BALANCE TRAINING SYSTEM
Balance training systems and methods are disclosed. A balance training system is disclosed, comprising: a lower member having a ground contacting surface and an upward facing surface; an upper member having a foot receiving surface and a downward facing surface; the upward facing surface and the downward facing surface being shaped for contact with each other; and the upper member having a balance position when a balance point on the upper member is in contact with the lower member. A balance training system is also disclosed comprising a first platform having a top surface (ground plane) which supports the user's weight, a support having flexible and/or compressible upward facing surface in contact with a downward facing surface of the first platform, the ground plane being within 0.5″ of the top surface of the flexible and/or compressible upward facing surface to reduce or prevent horizontal movement of the ground plane when the first platform changes angle. A balance training system is further disclosed, comprising a first platform having a top surface (ground plane) that supports the user's weight, a curved downward facing convex surface of the first platform, the top surface being aligned within ½″ of the downward facing curved surface.
Balance training systems, useful for a variety of sports in which a person requires balance in order to effectively play the sport.
BACKGROUNDThe ability to maintain one's balance is critical to sports performance and every day living. There are a number of different ways that humans naturally maintain their balance.
There are three main modes of balance correction employed by humans. For simplicity of explanation, all examples here are for a static standing mode. Rotational acceleration of body mass is used for angular attitude correction. In this mode of balance correction, rotational arm swing acceleration is most commonly used to cause a rotational acceleration of the body in the opposite direction. CG (Center of Gravity) correction is used to move the CG over top of the desired CF (Center of Force). This is commonly accomplished naturally by humans at low disturbance levels by moving the hips horizontally to keep the CG as directly over the preferred CF as possible. Platform correction is used to keep the preferred CF under the CG without necessarily moving the CG. At high disturbance levels, this can involve taking a step forward or backward or sideways to move the platform back under the user's displaced CG to “catch one's balance.” At low disturbance levels, simply changing the CF of the foot contact area is all that is necessary to keep the CF as close as possible to below the CG. This can be accomplished by applying more pressure to the toes or the heels or one or the other sides of the foot.
Various combinations of these modes can be used at the same time. CG correction is the most natural method of balance correction and requires low amounts of energy. It is, however, not the ideal mode of balance correction for many sport activities because it requires movement of the upper or entire body system which can affect the precision of the movement and power transfer through the upper body.
SUMMARYPlatform correction is the ideal mode of balance correction for many aspects of many sports such as, but not limited to, golf and basketball because it can be accomplished by simple and precise ankle movements which resulting a change of the CF under the feet and cause minimal disturbance on the rest of the body. This stable platform generated from the ground up, allows higher precision and power transfer through the rest of the body. This allows the upper body movement to be dedicated more completely to the task rather than detracting from the task by also using the upper body for maintaining balance.
According to an embodiment, there is provided a balance training system, comprising a lower member having a ground contacting surface and an upward facing surface having an apex, the ground contacting surface providing stabilization of the lower member against tilting; an upper member having a foot receiving surface and a downward facing surface; the upward facing surface and the downward facing surface being shaped for contact with each other; and the upper member providing a support for a person to train balancing when a point or area on the upper member is in contact with the apex of the lower member. The upward facing surface and the downward facing surface may be shaped for rolling contact with each other. Preferably, one or more portions of one or both of the upward facing surface and the downward facing surface are convex and the upward facing surface and the downward facing surface are shaped for contact with each other at least along the one or more portions of one or both of the upward facing surface and the downward facing surface. The ground contacting surface may also provide resistance against rotation.
In an embodiment, the downward facing surface has a first radius of curvature at the balance point or is flat with infinite radius of curvature; the upward facing surface has a second radius of curvature at the apex; and the second radius of curvature is smaller than the first radius. The balance training system may include a stability zone or rocker zone. The balance training system may be for one foot, or two, and may have more than one surface contact forming the contact interface between upper and lower members.
In an embodiment, there is provided a balance training system, comprising a first platform having a top surface (ground plane) which supports the user's weight, a tilting support which allows the first platform to change angle, the tilt axis being aligned or nearly aligned with the top surface of the first platform to reduce or prevent horizontal movement of the ground plane when the first platform changes angle.
In an embodiment, there is provided a balance training system comprising a first platform having a top surface (ground plane) which supports the user's weight, a support having flexible and/or compressible upward facing surface in contact with a downward facing surface of the first platform, the ground plane being within 2″, 1″, ½″, ¼″ of the top surface of the flexible and/or compressible upward facing surface to reduce or prevent horizontal movement of the ground plane when the first platform changes angle.
In an embodiment, there is provided a sliding or rolling sport balance training system with a single or multi-direction tilting platform resting on a member which is able to move freely in one or more directions.
In an embodiment, there is provided an angle change platform with a flat or curved downward facing surface in rolling contact with a lower member stabilized against titling and having a convex upward facing surface. The combination of lower member curved surface and upper member curved surface may include an area of greater radius curvature at or near the apex of the lower member surface than the areas on one or more sides of the larger radius curvature, which results in a “stability zone” when the platform is horizontal or near horizontal where the CG of the user does not advance ahead of the contact point, when the platform tilts and the position of the users center of gravity does not change relative to the platform, at all or as much as when the contact point is in the correction zone/s on one or more sides of the stability zone.
The upper and lower members forming the angle change platform or balance training system may be made of compressible material, and may be biased relative to each other by a spring force. A relatively thin upper member is preferred. In another embodiment, a balance training system is provided comprising a first platform having a top surface (ground plane) which supports the user's weight, a curved downward facing convex surface of the first platform, the top surface being aligned within 2″, 1″, ½″, ¼″ of the downward facing curved surface.
In another embodiment, there is provided a balance training system, comprising: an upper member having a foot receiving surface and a downward facing convex surface; the upper member providing a support for a person to train balancing on when a point or area on a contact zone of the upper member is in contact with a supporting surface; and the contact zone having an apex and a changing curvature across the contact zone. The contact zone may have a greater curvature member at an apex of the contact zone than at areas surrounding the apex. The contact zone may have a first curvature in a first direction away from the apex and a second curvature, different from the first curvature, in a second direction away from the apex. A lower member may comprise the supporting surface. The lower member may have portions that allow the lower member to slide or roll on a surface.
A balancing method is also provided, and the device may be used for golf swing training, golf putting stroke training, baseball swing training, balance or stability training, rehabilitation, basketball shooting training, or sports movement training
These and other aspects of the device and method are set out in the claims, which are incorporated here by reference.
Embodiments will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
Immaterial modifications may be made to the embodiments described here without departing from what is covered by the claims. The following features may be present in one or more of the disclosed embodiments. The balance training system may be used to train the user to maintain balance and stability through movement of the lower extremities such as the ankles and knees instead of by moving the upper extremities such as the hips and arms. This offers a significant advantage to athletes in many sports where balance correction in the lower extremities has been shown to result in a reduction of balance related movement in the upper extremities; this allows the upper extremities to achieve more precise and consistent movements. This has been shown to be noticeably and measurably beneficial in sports such as, but not limited to golf, basketball and skating sports. Increased stability through lower extremity balance correction has also been shown, through experimentation, to have a noticeable effect on the rehabilitation of unstable lower extremity injuries.
The balance training system is believed to cause the user to make intuitive/instinctive balance corrections using ankle movement instead of CG or other balance mode corrections. It does this by creating an artificial regulated instability in the direction of imbalance which, in order to maintain or regain balance in embodiments where the balance axis passes through both feet in a normal stance (feet side by side, approximately shoulder width), requires the user to push down more on the toes or the heels or one or the other sides of their feet.
Another feature believed by the inventor to occur in use of at least some of the disclosed embodiments of the balance training system is the minimization or elimination of extraneous horizontal movement of the users feet as the platform changes angle. This is done by constructing the balance training system in such a way as to position the rolling or pivoting contact of the platform as close as possible to the vertical position of the sole of the users shoes or feet. This is the “ground plane” effect and it serves to train the same proprioceptive feedback as when the user is standing on solid ground. This is the ideal scenario for a balance training device because it simulates, as closely as possible, the forces and movements that are required in actual life or sport performance.
Another feature of embodiments of the balance training system is a stability zone which is perceptible to the user when the platform is at or near horizontal. This stability zone is a larger radius curvature (as compared to the curvature outside the stability zone, that feels similar to a flat spot to the user. It helps the user to recognize where the desired platform position is and trains the lower extremities to search for and maintain that position.
This “stability zone” provides a positive feedback to the user to make them aware of when they are in the correct position. The size of the stability zone can be set or adjusted for easier balance training with a larger stability zone, or more precise balance training with a smaller stability zone.
By standing on the platform (and especially if also practicing certain athletic motions such as a golf swing) the user is trained to adjust their foot pressure to keep their center of gravity in a very controlled position without the need to move their upper body.
A convex or concave or irregular surface 16 can also be used as long as the upward facing surface 10 is designed to mesh with the downward facing surface 16 in such a way that the net effect of the surface engagement results in a similar effect to a convex upward facing surface 10 and flat downward facing surface 16. The combination of upward facing convex surface 10 and downward facing surface 16 shape result in the platform 14 being unstable enough to require movement of the user's ankles to correct his or her balance, but not so unstable as to require upper body movements such as movement of the arms. It can be seen that as the platform 14 changes angle, the contact point (or line or patch) between the lower member 36 and the downward facing surface 16 travels along the convex surface 10. Thus, as the platform changes angle, the contact point/s or line/s or area/s between the lower member and the downward facing surface travels with a horizontal component along the convex surface. In some embodiments, the contact point (or line or patch) between the lower member and the downward facing surface travels a greater distance for a given platform angle change in a first direction than it does for a platform angle change in a different direction. In some embodiments, the contact point (or line or patch) between the lower member and the downward facing surface travels a greater distance for a given platform angle change in a first direction than it does for a platform angle change in a different direction that is 90 degrees to the first angle.
This artificial regulated instability is achieved and defined in the following manner as illustrated schematically in
In
If the user does nothing to correct this imbalance, he will fall forward off the platform. The vast majority of users will, however, naturally and instinctively sense that they can regain their balance by pushing down on their toes 42. This results in a rolling/tilting of the platform 14 in the direction of the user's imbalance as shown in
With a properly designed balance training system as disclosed in this document, the user will sense that they are off balance in a direction (for example, forward) and naturally push down on their toes to compensate. The further they are off balance, the greater the angle they must use (or, in some embodiments, the more force they must exert) to bring their CF 34 under the CG 26 (to maintain balance) or past the CG 48 (to correct balance). This taps into the body's natural, but often unrefined, ability to maintain balance by changing the position of the center of force under the feet. It also trains the vestibular system and the proprioceptive systems to anticipate and make as small of corrections as possible (from the ankles only) in order to keep the CF 23 under (or as close as possible to under) the CG 18.
It has been shown by experimentation that users who have used this balance training system for as short as a minute or two, immediately feel an improvement in their balance and stability when they step off the balance system and onto solid ground. The ankle movement muscles and proprioceptive nerve systems which have been trained on the balance system disclosed herein react noticeably more precisely and quickly to any user imbalance and make it unnecessary, for low level disturbances, to resort to balance modes other than fine platform balance correction by changing the CG position under their foot or feet. This leaves the user's upper body free to complete sport or life activity movement with more precision, power and safety.
The curvature of the upper or upward facing surface 10 allows this effect to be natural and effective for the user. Too small of an arc radius on surface 58 and CG correction or rotational inertia balance correction modes will be naturally recruited by the user. Too large of an arc radius and the angle change platform becomes too stable and does not require platform correction, by platform 60 angle change relative to the user, to maintain balance.
It has been found through experimentation that an effective curvature in one or more directions for a range of users from adults to children is a 25 cm radius arc for the upward facing surface 10 (or the effective arc of the combination of the surface 10 and surface 16), for example when used as a forward/backward single direction rolling/tilting platform 14. A smaller radius is more challenging and a surface 10 radius as small as 7 cm is challenging for a trained athlete in the forward/backward direction while a radius as small as 1 cm has been shown to be highly challenging for a trained athlete in the lateral direction for a single foot balance training system as disclosed here. A larger radius arc for surface 10 (or the effective arc of the combination of the surface 10 and surface 16) is less challenging but possible. If the arc is significantly larger than 25 cm, the user may no longer need to change the platform 14 angle to maintain balance and the system may not work according to the principles of the balance training system disclosed here.
Referring to
An example is given in this disclosure of an ideal combination of arc radiuses for a golf balance training device. This curvature has been found to work well for many other activities such as, but not limited to, for rehabilitation for sprained ankles Other combinations or single curvatures can be determined for specific activities by experimentation using the basic guidelines described in this disclosure.
A preferred combination of curvatures which has proven to be effective for a range of users from adults to children is a 25 cm radius arc for the correction zone 63 on one or both sides of the stability zone 64 and a 75 cm radius arc stability zone 64 with a width (or more specifically, an arc length) of 2.5 cm. The intersections of these arcs preferably have a smooth transition, such as a radius of 10 cm to blend the motion from the correction zone arcs to the stability zone arc.
A wider stability zone will make for a more forgiving but less precise training device.
In
A similar but less precise effect can be achieved by using a platform with no offset by using a very thin cross section where it contacts the upward facing surface 10. This brings the “ground plane” 92 as close as possible to the radiused contact surface 10 without the cost or complexity of an offset member 90. Cross section areas have been used successfully with a thickness of between 5 mm and 10 mm. Thinner or thicker may also be used but as the platform becomes significantly thicker than 10 cm, the performance and effect are noticeably reduced.
In
In
In
In
In the simplified embodiment shown schematically in
The lower density foam 102 (or other compressible member such as extension and/or compression springs and/or elastics) requires more force to change the angle of the platform when the platform is significantly angulated from horizontal. “Significantly” in many applications may be for example approximately 2 degrees, although greater or lesser angles may be useful for certain types of training.
The platform is preferably as thin as possible to bring the ground plane (AKA top of platform) aligned as close as possible with the upper surface/s of the lower member/s.
A more compressible material or combination of materials such as foam or springs is preferably, but not necessarily, used on one or more sides of the semi-rigid member/s to provide an increasing supportive force as the platform angle changes. These outer member/s 102, will preferably have a greater supportive force in one or more tilting directions as compared to other tilting directions depending on the specific application. The foam or other compressible material can also be used to prevent angle change platform from sliding on stability zone member 100 when the platform is at an angle.
It should be noted that the semi rigid, but not necessarily curved upper surface, of member 10 as shown in
The foam, or other material or combination of materials can also be used to adjust the stability of the balance training system by using interchangeable members 120 with different compressibility or by adding or subtracting members to achieve various levels of force required to change the angle of the platform.
A more compressible material or combination of materials such as foam or springs 128 is preferably, but not necessarily, used on one or more sides of the rigid or semi-rigid member/s 126 to provide an increasing supportive force as the platform angle changes. These outer member/s 128, will preferably have a greater supportive force in one or more tilting directions, such as but not limited to forward and backward, as compared to other tilting directions, such as but not limited to side to side, depending on the specific application and balance or stability training purpose. The foam or other compressible material 128 can also be used to prevent the angle change platform from sliding sideways on the lower member 126, 100 when the platform 14 is at an angle.
It should be noted that the rigid or semi-rigid member 114,122 as shown in
In the schematic section view in
In
The upper surface 10 of the lower member 136 in this embodiment is preferably, but not necessarily a compressible or deformable material so the flat spot that is inherent in this embodiment will feel less abrupt to the user and therefore more challenging to sense.
Other methods of preventing the platform from sliding on the lower member include, but are not limited to, gear teeth, such as but not limited to, involute gear teeth on the upward facing surface 10 of the lower member 36 and the bottom surface 16 of the platform 14 or offset member 88 of the platform 90 and/or movement tangent to the curved upward facing surface 10 of the lower member 36. These gear teeth can even be circular or non circular but extending around the apex, or near the apex, in such a way that the platform 14 can tilt in any direction and not slide. An elastic member at the apex which pulls the platform toward the lower member is preferable for this and other embodiments for certain applications of this balance training system.
Other methods of preventing the platform from sliding on the lower member include, but are not limited to grip surfaces or roughened surfaces and or rough or uneven mating surfaces on the upward facing surface of the lower member 10 and/or the downward facing surface of the platform 14 or offset member 88.
In
In this embodiment, there are preferably non elastic cables or cords or strapping 140 that is attached to one side 141 of the platform 14 and the opposite side 143 of the lower member 36. An opposing non elastic cable or cord or strap is attached to the other side of the platform 14 and the other side of the lower member 36 so each of the two non-elastic members 140 secures the platform in one of two directions. These crossed flexible members, such as cables, embodiment prevents horizontal movement of angle change platform.
This allows the platform 14 to roll with very little friction on the curved upward facing surface 10 of the lower member 36 without sliding.
An adjustable difficulty system is also shown in this embodiment. A spring 144 or elastic element is used to create an elastic force between the platform and the apex of the upward facing surface 10 of the lower member 36. This elastic force is preferably adjustable to create a more stable platform by increasing the spring or elastic member tension. This elastic member 144 tension can be used on any of the embodiments of the BTS included in this patent application. As shown, the upper member and lower member of the balance training system of
In
The guide member 150 is secured to the lower fixed member (in this embodiment example) and allows platform 14 to change angle without sliding in the direction of angle change.
A multi-directional embodiment of the BTS is shown in
The angle change platform 14 is as thin as possible in the area of the platform which is contacting the lower member 118 to reduce horizontal movement of the ground plane during angle change of the platform.
Foam 120 is optional and can also be used to prevent the angle change platform from sliding when platform is at an angle.
Wheels, rollers, or sliders 152, shown here schematically, can be also used to allow movement in one or more directions for certain applications such as, but not limited to, a ski or skating balance training device to more accurately simulate that movement with the BTS. Wheels or rollers or other sliding mechanisms are not preferable in many applications such as for sports where sliding or rolling is not part of the normal movement.
In
In
For all of the embodiments disclosed here, the curved contacting surfaces can be an arc or combination of arcs or a parabolic or elliptical section or freeform surface which approximates the general principles of the BTS as described here.
For all of the embodiments in this disclosure with multiple direction angle change capability, it may be advantageous to have a stability zone/s with different characteristics in different directions. One example would be a single foot balance disk with a smaller stability zone in the side to side direction than in the front to back direction.
For all embodiments in this disclosure, it is preferable that the ground plane which supports the user's weight be aligned or nearly aligned (i.e. aligned more closely than if the angle change platform had no offset as shown in
In
It should be noted that the instantaneous center of rotation is preferred but not necessarily, as shown in
The BTS has been found to be very effective in training balance and stability. One of the main reasons is the proximity of the instantaneous center of rotation, as defined by the contact point or line or points between the upward facing surface of the lower member and the downward facing surface of the platform, with the ground plane which the user is standing on. It has been found by experimentation that a distance of ¼″ or less is preferable between the instantaneous center of rotation and the ground plane when the ground plane is horizontal. Large distances, for example 2″ 1″ or ½′ are less effective but still of benefit for certain balance training uses. In relation to
Another reason of the effectiveness of the balance training system is that the curved convex surface is fixed while the flat surface it rolls against is what changes angle during use. In some cases, the platform will also have a curved contact surface. In this case, the contacting member which has the smallest average radius of curvature in the area of contact during normal use is the fixed member.
A skate training specific embodiment of the balance training system is shown schematically in
In addition, a low friction interface with the ground or a lower surface 202 such as, but not limited to wheels 206 is preferable to allow low friction movement in the direction of the skate blade to recruit other balance and stability modes which are common to skating. The rolling member 200 is preferably self centering in some applications by soft springs 208 and or by a slightly concave rolling surface 202. The skate specific trainer can be used with or without a stability zone on the apex of the articulating member. Compressible members 204 can be used to increase the ease of use.
In
Other uses for this embodiment, preferably with less offset between the ground plane and the contact point, would include, but not be limited to, for cross country skiing.
One or more of the features for various effects disclosed herein can be combined to achieve various effects.
The balance training system may have tactile feedback systems to alert the user to an out of balance situation include lights, audible feedback, increasing vibration, or perceptible bumps that engage more dramatically as the user changes the angle of the platform at a greater angle from the stability zone.
In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite article “a” before a claim feature does not exclude more than one of the feature being present. Each one of the individual features described here may be used in one or more embodiments and is not, by virtue only of being described here, to be construed as essential to all embodiments as defined by the claims.
Claims
1. A balance training system, comprising:
- a lower member having a ground contacting surface and an upward facing surface, the ground contacting surface providing stabilization of the lower member against tilting;
- an upper member having a foot receiving surface and a downward facing surface;
- the upward facing surface and the downward facing surface being shaped for contact with each other; and
- the upper member providing a support for a person to train balancing on when a balance point, line or area on one of the upper member and the lower member is in contact with a respective apex of the lower member or the lower member.
2. The balance training system of claim 1 in which the upward facing surface and the downward facing surface are shaped for rolling contact with each other.
3. The balance training system of claim 2 in which one or more portions of one or both of the upward facing surface and the downward facing surface are convex and the upward facing surface and the downward facing surface are shaped for contact with each other at least along the one or more portions of one or both of the upward facing surface and the downward facing surface.
4. The balance training system of claim 1, in which the upper member and lower member have a contact interface configured to provide differential tilting in a first direction and a second direction different from the first direction.
5. The balance training system of claim 4 in which:
- the downward facing surface has a first radius of curvature at the balance point, line or area or is flat with infinite radius of curvature;
- the upward facing surface has the apex and a second radius of curvature at the apex; and
- the second radius of curvature is smaller than the first radius.
6. The balance training system of claim 5 in which one or both of the upward facing surface and the downward facing surface includes a stability zone formed by the respective upward facing surface or the downward facing surface having decreasing radius of curvature with distance from the respective apex or balance point.
7. The balance training system of claim 6 where the stability zone is formed by a flat or concave area in the upward facing surface.
8. The balance training system of claim 5 in which one or both of the upward facing surface and the downward facing surface includes a rocker zone formed by the respective upward facing surface or the downward facing surface having increasing radius of curvature with distance from the respective apex.
9. The balance training system of any one of claim 3 in which the one or more convex portions are spaced on either side of the foot receiving area of the upper member.
10. The balance training system of claim 1 in which the lower member comprises compressible material.
11. The balance training system of claim 1 where the upper member is biased to a position by a spring force.
12. The balance training system of claim 11 where the spring force is adjustable.
13. The balance training system of claim 1 in which the foot receiving surface of the upper member is vertically spaced from the downward facing contact surface by less than 2″, 1″, ½″ or ¼″.
14. The balance training system of claim 1 in which the upper member has rolling contact with the lower member in only one direction.
15. The balance training system of claim 1 in which the upper member has rolling contact with the lower member in more than one direction.
16-17. (canceled)
18. The balance training system of claim 1 in which the foot receiving surface is recessed downward to be level with the contact between the upper member and the lower member.
19. (canceled)
20. A sliding or rolling sport balance training system with a single or multi-direction tilting platform resting on a member which is able to move freely in one or more directions.
21. An angle change platform with a flat or curved downward facing surface in rolling contact with a lower member having a convex upward facing surface and the lower member being stabilized against tilting.
22-31. (canceled)
32. The angle change platform of claim 21, comprising a first platform having a top surface (ground plane) which supports the user's weight, a support having at least a convex upward facing surface in rolling contact with a flat or curved downward facing surface of the first platform, the top surface being aligned or nearly aligned with the top surface of the convex upward facing surface.
33. The angle change platform of claim 21 where the platform is only able to change angle on one plane.
34. The angle change platform of claim 21 in which the platform is able to change angle on more than one plane.
35. The angle change platform of claim 21 where at least one of the contacting surfaces is a compressible or deformable material of less than 100 Shore A durometer that compresses or deforms under the weight of the user.
36. (canceled)
37. The angle change platform of claim 21 where the ground plane is aligned with the angle change means in such a way as to minimize the horizontal movement of the ground plane which could result from a change of angle of the ground plane when the ground plane changes angle.
38. The angle change platform of claim 37 where the platform and angle change means are together (as one assembly) able to move horizontally on slides, rollers, linkages or other means in one or more directions in response to acceleration of the user's center of gravity in the opposite direction.
39. The angle change platform of claim 21 with one or more curved generally vertical surfaces on the fixed lower member which limit horizontal movement of a rolling or sliding member attached to the angle change platform.
40-42. (canceled)
43. A balance training system, comprising:
- an upper member having a foot receiving surface and a downward facing convex surface;
- the upper member providing a support for a person to train balancing on when a point or area on a contact zone of the upper member is in contact with a supporting surface;
- the contact zone having an apex and a changing curvature across the contact zone.
44. The balance training system of claim 43 in which the contact zone has a greater curvature member at an apex of the contact zone than at areas surrounding the apex.
45. The balance training system of claim 43 in which the contact zone has a first curvature in a first direction away from the apex and a second curvature, different from the first curvature, in a second direction away from the apex.
46. The balance training system of claim 45 in which the first direction and the second direction are at right angles to each other.
47. The balance training system of claim 43 further comprising a lower member forming the supporting surface.
48. The balance training system of claim 47 in which the lower member has portions that allow the lower member to slide or roll on a surface.
49. The balance training system claim 43 in which the upper member comprises material that is compressible under tilting of the upper member.
50. The balance training system of claim 47 in which the foot receiving surface is recessed downward in relation to an upwardly extending supporting portion or portions of the lower member to bring the foot receiving surface into close proximity to the supporting portion or portions of the lower member.
51. The balance training system of claim 47 in which the upper member and lower member are spring biased to a horizontal position.
52. The balance training system of claim 51 in which the upper member and lower member spring biased by a spring having adjustable force.
53. The balance training system of claim 43 further comprising a means of adjusting the amount of force required to tilt the platform.
54. The balance training system of claim 43 in which the contact zone includes a stability zone in which a given tilt provides less height change of a user's center of gravity than provided by the given tilt outside the stability zone.
55-59. (canceled)
Type: Application
Filed: Jul 29, 2009
Publication Date: Oct 27, 2011
Inventor: James Brent Klassen (Langley)
Application Number: 13/056,639
International Classification: A63B 22/16 (20060101);