Insulated Sealing Plate
An end effector assembly for use with an electrosurgical instrument is provided. The end effector assembly has a pair of opposing jaw members. Each of the jaw members has a support base, an electrical jaw lead, and a sealing plate coupled to the electrical jaw lead. The sealing plate has a stainless steel layer and an electrically insulative layer.
Latest Patents:
1. Technical Field
The present disclosure relates to an electrosurgical instrument and method for sealing tissue. More particularly, the present disclosure relates to an electrosurgical tool including opposing jaw members having sealing plates with improved electrical insulation.
2. Background of the Related Art
Electrosurgical forceps utilize mechanical clamping action along with electrical energy to effect hemostasis on the clamped tissue. The forceps (open, laparoscopic or endoscopic) include electrosurgical sealing plates which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the sealing plates to the tissue, the surgeon can coagulate, cauterize, and/or seal tissue.
During an electrosurgical procedure, tissue sealing plates are used to apply electrosurgical energy to tissue. Because the sealing plates conduct electricity, care must be taken to electrically insulate the sealing plates from other electrically conductive components of the electrosurgical forceps and to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread, and stray current dissipation. Typically, tissue sealing surfaces are disposed on inner facing surfaces of opposing jaw members such that the tissue sealing surfaces are utilized to seal tissue grasped between the jaw members. Often, the manufacturing of jaw members requires the use of a two-shot molding process that includes a pre-shot overmold of insulative material (e.g., plastic) placed between the underside of the sealing plate and the steel structural support base of the jaw member to provide electrical insulation between the jaw member and the tissue sealing surface.
SUMMARYIn an embodiment of the present disclosure, an end effector assembly including a pair of opposing jaw members is provided. Each of the jaw members includes a support base, an electrical jaw lead, and a sealing plate coupled to the electrical jaw lead. The sealing plate has a stainless steel layer and an electrically insulative layer bonded to an underside of the sealing plate.
In another embodiment of the present disclosure, an electrosurgical instrument for sealing tissue is provided. The electrosurgical instrument may include a housing having at least one shaft extending therefrom, a handle assembly operably coupled to the housing and including at least one movable handle, a rotating assembly operably coupled to the housing and configured to rotate the at least one shaft, and an end effector assembly including a pair of opposing jaw members. Each of the jaw members includes a support base, an electrical jaw lead, and a sealing plate coupled to the electrical jaw lead. The sealing plate has a stainless steel layer and a polyimide layer bonded to an underside of the sealing plate.
In another embodiment of the present disclosure, a method of manufacturing a jaw member of an electrosurgical end effector assembly includes the steps of providing a support base and bonding a polyimide layer to an underside of a stainless steel tissue sealing surface. The method also includes the steps of engaging the underside of the tissue sealing surface to the support base and coupling an electrical lead to the tissue sealing surface, The electrical lead is adapted to connect the tissue sealing surface to an energy source. The method also includes the step of overmolding an insulative material about the support base to secure the tissue sealing surface to the support base.
In another embodiment of the present disclosure, a method of manufacturing a sealing plate for a jaw member of an electrosurgical forceps includes the steps of bonding a sheet of polyimide to a sheet of stainless steel and stamping the bonded sheet to form a sealing plate for affixing to a jaw member of an electrosurgical forceps.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
Like reference numerals may refer to similar or identical elements throughout the description of the figures. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user. The term “clinician” refers to any medical professional (i.e., doctor, surgeon, nurse, or the like) performing a medical procedure involving the use of embodiments described herein.
As described in more detail below with reference to the accompanying figures, the present disclosure is directed to opposing jaw members of a vessel sealer having sealing plates with a bonded electrically insulative bottom layer on an underside thereof. Having a electrically insulative layer between the sealing plate and the jaw member has many advantages. For instance, the need for the above discussed pre-shot overmolding of insulative material about the jaw members is eliminated, thereby simplifying the manufacturing of the vessel sealer. Additionally, bonding a electrically insulative layer to the sealing plate strengthens the structure thereof, thereby allowing for larger or longer sealing plates and/or jaw members to be manufactured without necessarily compromising structural integrity.
Turning now to
Examples of forceps are shown and described in commonly-owned U.S. application Ser. No. 10/369,894 entitled “VESSEL SEALER AND DIVIDER AND METHOD MANUFACTURING SAME” and commonly-owned U.S. application Ser. No. 10/460,926 (now U.S. Pat. No. 7,156,846) entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS”.
With regard to
Support bases 319 and 329 are configured to support electrically conductive sealing plates 312 and 322 thereon. Sealing plates 312 and 322 may be affixed atop the support bases 319 and 329, respectively, by any suitable method including but not limited to snap-fitting, overmolding, stamping, ultrasonic welding, etc. The support bases 319 and 329 and sealing plates 312 and 322 are at least partially encapsulated by insulative housings 316 and 326, respectively, by way of an overmolding process to secure sealing plates 312 and 322 to support bases 319 and 329, respectively. The sealing plates 312 and 322 are coupled to electrical jaw leads 325a and 325b, respectively, via any suitable method (e.g., ultrasonic welding, crimping, soldering, etc.). Electrical jaw lead 325a supplies a first electrical potential to sealing plate 312 and electrical jaw lead 325b supplies a second electrical potential to opposing sealing plate 322.
Jaw member 320 may also include a series of stop members 390 disposed on the inner facing surface of sealing plate 312 to facilitate gripping and manipulation of tissue and to define a gap between opposing jaw members 310 and 320 during sealing and cutting of tissue. The series of stop members 390 are applied onto the sealing plate 312 during manufacturing. Further, the sealing plates 312 and 322 may include longitudinally-oriented knife slots 315a and 315b, respectively, defined therethrough for reciprocation of a knife blade (not shown). The electrically insulative layers 330a and 330b disposed on the undersides 328a and 328b, respectively, of sealing plates 312 and 322, respectively, allow for various blade configurations such as, for example, t-shaped blades that may contact the underside of the sealing plate during reciprocation through knife slots 315a, 315b. That is, the electrically insulative layers 330a, 330b operate to protect both the knife blade and the undersides 328a and 328b of the sealing plates 312 and 322, respectively, from damage or wearing. Further, in the instance that an electrically conductive knife blade is utilized (e.g., for electric tissue cutting), the electrically insulative layers 330a, 330b help to electrically insulate the sealing plates 312, 322 from the electrically conductive knife blade.
Turning now to
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figs. are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
Claims
1. An end effector assembly including a pair of opposing jaw members, each of the jaw members comprising:
- a support base;
- an electrical jaw lead; and
- a sealing plate coupled to the electrical jaw lead, the sealing plate having a stainless steel layer and an electrically insulative layer bonded to an underside of the sealing plate.
2. The end effector assembly according to claim 1, wherein the electrically insulative layer is formed from polyimide.
3. The end effector assembly according to claim 1, wherein the electrically insulative layer is formed from a material selected from the group consisting of polycarbonate and polyethylene.
4. The end effector assembly according to claim 1, wherein the electrical jaw lead is ultrasonically welded to the stainless steel layer of the sealing plate.
5. The end effector assembly according to claim 1, wherein the electrically insulative layer is bonded to the stainless steel layer by adhesive.
6. The end effector assembly according to claim 1, wherein the electrically insulative layer is bonded to the stainless steel layer via heat treatment.
7. An electrosurgical instrument for sealing tissue, comprising:
- a housing having at least one shaft extending therefrom;
- a handle assembly operably coupled to the housing and including at least one movable handle;
- a rotating assembly operably coupled to the housing and configured to rotate the at least one shaft; and
- an end effector assembly including a pair of opposing jaw members, each of the jaw members comprising: a support base; an electrical jaw lead; and a sealing plate coupled to the electrical jaw lead, the sealing plate having a stainless steel layer and an electrically insulative layer bonded to an underside of the sealing plate.
8. The electrosurgical instrument according to claim 7, wherein the pair of opposing jaw members each include a knife channel defined longitudinally therethrough.
9. The electrosurgical instrument according to claim 7, wherein the electrical jaw lead is coupled to the sealing plate with an ultrasonic weld.
10. The electrosurgical instrument according to claim 7, wherein the electrical jaw lead is ultrasonically welded to the stainless steel layer of the sealing plate.
11. The electrosurgical instrument according to claim 7, wherein the electrically insulative layer is bonded to the stainless steel layer.
12. The electrosurgical instrument according to claim 7, wherein the electrically insulative layer is bonded to the stainless steel layer by adhesive.
13. The end effector assembly according to claim 7, wherein the electrically insulative layer is bonded to the stainless steel layer via heat treatment.
14. A method of manufacturing a jaw member of an electrosurgical end effector assembly, the steps comprising:
- providing a support base;
- bonding an electrically insulative layer to an underside of a stainless steel tissue sealing surface;
- coupling an electrical lead to the tissue sealing surface, the electrical lead adapted to connect the tissue sealing surface to an energy source;
- engaging the underside of the tissue sealing surface to the support base; and
- overmolding an insulative material about the support base to secure the tissue sealing surface thereto.
15. A method according to claim 14, wherein the support base is formed from machined steel.
16. A method according to claim 14, wherein the insulative material is an insulative plastic material.
17. A method according to claim 14, wherein the bonding step further comprises the step of applying adhesive to the underside of the tissue sealing surface,
18. A method according to claim 14, wherein the electrically insulative layer is formed from polyimide.
Type: Application
Filed: Apr 29, 2010
Publication Date: Nov 3, 2011
Applicant:
Inventors: Glenn A. Horner (Boulder, CO), Christina A. Oliver (Longmont, CO), Kim V. Brandt (Loveland, CO)
Application Number: 12/770,380
International Classification: A61B 18/12 (20060101); H01R 43/00 (20060101);