portion 21 sequentially through the communication portion 27 and the input/output bus 24, the control portion 21 recognizes the defrosting operation start by this instruction signal, controls the four-way valve driving portion 25 and the three-way valve driving portion 26 on the basis of defrosting operation information set in the memory 22 in advance and switches the four-way valve 2 and the three-way valve 12 (Steps S304 to S305). Then, the control portion 21 drives the compressor 1 and starts the defrosting operation (Step S306). At the same time, a timer is counted and the defrosting operation is continuously performed until a predetermined time has elapsed (Steps S307 to S308). By means of this defrosting operation, the frost adhering to the surface of the air heat exchanger is heated and becomes drained water, which drops onto the drain pan 13 running down on the fin, flows through a water discharge groove of the drain pan 13 and is discharged to the outside of the unit through a water outlet. After a predetermined time has elapsed, the control portion 21 switches the four-way valve 2 and the three-way valve 12 back to the original positions and further stops the compressor so as to stop the defrosting operation (Step S309) and finishes the processing. After that, the operation of the water heater is performed.
As described above, by allowing the high-temperature water supplied from the hot water tank 7 to flow to the lower-stage path 5a of the air heat exchanger by switching the three-way valve 12 during the defrosting operation, the drained water running down on the fin is heated in the lower stage of the air heat exchanger 5 so that the drained water can be prevented from freezing on the drain pan 13.
In the above example, the case in which the defrosting operation is instructed by the remote controller 28 has described, but it is needless to say that the instruction can be made by a switch operation on an operation panel on the main body side of the water heater.
Also, it may be so configured that the defrosting operation is started automatically if the control portion 21 calculates operation efficiency of the heat pump water heater resulting in equal or less than predetermined operation efficiency or if the temperature of hot water in the water heater is not raised to a predetermined temperature or above.
Subsequently, an operation of the control portion 21 in that case will be described.
Subsequently, the behavior of the control portion 21 wily be described using
The control portion 21 sets an initial value (Step S301) and then calculates operation efficiency of the heat pump water heater (Step S401). As a calculation method of the operation efficiency, a known method is used. For example, the operation efficiency is calculated on the basis of a rotation speed of the compressor 1. This rotation speed of the compressor 1 is detected by a rotation detector, not shown, mounted on a rotation shaft of the compressor 1. Alternatively, the rotation speed of the compressor 1 may be calculated on the basis of an output of an inverter output current detector, not shown, using the current detector (such as a current transducer and the like), not shown.
Subsequently, the control portion 21 compares the calculated operation efficiency with a predetermined reference value set (Step S402). If the operation efficiency is not less than the reference value, the routine returns to Step S401, where the calculation of the operation efficiency and the comparison with the reference value are repeated. In the comparison at Step S402, if the operation efficiency falls below the predetermined reference value set, an operation is performed similarly to Step S304 and after in
As a result, since the defrosting operation is performed automatically, users don't have to make manipulation to instruct the defrosting operation. Also, since the defrosting operation is performed reliably, an efficient operation is made possible all the time.
Embodiment 2By disposing the water heat exchanger 3, the lower-stage path 5a of the air heat exchanger, and the water-inlet side connection joint 9 in the vicinity of the three-way valve 12 used for switching of the water circuit during the defrosting operation, a piping length of the water circuit 10 that connects them to each other can be made shorter and simple in configuration, and a manufacturing cost can be kept low.
Also, by disposing the three-way valve 12 used for switching of the water circuit during the defrosting operation on the inlet side of the water heat exchanger 3, the high-temperature water circulated from the hot water tank 7 in the water heat exchanger 3, which is an evaporator during the defrosting operation, can be supplied to the lower-stage path 5a of the air heat exchanger without lowering the temperature.
Also, at the fin disposed in the air heat exchanger 5, by eliminating a cut-and-raised portion of the fins in the path portion through which the refrigerant flows, water removal performance of the fin in the periphery of the path portion, which becomes an evaporator during heating operation and through which the low-temperature refrigerant flows, is improved, and growth of frost can be suppressed.
REFERENCE SIGNS LIST
-
- 1 compressor
- 2 four-way valve
- 3 water heat exchanger
- 4 electronic expansion valve
- 5 air heat exchanger
- 5a lower path of air heat exchanger
- 6 refrigerant pipeline
- 7 hot water tank
- 8 water-outlet side connection joint
- 9 water-inlet side connection joint
- 10 water circuit
- 11 pump
- 12 three-way valve
- 13 drain pan
- 14 bypass circuit
- 21 control portion
- 22 memory
- 23 ROM
- 24 input/output bus
- 25 four-way valve driving portion
- 26 three-way valve driving portion
- 27 communication portion
- 28 remote controller
Claims
1. A heat pump water heater, comprising:
- a refrigerating cycle in which a compressor, a four-way valve that switches a flow direction of a refrigerant, a water heat exchanger that performs heat exchange between said refrigerant and water, an expansion mechanism that adjusts a flow rate of the refrigerant and decompresses, and an air heat exchanger that performs heat exchange between the air and the refrigerant are sequentially and circularly connected by a pipeline;
- a water circuit in which said water heat exchanger, a hot water tank that reserves water heated by said water heat exchanger, and a pump are sequentially and circularly connected by a pipeline;
- a water channel pipeline disposed in a lower stage of said air heat exchanger;
- a path switching valve disposed in the water circuit between said pump and said water heat exchanger;
- a bypass circuit connected between said path switching valve and an inlet of said water channel pipeline and connecting an outlet of said water channel pipeline to the water circuit between said path switching valve and an inlet of said water heat exchanger; and
- a control portion that executes switching control of said four-way valve and said path switching valve, wherein
- said control portion switches a flow direction of the refrigerant in said refrigerating cycle by switching said four-way valve on the basis of predetermined information during defrosting operation and allows high-temperature water in said hot water tank to flow through the water channel pipeline of said air heat exchanger via said bypass circuit by switching said path switching valve.
2. The heat pump water heater of claim 1, further comprising
- a drain pan that collects drained water heated by the water channel pipeline of said air heat exchanger and dropped from said air heat exchanger, in the lower part of said air heat exchanger.
3. The heat pump water heater of claim 1, wherein
- a cut-and-raised portion is not disposed in the fin of the water channel pipeline portion of said air heat exchanger.
4. The heat pump water heater of claim 1, wherein
- in the vicinity of said channel switching valve, said water heat exchanger, the water channel pipeline of said air heat exchanger, and a circuit connection joint on the water inlet side are disposed.
5. The heat pump water heater of claim 1, wherein
- said path switching valve is disposed on the inlet side of said water heat exchanger.
6. The heat pump water heater of claim 1, wherein
- said path switching valve is a three-way valve.
7. The heat pump water heater of claim 1, wherein
- said control portion executes defrosting operation on the basis of an instruction from a user.
8. The heat pump water heater of claim 1, wherein
- said control portion executes the defrosting operation when efficiency falls below a reference value set in advance.
Type: Application
Filed: Jun 30, 2009
Publication Date: Sep 8, 2011
Applicant: MITSUBISHI ELECTRIC CORPORATION (Chiyoda-ku)
Inventor: Hideki Yoshii (Tokyo)
Application Number: 13/127,345
International Classification: F25B 30/02 (20060101); F25B 13/00 (20060101);