SIDE-LOADING COMPACT CRIMP TERMINATION
An implantable medical lead comprising a conductor extending along the lead and a crimp connector secured to the conductor comprising a body with an outer surface, an inner surface, proximal and distal ends, and first and second lateral edges, the lateral edges having edge features extending there from, the edge features adapted to opposingly interleave with one another. Methods of assembling a crimp connector with a cable conductor including parallel and cross-wise assembly are also encompassed.
Latest PACESETTER, INC. Patents:
- Method and system for monitoring heart function based on heart sound center of mass
- Methods, devices and systems for identifying false R-R intervals and false arrhythmia detections due to R-wave undersensing or intermittent AV conduction block
- Methods of manufacturing an antenna for an implantable electronic device and related implantable electronic devices
- LEADLESS BIOSTIMULATOR
- R-R interval pattern recognition for use in arrhythmia discrimination
This application is a division of U.S. patent application Ser. No. 12/562,072, filed Sep. 17, 2009, titled “Side-Loading Compact Crimp Termination.”
FIELD OF THE INVENTIONThe present invention relates to medical apparatus and methods of manufacturing such apparatus. More specifically, the present invention relates to implantable cardiac electrotherapy leads and methods of manufacturing such leads. More particularly, the present invention relates to crimp terminations on lead conductors.
BACKGROUND OF THE INVENTIONCurrent implantable cardiac electrotherapy leads (e.g., cardiac resynchronization therapy (“CRT”) leads, bradycardia leads, tachycardia leads) utilize crimp connectors to transition from conductor cables to a wide range of features on or around the lead including electrodes, shock coils and the like. These crimp connectors often take the form of a tube like structure through which the cable conductor or conductors may be fed or threaded. Once properly placed along the length of the conductor or conductors, the crimp connector may be crimped to secure its position.
In some instances, feeding or threading the conductor through the crimp connector is not feasible due to geometrical constraints, process constraints, such as prior connections at one or both ends of a conductor, access constraints, or other constraints known to those in the art. Additionally, the narrow nature of the vasculature and the maintenance of blood flow limit the space available for the lead. As such, space efficient devices are desirable.
There is a need in the art for a space efficient crimp connector that can be placed on a conductor without feeding or threading the conductor there through. There is also a need in the art for a method of employing such a crimp connector.
SUMMARYIn one embodiment, an implantable medical lead may include a conductor extending along the lead and a crimp connector secured to the conductor. The crimp connector may include a body with an outer surface, an inner surface, proximal and distal ends, and first and second lateral edges. The lateral edges may have edge features extending there from where the edge features are adapted to opposingly interleave with one another. In another embodiment, the edge features may include staggered complimentary projections. The crimp connector may be adapted for parallel or cross-wise assembly. In another embodiment, the crimp connector may include an extension attached to and extending from the distal or proximal end of the body. The extension may include a microcoil attachment feature.
In another embodiment, a method of attaching a crimp connector to a cable conductor on an implantable medical lead may include positioning the crimp connector adjacent to the cable conductor, displacing the crimp connector perpendicular to a longitudinal axis of the cable conductor thereby receiving the cable conductor with the crimp connector, and crimping the crimp connector with a crimp tool. In another embodiment, the method may include orienting the crimp connector parallel to the cable conductor. In another embodiment, the method may include orienting the crimp connector perpendicular to the cable conductor. In still another embodiment, the method may include pivoting the crimp connector from a perpendicular position to a parallel position.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The following detailed description relates to connectors 20 or terminations used on conductor cables 50 of implantable medical leads 25, such as, for example, cardiac electrotherapy leads (e.g., cardiac resynchronization therapy (“CRT”) leads, bradycardia leads, and tachycardia leads) and other types of leads, such as those employed in nerve stimulation for pain management, etc. An implantable medical lead 25 may be used to monitor and stimulate heart function. As shown in
The cable conductors 50 extending the length of the lead 25 may include a conductive core covered by an insulation layer or layers. As such, the connection between the connector 20 and the cable conductor 50 may require removing or penetrating the insulation to provide a positive electrical connection between the two. The present disclosure is directed at the connectors 20 used to connect cable conductors 50 to shock coils or electrodes 40, other cable conductors 50, and other devices.
In some embodiments, as disclosed below, the connector 20 may be in the form of a crimp connector. The crimp connector allows for the cable conductors 50 to pass into the connector 20 such that the connector 20 may then be squeezed, pressed, or otherwise caused to grasp the cable conductor 50 or conductors 50, restraining them from slipping out of the crimp connector. Moreover, in order to effectively transmit electrical current, the crimp connector may either penetrate the cable conductor insulation or the insulation may be otherwise stripped prior to crimping to create a positive electrical connection. The crimp connector may in turn be welded or otherwise connected to electrodes, shock coils, or other devices, to complete the electrical circuit.
Referring now to
The body portion 102 of the crimp connector 100 may include a generally rectangular piece of material. The body portion 102 may have a generally uniform thickness and may include a portion of a tube or may be sheet stock material. As such, the body portion 102 may be formed from cutting a tube, stamping sheet stock material, or other fabrication methods known in the art. In one embodiment, the body 102 may be cut, stamped or otherwise formed from a continuous feed of material in the form of tape. In a pre-crimp position, the body 102 may be flat or may have a slightly concave inner surface 116 and a correspondingly convex outer surface 118. In the case of a body 102 formed from a tube, the concave inner surface 116 may reflect the curvature of the inner radius of the tube. In the case of a body 102 formed from a relatively flat plate, the body portion 102 may be rolled, pressed, or otherwise formed to have a concave inner surface 116. Depending on the crimping device used, a concave inner surface 116 and convex outer surface 118 may cause the body 102 to be more readily adapted for the crimping process.
The proximal and distal ends 104, 106 of the connector 100 may be generally squared off ends as would reflect a laser cut, sheared, or punched edge. As such, the proximal and distal ends 104, 106 may take on a generally annular shape in a post-crimp position. A line connecting the center of the proximal annular shape and the center of the distal annular shape may define a post-crimp longitudinal axis. In some embodiments, the proximal end 104, 106 and the distal end 104, 106 are reversible allowing for installation in either orientation. In other embodiments, features may extend from the proximal and/or distal end 104, 106 for attachment to devices. In these embodiments, the orientation may or may not be reversible.
The first and second lateral edges 108, 110 of the connector 100 may be generally parallel to one another and may be generally perpendicular to both the proximal and distal ends 104, 106 so as to form the generally rectangular body portion 102 described. The lateral edges 108, 110 may be generally squared off edges, similar to the proximal and distal ends 104, 106, as would reflect a laser cut, sheared, or punched edge.
As shown, first and second edge features 112, 114 are shown extending from each of the first and second lateral edges 108, 110. The first and second edge features 112, 114 are shown to correspond to one another such that they may interleave with one another when placed in opposing position and advanced toward one another. As shown, the first edge feature 112 includes generally trapezoidal projections in spaced apart relationship creating corresponding trapezoidal void spaces between the projections. Additionally, the second edge feature 114 also includes generally trapezoidal projections in spaced apart relationship creating corresponding trapezoidal void spaces between the projections. The projections and void spaces of the first and second edge features 112, 114 shown have similar spacing but are staggered relative to the opposing edge features 112, 114 along the length of their respective first and second lateral edges 108, 110. This staggered position allows for the projections on the first and second edge feature 112, 114 to coincide with a void space on the respective other edge feature 112, 114. Additionally, the trapezoidal projections taper from relatively wide at the connection to the lateral edge 108, 110 of the body 102 to relatively narrow at the free edge of the projection. As such, the corresponding void spaces taper from relatively narrow at the lateral edge 108, 110 of the body 102 to relatively wide near the free edge of the projections.
Those of skill in the art will understand and appreciate that several geometries for interleaving edge features are within the scope of the present disclosure. For example, as shown in
As will be recognized by comparing the pre-crimp position to the post-crimp position in
It is noted that the crimp connector 100 shown in
Referring now to
In the present embodiment, the body 602 is generally tubular. More particularly, the body 602 reflects approximately one half of a tube with an inner radius. As such, the lateral edges 608, 610 of the body define an included angle 626 of approximately 180 degrees.
First and second edge features 612, 614 are included on the first and second lateral edges 608, 610 of the body 602. The projections of the edge features 612, 614 are generally rectangular with rounded corners and a concave inner surface. The curvature of the concave inner surface, in this embodiment, may be substantially similar to the curvature defined by the inner radius of the tube defining the body 602. In the pre-crimp position, the projections of the first and second edge features 612, 614 extend substantially all the way to the opposing first or second lateral edge 608, 610, such that the free edge of the projection is positioned adjacent to the opposing lateral edge 608, 610, but stops short of contacting the opposing lateral edge 608, 610 a distance approximately equal to the width of a cable conductor 50. Additionally, the projections of the first and second edge features 612, 614 are spaced along the longitudinal length of the body 602 relative to one another to provide for a gap 622 between the opposing projections, the gap 622 being approximately equal to the width of a cable conductor 50. As such, the projections of the first and second edge feature 612, 614 are interleaved similar to those of
As shown in
Those of skill in the art will understand and appreciate that the body 602 in this embodiment may vary from defining an included angle 626 of 180 degrees. That is, as shown in
It is also noted that the relatively rectangular edge features 612, 614 of the present embodiment, may deviate to more trapezoidal shaped edge features 612, 614 by modifying the edge of the projections which are positioned adjacent to one another. That is, rather than the gap 622 between the two projections being oriented substantially perpendicular (e.g. 90 degrees) to the longitudinal axis of the connector 600, the gap 622 may be oriented somewhere between 0 and 90 degrees.
The tube internal diameter and slot widths may be varied as necessary to accommodate conductor configurations of a variety of conductor sizes or diameters and of a range of number of conductors.
While not shown, the body portion of any of the described embodiments may also include splice openings similar to those described in U.S. patent application Ser. No. 12/363,445, filed Jan. 30, 2009, titled “Crimp-Through Crimp Connector for Connecting a Conductor Cable and an Electrode of an Implantable Cardiac Electrotherapy Lead” (Attorney Docket A09P1003), the contents of which are hereby incorporated by reference herein.
Referring now to
The free end 730 of the extension 728 has a generally rounded edge with two notches 732 in the lateral edge of the extension 728. The two notches 732 form a peninsula-like feature 734 there between. The two notches 732 and the peninsula-like feature 734 create a termination feature 737 in the form of a microcoil attachment feature.
As can be understood from
In one embodiment, any one or more of the above-described crimp connector configurations may be an extension of an electrode such that the electrode and crimp connector form an integral, single-piece or unitary body. For example, as can be understood from
Those of skill in the art will understand and appreciate the advantages associated with a side loading crimp connector. In the case of multiple conductors, for example, the more conductors involved, the more difficult it may become to thread them through a crimp connector. This may be due to insufficient space within the crimp connector combined with a tendency for the cable conductors to catch on one another as they are threaded through. This may make longitudinal positioning of the cable conductors difficult and may also lead to abrading neighboring conductors in locations along their length where it is desired to have full insulation protection.
Additionally, the interleaving edge features disclosed above may provide for a tight-fitting, smooth-wrapping band about the conductor. In the post-crimped position, the gaps or spaces between the edge features may be closed to a point that the crimp connector reflects a smooth cylinder with little to no evidence of seams.
Other advantageous situations may include medical leads having space constraints due to electronics being included within electrode bands. Additionally, some lead bodies do not lend themselves to threading of conductors through crimp connectors. For example, U.S. patent application Ser. No. 12/400,564, filed Mar. 9, 2009, titled “Implantable Medical Lead Having a Body with Helical Cable Conductor Construction and Method of Making Same” (Attorney Docket A09P1016), the contents of which are hereby incorporated by reference herein, describes a helical lead with multiple point terminations of conductors and a multi-band lead configuration, which both make it difficult to string conductors through connectors.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims
1. A method of attaching a crimp connector to a cable conductor on an implantable medical lead comprising:
- positioning the crimp connector adjacent to the cable conductor;
- displacing the crimp connector perpendicular to a longitudinal axis of the cable conductor thereby receiving the cable conductor with the crimp connector; and
- crimping the crimp connector with a crimp tool.
2. The method of claim 1, wherein the crimp connector includes a body having first and second lateral edges and edge features extending from the lateral edges.
3. The method of claim 2, wherein the edge features comprise opposing, staggered, and complimentary projections, the projections each having a free end.
4. The method of claim 3, wherein crimping the connector causes the free end of each of the projections to abut the opposing first or second lateral edge of the body.
5. The method of claim 4, further comprising orienting the crimp connector parallel to the cable conductor.
6. The method of claim 5, further comprising orienting the crimp connector perpendicular to the cable conductor.
7. The method of claim 6, further comprising pivoting the crimp connector from a perpendicular position to a parallel position.
8. The method of claim 1, wherein crimp conductor further comprises an electrode portion, the crimp conductor and electrode portion forming a single-piece unitary body.
Type: Application
Filed: Jul 27, 2011
Publication Date: Nov 17, 2011
Applicant: PACESETTER, INC. (Sylmar, CA)
Inventor: Steven R. Conger (Agua Dulce, CA)
Application Number: 13/192,383