COMPRESSION OF BASEBAND SIGNALS IN BASE TRANSCEIVER SYSTEMS
A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
Latest SAMPLIFY SYSTEMS, INC. Patents:
- IMAGE DATA ENCODING FOR ACCESS BY RASTER AND BY MACROBLOCK
- DATA COMPRESSION AND DECOMPRESSION USING SIMD INSTRUCTIONS
- SIMD INSTRUCTIONS FOR DATA COMPRESSION AND DECOMPRESSION
- ENHANCED MULTI-PROCESSOR WAVEFORM DATA EXCHANGE USING COMPRESSION AND DECOMPRESSION
- Enhanced multi-processor waveform data exchange using compression and decompression
This application is a continuation of co-pending U.S. patent application Ser. No. 12/124,382, which application is incorporated by reference as if fully set forth herein.
BACKGROUND OF THE INVENTIONThe present invention relates to compression and decompression of signals in a transceiver system of a wireless communication network and, more particularly, to compressing baseband signal samples prior to transfer over a serial data link between a base station processor and one or more radio frequency (RF) units of the transceiver system.
Transceiver systems in wireless communication networks perform the control functions for directing signals among communicating subscribers, or terminals, as well as communication with external networks. The general operations include receiving RF signals, converting them to signal data, performing various control and signal processing operations on the signal data, converting the signal data to an RF signal and transmitting the RF signal to the wireless subscriber. Transceiver systems in wireless communications networks include base stations and distributed antenna systems (DAS). For the reverse link, or uplink, a terminal transmits the RF signal received by the transceiver system. For the forward link, or downlink, the transceiver system transmits the RF signal to a subscriber, or terminal, in the wireless network. A base station may also be called a base transceiver system (BTS), cell site, access point, Node B, or other terminology. A terminal may be fixed or mobile and may be a wireless device, cellular phone, personal digital assistant (PDA), personal computer or any device equipped with a wireless modem.
For this description, the term base transceiver system (BTS) will refer to the base station processor(s) and the RF unit(s) in communication with and under the control of the base station processor, including any type or length of data transfer link. This includes the traditional base station having the RF units collocated with the base station processor or on the antenna tower near the antenna. A DAS is another example of a BTS, although the RF units are remote from the base station processor.
The base transceiver systems of wireless communication networks must manage the increasing amounts of data required for offering new services to an expanding subscriber base. System design challenges include ensuring flexibility for evolving standards, supporting growing data processing requirements and reducing overall cost. The modular design approach for base stations provides the flexibility to meet these challenges. The components of modular base station designs include base station processors and RF units coupled by serial data links, comprised of copper wire or fiber optic cabling. The RF units include transmitters, receivers, analog to digital converters (ADCs) and digital to analog converter (DACs). Wire or fiber optic serial data links transfer the sampled signals between the RF units and the base station processor. The sampled signals may be centered at the RF or converted to an intermediate frequency (IF) or baseband prior to transfer over the data link. The base station processor includes functions for signal processing, control and communication with external networks.
Two industry standards for modular designs, the Open Base Station Architecture Initiative (OBSAI) and Common Public Radio Interface (CPRI), specify architectures for interconnection of RF modules and base station processors as well as data transfer protocols for the serial data links. The OBSAI standard is described in the documents, “OBSAI Open Base Station Architecture Initiative BTS System Reference Document”, Version 2.0, 2006, and “OBSAI Open Base Station Architecture Initiative Reference Point 3 Specification”, Version 4.0, 2007. The CPRI standard is described in the document, “CPRI Specification V3.0 Interface Specification”, 2006. Both architectures transmit/receive multichannel signal data and transfer multiplexed baseband signal data over the serial data link. Modular designs may not necessarily comply with CPRI or OBSAI.
The OBSAI standard describes architectures and protocols for communication between base station processors, referred to as baseband modules, and RF modules. Connection topologies for one or more baseband modules and one or more RF modules include mesh, centralized combiner/distributor and bridge modules. The OBSAI compliant serial data link connecting the baseband module and the RF module is referred to as the reference point 3 (RP3) interface. In systems where remote RF units (RRUs) are connected to a baseband module, the serial data link is referred to as the RP3-01 interface. Connection topologies for the baseband module and RRUs include point-to-point, chain, ring and tree-and-branch. The baseband module/RRUs configurations support distributed antenna systems.
The CPRI standard refers to radio equipment control (REC) for processing baseband signal data and the radio equipment (RE) that performs the RF processing for transmission of signals over the antenna. The REC and RE correspond to the base station processor and the RF unit, respectively. The CPRI standard specifies the serial interface and operations at the physical and data link layers. The serial data link between REC and RE, or between two REs, is a bidirectional interface with one transmission line per direction. Connection topologies between the REC and one or more REs include point-to-point, multiple point-to-point, chain, star, tree, ring and combinations thereof.
Distributed antenna systems (DAS) distribute signal data from a main antenna/RF resource to multiple remote antennas connected via Cat5 cable, coaxial cable or fiber optic links. In essence, a DAS can connect to a variety of wireless services and then rebroadcast those signals throughout the areas in which the DAS is installed. For example, a DAS can improve cell phone coverage within a building. A main transceiver and antenna on the roof of the building is connected by cable or fiber to multiple distributed antennas within the building. Every DAS has a “head end” into which source signals are combined for distribution to remote radio units. The DAS systems provide coverage in confined spaces such as high rise buildings, tunnels, railways, and airports. As defined by the DAS Forum of the Personal Communications Industry Association (PCIA), a DAS is a network of spatially separated antenna nodes connected to a common source via a transport medium that provides wireless service within a geographic area or structure. The DAS antenna elevations are generally at or below the clutter level and node installations are compact. A digital serial data link connects the head end (base station) to remote radio units, or heads.
Base transceiver systems for wireless communication networks transfer large amounts of sampled signal data over the serial data links between the base station processor and the RF modules. The need to comply with evolving wireless communication standards, increase data volume and serve more subscribers, may require expensive hardware upgrades to transceiver systems, including increasing the number or capacity of serial data links and increasing the data processing capability of supporting subsystems. These requirements can conflict with constraints on transceiver systems, including physical size limitations, power consumption limitations and geographic restrictions.
Therefore, there is a need for increasing the capacity of serial data links and conserving the resources of base transceiver systems for base stations and distributed antenna systems. Compression of data prior to transfer over the serial data links enables the provider to meet these needs by increasing the capacity of existing data links, possibly eliminating or at least postponing, the need to upgrade the existing data links. Computationally efficient compression and decompression conserves computing resources. The OBSAI and CPRI standards do not disclose compressing signal samples prior to transfer over the serial data links. Therefore, there is also a need for providing compressing signal samples and formatting the compressed samples for compatibility with the data transfer protocols of the BTS.
SUMMARY OF THE INVENTIONEmbodiments of the present invention have been made in consideration of the foregoing conventional problems. An object of the present invention is to increase the data transfer capacity of serial data links connecting a base station processor to an RF unit in a base transceiver system of a wireless communication network.
To realize the foregoing object, one aspect of the present invention provides, in a base transceiver system of a wireless communication network, a method for transferring signal data from a radio frequency (RF) unit to a baseband processor over a serial data link, wherein the RF unit is connected to an antenna to receive an analog signal, the analog signal representing a plurality of antenna-carrier channels, the RF unit including an analog to digital converter (ADC) that converts the analog signal to a digital signal and a digital down converter (DDC) that downconverts the digital signal to a plurality of baseband channels, each baseband channel corresponding to one of the antenna-carrier channels and having a sequence of signal samples, wherein each signal sample includes an in-phase (I) sample and a quadrature (Q) sample wherein the baseband processor performs signal processing operations on the signal samples received from the RF unit. The method comprises:
-
- compressing the signal samples of each baseband channel at the RF unit to form compressed samples in accordance with a compression control parameter, wherein each compressed sample includes a compressed I sample and a compressed Q sample;
- formatting the compressed samples for transfer over the serial data link;
- transferring the compressed samples over the serial data link from the RF unit to the baseband processor; and
- receiving the compressed samples at the baseband processor;
- decompressing the compressed samples corresponding to each baseband channel in accordance with a decompression control parameter to form decompressed signal samples of the corresponding baseband channel, wherein each decompressed signal sample includes a decompressed I sample and a decompressed Q sample, wherein the baseband processor applies the signal processing operations to the decompressed signal samples for each baseband channel.
Another aspect of the present invention that realizes the foregoing object provides, in a base transceiver system of a wireless communication network, a method for transferring signal samples from a baseband processor to a radio frequency (RF) unit over a serial data link, each signal sample associated with one of a plurality of baseband channels, wherein each signal sample includes an in-phase (I) sample and a quadrature (Q) sample, the RF unit including a digital up converter (DUC) that upconverts a sequence of signal samples of each baseband channel to a corresponding one of a plurality of antenna-carrier channels to form a single upconverted digital signal and a digital to analog converter (DAC) that converts the upconverted digital signal to an analog signal, wherein the RF unit is coupled to an antenna to transmit the analog signal, the analog signal representing the plurality of antenna-carrier channels. The method comprises:
-
- compressing the signal samples corresponding to each baseband channel at the baseband processor to form compressed samples in accordance with a compression control parameter wherein each compressed sample includes a compressed I sample and a compressed Q sample;
- formatting the compressed samples for transfer over the serial data link;
- transferring the compressed samples over the serial data link from the baseband processor to the RF unit;
- receiving the compressed samples at the RF unit; and
- decompressing the compressed samples in accordance with a decompression control parameter to form decompressed signal samples corresponding to each baseband channel, wherein each decompressed sample includes a decompressed I sample and a decompressed Q sample, wherein the decompressed signal samples are provided to the DUC for forming the upconverted digital signal.
Another aspect of the present invention that realizes the foregoing object provides, in a base transceiver system of a wireless communication network, including a radio frequency (RF) unit coupled to an antenna to receive an analog signal and a baseband processor coupled to the RF unit by a serial data link, the analog signal representing a plurality of antenna-carrier channels, the RF unit including an analog to digital converter (ADC) that converts the analog signal to a digital signal and a digital down converter (DDC) that downconverts the digital signal to a plurality of baseband channels, each baseband channel corresponding to one of the antenna-carrier channels and having a sequence of signal samples, wherein each signal sample includes an in-phase (I) sample and a quadrature (Q) sample wherein the baseband processor performs signal processing operations on the signal samples received from the RF unit, an apparatus for data transfer from the RF unit to the baseband processor over the serial data link. The apparatus comprises:
-
- a plurality of compressors at the RF unit, each compressor coupled to receive the signal samples of a corresponding baseband channel output from the DDC and producing compressed samples in accordance with a compression control parameter, wherein each compressed sample includes a compressed I sample and a compressed Q sample;
- a formatter coupled to the plurality of compressors and formatting the compressed samples in accordance with a data transfer protocol;
- the serial data link coupled to the formatter for transferring the compressed samples to the baseband processor;
- the baseband processor coupled to the serial data link to receive the compressed samples; and
- a plurality of decompressors integrated into the baseband processor, each decompressor receiving the compressed samples of the corresponding baseband channel and forming decompressed signal samples in accordance with a decompression control parameter, wherein each decompressed signal sample includes a decompressed I sample and a decompressed Q sample, wherein the baseband processor performs the signal processing operations on the decompressed signal samples for each baseband channel.
Another aspect of the present invention that realizes the foregoing object provides, in a base transceiver system of a wireless communication network, including a radio frequency (RF) unit coupled to an antenna to transmit an analog signal and a baseband processor coupled to the RF unit by a serial data link, the baseband processor providing a plurality of signal samples to the RF unit, each signal sample associated with one of a plurality of baseband channels, wherein each signal sample includes an in-phase (I) sample and a quadrature (Q) sample, the RF unit including a digital up converter (DUC) that upconverts a sequence of signal samples of each baseband channel to a corresponding one of a plurality of antenna-carrier channels to form a single upconverted digital signal and a digital to analog converter (DAC) that converts the upconverted digital signal to the analog signal, the analog signal representing the plurality of antenna-carrier channels, an apparatus for data transfer from the baseband processor to the RF unit. The apparatus comprises:
-
- a plurality of compressors integrated into the baseband processor, each compressor compressing signal samples of a corresponding baseband channel in accordance with a compression control parameter to form compressed samples, wherein each compressed sample includes a compressed I sample and a compressed Q sample;
- a formatter coupled to the plurality of compressors and formatting the compressed samples in accordance with a data transfer protocol;
- the serial data link coupled to the formatter for transferring the compressed samples to the RF unit;
- the RF unit coupled to the serial data link to receive the compressed samples; and
- a plurality of decompressors at the RF unit, each decompressor receiving compressed samples of the corresponding baseband channel and forming decompressed signal samples, wherein each decompressed signal sample includes a decompressed I sample and a decompressed Q sample, wherein the decompressed signal samples are provided to the DUC for forming the upconverted digital signal.
The following describes how compression and decompression are incorporated into base transceiver systems in accordance with the present invention. Example architectures include compression and decompression in a general base station, OBSAI or CPRI base stations and distributed antenna systems. The preferred methods for compression and decompression applied to the signal samples processed by the transceiver systems are then described.
For the transmit path, or downlink, the base station processor 100 performs the signal processing functions to modulate communication data that were extracted from previously received wireless signals or received from an external network to produce digital signals. The signal processing functions depend on the modulation format and can include symbol modulation, channel coding, spreading for CDMA, diversity processing for transmission, time and frequency synchronization, upconverting, multiplexing, and inverse discrete Fourier transformation for OFDM. The digital signals may have a center frequency of 0 Hz, an intermediate frequency (IF) or a radio frequency (RF), depending on the system design. The compressor 120 compresses the samples of the digital signal prior to transfer over a serial data link 140 to the RF unit 150. At the RF unit 150, the decompressor 125 decompresses the compressed samples to reconstruct the digital signal before digital to analog conversion. The digital to analog converter (DAC) 160 converts the reconstructed digital signal to an analog signal. The transmitter 182 prepares the analog signal for transmission by the antenna 155, including up-conversion to the appropriate radio frequency, RF filtering and amplification.
For the receive path, or uplink, antenna 155 at the RF unit 150 receives an RF analog signal representing modulated communication data from one or more wireless sources, or subscribers. The frequency band of the received signal can be a composite of transmitted signals from multiple wireless subscribers. Depending on the air interface protocol, the different subscriber signals can be assigned to certain frequency channels or multiple subscribers can be assigned to a particular frequency band. In the case of CDMA air interface protocols, the multiple subscriber signals are assigned to a particular frequency band and each subscriber signal is spread across the band using a unique spreading code. The receiver 180 performs analog operations on the RF analog signal, including RF filtering, amplification and down-conversion to shift the center frequency of the received signal from RF to an IF or 0 Hz, depending on system design The analog to digital converter (ADC) 170 converts the received analog signal to a digital signal to produce signal samples that have only real values or, alternatively, have in phase (I) and quadrature (Q) components, based on system design. The compressor 130 is applied to the entire bandwidth of the digital signal output from the ADC 170. The compressor 130 compresses the digital signal samples before transmission over the serial data link 140. At the base station processor 100, the decompressor 135 decompresses the compressed samples to reconstruct the digital signal prior to performing the normal signal processing to recover communication data from the decompressed digital signal. The processing operations can include demodulating symbols, channel decoding, despreading (for CDMA modulation formats), diversity processing, interference cancelling, equalizing, time and frequency synchronization, downconverting, demultiplexing, discrete Fourier transformation (for OFDM modulation formats) and transporting data derived from the decompressed signal samples to an external network.
The base station processor 100 and RF unit 150 may be referred to by other names in the art and do not limit scope of the present invention, as described in the claims.
The compressor 120/130 packs the compressed samples in compressed data packets having a format compatible with the data transfer protocol of the serial data link. The compressor 120/130 adds a header portion to some or all of compressed data packets. Alternatively, the header can be encoded in overhead bits, if available for the data transfer protocol. The header portion has a defined length and includes synchronization and control information for the decompressor 125/135. The compressor 120/130 may pack the compressed samples in any order; however the decompressor 125/135 will reorder and format the decompressed samples to comply with the data representation format expected by the BTS. The serial data link may have a proprietary data transfer protocol or a standard protocol, such as Ethernet. The compressed data packet size is set to accommodate the data transfer protocol. For example, for transfer in an Ethernet MAC frame, the compressed data packet can be sized to fit into the payload portion, as described below with respect to
For the transmit path, or downlink, the baseband module 210 performs various functions on communication data appropriate for the modulation format to generate baseband signal samples 241. The functions can include symbol modulation, channel coding, spreading, transmit diversity processing and inverse discrete Fourier transform as appropriate for the OBSAI supported or other signal modulation format. The compressor 120 compresses signal samples 241 before transfer via the serial data link 240 to the RF Module 250. At the RF module 250, the decompressor 125 decompresses the compressed samples to form decompressed signal samples 242 prior to the normal processing for RF transmission.
For the receive path, or uplink, the antenna 155 receives analog RF signals representing modulated communication data from the subscribers. The operations of the RF module 250 to form the baseband digital signal samples 243 will be described in more detail below with respect to
For the transmit path, or downlink, from the REC 320, the compressor 120 compresses signal samples 341a before transfer via the serial data link 340 to the RE 310. At the RE 310, the decompressor 125 decompresses the compressed signal data to produce decompressed signal samples 342a. The decompressed signal samples 342a are further processed for transmission over antenna 155. For the receive path, or uplink, the RE 310 processes signals received by the antenna 155 to form baseband digital signal samples 343a. The compressor 130 compresses the samples before transfer via the serial data link 340. At the REC 320, the decompressor 135 decompresses the received compressed samples to form decompressed samples 244a. The REC 320 performs the normal processing functions on the decompressed samples 244a. The functions of the RE 310 and REC 320 are further described below with respect to
The compressors 120i and 130i organize the compressed samples into compressed data packets compatible with the OBSAI, CPRI or other protocols. The compressed data packets represent compressed I and Q samples. The order of the compressed samples may be sequential interlaced compressed I and Q samples, i.e. (I1 Q1 I2 Q2 . . . IN QN). Alternatively, the order of the compressed I and Q samples may have blocks of compressed I samples followed by blocks of compressed Q samples, i.e. (I1 I2 . . . IN Q1 Q2 . . . QN). The compressors 120i/130i operate on blocks of consecutive input signal samples having a length of BLOCK_SIZE. The compressor 120i/130i compresses BLOCK_SIZE consecutive samples and forms a compressed data packet.
A useful BLOCK_SIZE is 192, although other block sizes can be used. The block size of 192 samples provides for simple double-buffered input blocks for field programmable gate arrays (FPGA). A smaller block size, such as 4 to 8 samples, can be implemented to meet the more stringent latency requirements of the OBSAI and CPRI specifications. To meet a latency specification, the block size in samples should span a time period that is less than or equal to half the allowable latency period. This assumes that half of the latency is consumed for compression and the other half for decompression. For example, the CPRI specifies an allowable latency period of 5 μsec. For the UTRA-FDD signal format having one sample per chip at a chip rate of 3.84 MHz, the allowable latency of 5 μsec. spans about 19 sample intervals. A block size of 4 samples will have a latency period of 8 sample intervals which is well within the allowable latency period for CPRI.
The compressor 120i/130i may add a header portion to some or all of the compressed data packets. The header portion has a defined length, for instance 16 bits. Alternatively, the header information can placed in overhead fields of the OBSAI or CPRI message format. In an alternative for OBSAI, header information can be encoded using unused codes of an OBSAI message's TYPE field. In an alternative for CPRI, header information can be encoded in stuffing bits of the basic frame. The compressor 120i/130i provides the compressed data packet to the payload portion of the OBSAI or CPRI message format. The decompressor 125i/135i receives the OBSAI or CPRI message and extracts the compressed data packet from the payload portion. The decompressor 125i/135i uses the header to extract control parameters for decompression and to establish compressed data packet synchronization. The decompressor 125i/135i reconstructs the sequence of I,Q signal samples in the I and Q sample order, byte order and data format specified by the OBSAI, CPRI or other protocol. Control messages used by OBSAI or CPRI are not compressed.
The OBSAI standard's RP3 and RP3-01 bus protocols include features useful for transfer of compressed data packets. The OBSAI application layer message format has a fixed size of 19 bytes, or 152 bits, including 3 bytes allocated for address/type/timestamp and 16 bytes, or 128 bits, allocated for payload. The type fields include W-CDMA/FDD, W-CDMA/TDD, 802.16, LTE and Ethernet. A compressed data packet can be set to a length of 128 bits to fit the payload portion. The OBSAI physical layer applies 8b10b encoding to each byte of the message, including the payload, prior to transfer over the data link. The RP3 protocol defines a message group that includes up to 65,536 messages and up to 20 idle bytes and a frame including up to an integer multiple times 65,536 consecutive message groups, where the integer multiple is 1, 2 or 4. The integer multiple relates the frame length in bits to the data transfer rate of the serial data links of 768 Mbps (i=1), 1536 Mbps (i=2) and 3072 Mbps (i=4). The time interval for a frame is fixed at 10 msec.
For example, a 10 msec. OBSAI frame accommodates 38,400 chips for W-CDMA signals. For data rates of 768 Mbps, 1536 Mbps, and 3072 Mbps and 8b10b encoding, the user data transferred during 10 msec. have 6.144 Mbits, 12.288 Mbits, and 24.576 Mbits. Each antenna-carrier uses 3.84 MHz*32 bits*1.25=153.6 Mbps of link bandwidth. Thus, a 768 Mbps link can carry 4 antenna-carriers (16 bits I, 16 bits Q). For a compression ratio of 2:1, the 768 Mbps link will carry 8 antenna-carriers.
Since OBSAI supports the Ethernet data type, compressed data packets can be mapped into Ethernet frames that are then mapped to RP3 messages. For the BTS connected to multiple RRUs, the RP3-01 protocol specifies mapping Ethernet MAC frames to consecutive RP3 messages along with control data. Ethernet MAC frame sizes are between 64 bytes and 1518 bytes, with 14 bytes for the header and payload sizes between 46 bytes and 1500 bytes.
The OBSAI standard also supports custom data types for RP3 messages. Since type values 01111-11111 are not assigned, the user can assign one of the type values to a custom message that contains compressed data in the payload portion. Referring to
The CPRI defines a basic frame having a duration of 260.416667 nanoseconds, or 1/3.84 MHz. The basic frame includes 16 words, one word contains control data and the remaining 15 words, referred to as the IQ data block, contain baseband I,Q signal samples. The word length in bits depends on the data transfer rate of the link. The IQ data block size in bits equals 15 times the word length, so capacity of a basic frame depends on the data transfer rate. The specified data transfer rates are 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps and 3072.0 Mbps with respective word lengths of 8, 16, 32 and 40 bits. The CPRI standard allows varying sample widths for signal samples for the downlink (8 to 20 bits per sample) and the uplink (4 to 20 bits per sample). The sample width is the number of bits per sample. Each I,Q signal sample consists of one I sample having the sample width and one Q sample having the same sample width. The sample widths are determined at the application layer. The flexibility of sample width is beneficial for accommodating compressed samples. The CPRI protocol organizes signal data into packets called AxC containers. Each AxC container includes I and Q samples corresponding to one antenna-carrier (AxC). The AxC corresponds to data provided to or received via one carrier of one independent antenna element. The AxC container holds the I,Q samples for the duration of one UMTS chip. For WiMax, the AxC container holds the I,Q samples and sometimes additional stuffing bits. The AxC containers from several different AxCs are multiplexed together to form AxC container groups. The AxC container groups are mapped to the I,Q data block of the basic frame.
The serial data transfer link 430 can be implemented using several types of cabling or using wireless transmission. For long distances single mode or multi-mode fiber optic cabling may be used, while for shorter links CAT5/6, other twisted pair cabling, or coax may be used. Multiple RF bands transmitted as digital data streams can be time multiplexed on optical fiber links.
When the baseband signals are oversampled, compression reduces the redundancy and improves data transfer efficiency. Oversampling is indicated when the number of samples per symbol or chip is greater than one. The oversampling ratio is the ratio of the sample rate to the symbol rate or chip rate. When the oversampling ratio is greater than one, the signal is oversampled. For example, the CPRI standard specifies sampling the received analog signal with an oversampling ratio 2 or 4 samples per chip for the UTRA/FDD uplink. For another example, the OBSAI standard specifies oversampling the uplink WCDMA signal by an oversampling ratio of 2 samples per chip
In many cases, lossy compression can be applied to the signal samples while maintaining system quality metrics. For lossless compression, the decompressed signal samples are identical to the original signal samples. For lossy compression, the decompressed signal samples are approximations of the original signal samples. System quality metrics typically include composite error vector magnitude (cEVM), peak code domain error (PCDE), spectral emissions mask (SEM), adjacent channel leakage ratio (ALCR), bit error rate (BER) and block error rate (BLER). The oversampling and/or sample widths of the signal samples may be greater than necessary to meet system requirements for signal quality. Lossy compression can provide a greater reduction in data transfer capacity while the important metrics of signal quality are preserved.
In the commonly owned U.S. Pat. No. 7,009,533 B1 (the '533 patent), entitled “Adaptive Compression and Decompression of Bandlimited Signals”, dated Mar. 7, 2006, the present inventor describes algorithms for compression and decompression of certain bandlimited signals. The compression methods described herein adapts those algorithms for the present application to signal samples from the various configurations of a BTS. The compression method applied depends on characteristics of the signal samples, including center frequency, sample rate and signal-to-noise ratio (SNR).
Systems that generate baseband signal samples for transfer over the serial data links include those compatible with OBSAI or CPRI and configurations of the general BTS where the signal samples are centered at 0 Hz. The compression methods applied to baseband signal samples include block floating point encoding and computing first or higher order derivatives of the signal samples followed by block floating point encoding. Huffman or other types of encoding can be alternatives to block floating point encoding. For signal samples that are sampled at one sample per chip or symbol, the preferred method is block floating point encoding of the signal samples. For example, the OBSAI compatible W-CDMA signal samples for downlink from the baseband module to the RF unit have one sample per chip. The block floating point encoding is applied to the I samples and, independently, to the Q samples, to form the compressed samples.
The preferred block floating point encoding has the following steps for BLOCK_SIZE samples, each BLOCK_SIZE divided into groups of N_group samples:
-
- For the first group of samples, where S is the original number of bits per sample:
- 1) Determine the exponent (base 2) for the sample with the maximum magnitude, such as by calculating the log2 of the maximum magnitude. This indicates the number of bits per encoded sample in the group, or n_exp(0).
- 2) Absolute encode the exponent n_exp(0) of the first group using S bits.
- 3) Encode the N_group samples using n_exp(0) bits per sample. For the ith group of N_group samples
- 4) Determine the ith exponent (base 2) for the sample with the maximum magnitude, which indicates the number of bits per encoded sample in the ith group, or n_exp(i);
- 5) Differentially encode the ith exponent by subtracting n_exp(i) from n_exp (i-1) to determine the first token in the ith group of encoded samples.
- 6) Encode the ith group of N_group samples using n_exp(i) bits per sample.
For the first group of samples in the BLOCK_SIZE samples, the exponent n_exp(0) is absolute encoded. For example, the exponent n_exp(0) can be encoded as follows, where S is the original number of bits per sample:
-
- a. 0: n_exp(0)=0 (all 4 sample values are zero)
- b. 1: n_exp(0)=2 (2 bits per sample)
- c. 2: n_exp(0)=3 (3 bits per sample)
- d. etc. until S-1: n_exp(0)=S (S bits per sample)
For the ith group, the exponent n_exp(i) is differentially encoded using a prefix code, where no codeword is the prefix of another codeword. The preferred differential encoding is as follows:
-
- 1. Calculate difference: e_diff=n_exp(i)−n_exp(i-1)
- 2. Encode e_diff as follows:
- a. 0: e_diff=e(i)−e(i-1)
- b. 101: e_diff=+1
- c. 110: e_diff=−1
- d. 1001: e_diff=+2
- e. 1110: e_diff=−2
- f. Etc.
Another compression alternative for baseband signal samples is calculating differences followed by encoding. Calculating first or higher order differences of the signal samples can result in difference samples having smaller magnitudes than the original signal samples. Encoding the difference samples can result in greater compression than encoding the samples themselves. Calculating the differences of consecutive samples in each BLOCK_SIZE number of samples is followed by block floating point encoding of the difference samples, as described above. Alternatively, Huffman encoding or other encoding can be applied to the difference samples.
Compression can also include reducing the amplitudes of signal samples. This is a form of lossy compression. Attenuating the signal samples by an attenuation factor reduces the effective sample width. The attenuated signal samples can be encoded by block floating point or other encoding. Alternatively, the first or higher order differences of the attenuated signal samples can be calculated prior to encoding. For decompression, the amplitudes of the decompressed samples can be increased by the inverse of the attenuation to restore the original sample width.
The optimum compression for the wireless communication signals that meets system quality requirements for the BTS can be determined in advance. The compression alternatives can include lossless and lossy compression. Control parameters based on the modulation type, sample rate (or oversampling ratio), bandwidth and sample width can be used to configure the compression and decompression operations. The control parameters for the various types of signals served by the BTS can be determined by testing. The control parameters can then be set based on the modulation type. For example, in the OBSAI standard the type field in the RP3 message indicates the signal type, or modulation type. Since the OBSAI standard specifies the sample rate and sample width based on the modulation type, a compression/decompression controller can use the type information to select the corresponding control parameters for the compressor/decompressor. The user can also select lossless or lossy modes. For instance, selecting an attenuation parameter for reducing the amplitudes of the signal samples will result in lossy compression. The user can also select a fixed-rate lossy mode, where the bit rate of the compressed samples is constant.
The compression and decompression described above can also be applied to signal samples having non-zero center frequencies. For example, the compressors 120/130 and decompressors 125/135 of
For the example of Band 3 in
For the example of Band 4 in
For the example of Band 5 in
The above examples described for
The compression controller 860 provides control parameters to the compressor elements based on the ratio of the sample rate to the center frequency of the signal samples. The reorder demux 810 and arithmetic operator 830 respond to the compression control parameters 852 and 856, respectively, to perform the appropriate operations.
For example, consider a multicarrier signal comprising four 5 MHz channels for a total bandwidth of 20 MHz. The 20 MHz multicarrier signal is centered at an IF of 30.72 MHz and is sampled at a sample rate (fs) of 122.88 MHz. The IF corresponds to fs/4 so that the modified samples are represented by the equation,
y(i)=x(i)+x(i-2) (1)
as indicated in
The compressed samples are packed to form compressed data packets that include control data in a header, as described above. The compressed packets can be further formatted in accordance with a protocol for transfer over the serial data link 140. The serial data link 140 can be a custom link or an industry standard link. Depending on the type of link, formatting operations can include 8b10b encoding, insertion into Ethernet MAC frame or other formatting.
The compression methods described above can be configured to produce lossless or lossy compression. Depending on system parameters, it can be possible to obtain the specified bit error rates (BER), or other quality metric, for data transfer when lossy compression is applied to the signal samples. Lossy compression can provide additional resource savings within the BER limitation. One approach for lossy encoding is to reduce the data width, or dynamic range, of the samples to be compressed. A programmable attenuator can attenuate the signal samples to reduce the data width prior to the other compression operations of compressors 120/130 and 120i/130i. Alternatively, programmable shifters can shift out one or more least significant bits from the signal samples, also reducing the data width. In another alternative, arithmetic operator 830 or encoder 840 can eliminate one or more least significant bits. Each of these alternatives for lossy encoding can be controlled by the compression controller 860. Additional alternatives for control of lossless and lossy compression can be based on a desired bit rate for compressed signal samples or a desired signal quality, such as SNR or BER, of the decompressed signal.
In the examples of
Implementation alternatives for the compressor and decompressor include programmable processors and application specific integrated circuits (ASIC). The programmable processors include software/firmware programmable processors such as computers, digital signal processors (DSP), microprocessors (including microcontrollers) and other programmable devices, and hardware programmable devices such as complex programmable logic devices (CPLD), field programmable gate arrays (FPGA). Depending on the type of programmable processor, the program implementing the compression and decompression operations are represented by software, firmware, netlist, bitstream or other type of processor executable instructions and data. Subsystems that implement the compressor and decompressor can be integrated into devices that perform other functions of the RF unit or base station processor. Implementations of compression or decompression can be performed in real time, that is, at least as fast as the sample rate of the ADC or DAC. Compression and decompression operations include multiplexing operations, inversion operations and simple arithmetic operations including addition, subtraction and shifting.
While the preferred embodiments of the invention have been illustrated and described, it will be clear that the invention is not limited to these embodiments only. Numerous modifications, changes, variations, substitutions and equivalents will be apparent to those skilled in the art, without departing from the spirit and scope of the invention, as described in the claims.
Claims
1. A base transceiver system, comprising:
- a base station processor, an RF unit, and a data transfer link between the base station processor and the RF unit;
- the RF unit being connected to the data transfer link, and to an antenna to receive an analog uplink signal having one or more carriers, the RF unit being configured to translate each of said one or more carriers from the analog uplink signal into one or more uplink digital baseband antenna-carrier channels, each uplink digital baseband antenna-carrier channel having a sequence of uplink signal samples that are sent to the data transfer link, wherein each uplink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, and the RF unit also being configured to translate one or more downlink digital baseband antenna-carrier channels received from the data transfer link and having a sequence of downlink signal samples, wherein each downlink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, into an analog downlink signal having one or more carriers for transmission by an antenna;
- the base station processor being connected to the data transfer link, and including a communication interface adapted for connection to a source of downlink signals, and to a destination for uplink signals, the base station processor being configured to translate the downlink signal from the communications interface to one or more downlink digital baseband antenna-carrier channels and having a sequence of downlink signal samples, wherein each downlink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, and to transmit the sequence of downlink digital baseband antenna-carrier channels across the data transfer link to the RF unit, and to process one or more uplink digital baseband antenna-carrier channels received from the RF unit across the data transfer link to produce uplink data for delivery across the communications interface; and further including
- compression and decompression logic at the RF unit and at the base station processor arranged for transfer of compressed versions of the uplink and downlink digital baseband antenna-carrier channels across the data transfer link.
2. The base transceiver system of claim 1, wherein the compression and decompression logic includes
- logic at the RF unit to compress the signal samples of the one or more uplink digital baseband antenna-carrier channels to form compressed uplink samples, to format the compressed uplink samples for transfer over the data transfer link, and to transfer the compressed uplink samples over the data transfer link from the RF unit to the base station processor;
- logic at the base station processor to decompress the compressed uplink samples corresponding to each uplink digital baseband antenna-carrier channel to form decompressed uplink signal samples of the corresponding uplink digital baseband antenna-carrier channel;
- logic at the base station processor to compress the signal samples corresponding to each downlink digital baseband antenna-carrier channel to form compressed downlink samples, to format the compressed downlink samples for transfer over the data transfer link, and to transfer the compressed downlink samples over the data transfer link to the RF unit; and
- logic at the RF unit to decompress the compressed downlink samples to form decompressed downlink signal samples corresponding to each downlink digital baseband antenna-carrier channel.
3. The base transceiver system of claim 1, wherein the data transfer link comprises a serial link.
4. The base transceiver system of claim 1, wherein the one or more downlink digital baseband antenna-carrier signals includes at least one digital baseband antenna-carrier signal comprised of signal samples for a composite of signals to be transmitted to multiple wireless subscribers.
5. The base transceiver system of claim 1, wherein the one or more uplink digital baseband antenna-carrier signals for uplink includes at least one digital baseband antenna-carrier signal comprised of signal samples for a composite of signals received from multiple wireless subscribers.
6. The base transceiver system of claim 1, wherein the data transfer link is compliant with one of a Common Public Radio Interface (CPRI) standard and an Open Base Station Architecture Initiative (OBSAI) standard.
7. The base transceiver system of claim 1, including at least one additional RF unit connected to the data transfer link, and including compression and decompression logic arranged for transfer of compressed versions of uplink and downlink digital baseband antenna-carrier channels across the data transfer link.
8. The base transceiver system of claim 7, wherein the data transfer link comprises one or more hubs.
9. The base transceiver system of claim 7, wherein the data transfer link comprises a physical layer link between one of said at least one additional RF units and said RF unit, and a physical layer link between said RF unit and the base station processor.
10. The base transceiver system of claim 1, including at least one additional RF unit connected to the base station processor by at least an additional data transfer link, and including compression and decompression logic arranged for transfer of compressed versions of uplink and downlink digital baseband antenna-carrier channels across the at least one additional data transfer link.
11. The base transceiver system of claim 1, wherein the analog uplink signal includes a plurality of carriers, and wherein the compression and decompression logic includes logic for compression and decompression of each of the plurality of carriers individually, and a multiplexer at the RF unit and a de-multiplexer at the base station processor arranged for interleaving the transfer of compressed versions of the uplink digital baseband antenna-carrier channels for the individual carriers across the data transfer link.
12. The base transceiver system of claim 1, wherein the compression and decompression logic is configurable in response to one or more of sample rate, a sample width, a bandwidth and a modulation type for the antenna carrier channels.
13. A base transceiver system, comprising:
- a base station processor, a plurality of antenna nodes, and a data transfer network connected to the base station processor and the plurality of antenna nodes;
- each of the plurality of antenna nodes including an antenna and an RF unit connected to the antenna, the RF unit arranged to receive an analog uplink signal having one or more carriers, the RF unit being configured to translate each of said one or more carriers from the analog uplink signal into one or more uplink digital baseband antenna-carrier channels, each uplink digital baseband antenna-carrier channel having a sequence of uplink signal samples that are sent to the data transfer network, wherein each uplink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, and the RF unit also being configured to translate one or more downlink digital baseband antenna-carrier channels received from the data transfer network and having a sequence of downlink signal samples, wherein each downlink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, into an analog downlink signal having one or more carriers for transmission by an antenna;
- the base station processor being connected to the data transfer network, and including a communication interface adapted for connection to a source of downlink signals, and to a destination for uplink signals, the base station processor being configured to translate the downlink signal from the communications interface to a plurality of downlink digital baseband antenna-carrier channels each having a sequence of downlink signal samples, wherein each downlink signal sample includes an in-phase (I) sample and a quadrature (Q) sample, and to transmit the sequences of downlink digital baseband antenna-carrier channels across the data transfer network to RF units of the plurality of antenna nodes, and to process one or more uplink digital baseband antenna-carrier channels received from the plurality of antenna nodes across the data transfer network to produce uplink data for delivery across the communications interface; and further including
- compression and decompression logic at the RF units of the plurality of antenna nodes and at the base station processor arranged for transfer of compressed versions of the uplink and downlink digital baseband antenna-carrier channels across the data transfer network.
14. The base transceiver system of claim 13, wherein the compression and decompression logic includes
- logic at the RF units to compress the signal samples of the one or more uplink digital baseband antenna-carrier channels to form compressed uplink samples, to format the compressed uplink samples for transfer over the data transfer network, and to transfer the compressed uplink samples over the data transfer network from the RF unit to the base station processor;
- logic at the base station processor to decompress the compressed uplink samples corresponding to each uplink digital baseband antenna-carrier channel to form decompressed uplink signal samples of the corresponding uplink digital baseband antenna-carrier channel;
- logic at the base station processor to compress the signal samples corresponding to each downlink digital baseband antenna-carrier channel to form compressed downlink samples, to format the compressed downlink samples for transfer over the data transfer network, and to transfer the compressed downlink samples over the data transfer network to the RF unit; and
- logic at the RF units to decompress the compressed downlink samples to form decompressed downlink signal samples corresponding to each downlink digital baseband antenna-carrier channel.
15. The base transceiver system of claim 13, wherein the data transfer network comprises one or more serial links.
16. The base transceiver system of claim 13, wherein the plurality of downlink digital baseband antenna-carrier signals includes at least one digital baseband antenna-carrier signal comprised of signal samples for a composite of signals to be transmitted to multiple wireless subscribers.
17. The base transceiver system of claim 13, wherein the one or more uplink digital baseband antenna-carrier signals for uplink at each of the plurality of antenna nodes includes at least one digital baseband antenna-carrier signal comprised of signal samples for a composite of signals received from multiple wireless subscribers.
18. The base transceiver system of claim 13, wherein the data transfer network is compliant with one of a Common Public Radio Interface (CPRI) standard and an Open Base Station Architecture Initiative (OBSAI) standard.
19. The base transceiver system of claim 13, wherein the data transfer network comprises one or more hubs.
20. The base transceiver system of claim 13, wherein the data transfer network comprises a physical layer link between first and second RF units of the plurality of antenna nodes, and a physical layer link between said second RF unit and the base station processor.
21. The base transceiver system of claim 13, wherein the data transfer network comprises a first physical layer link between a first RF unit of the plurality of antenna nodes and the base station processor, and a second physical layer link between a second RF unit of the plurality of antenna nodes and the base station processor.
22. The base transceiver system of claim 13, wherein the analog uplink signal includes a plurality of carriers, and wherein the compression and decompression logic includes logic for compression and decompression of each of the plurality of carriers individually, and a multiplexer at the RF units and a de-multiplexer at the base station processor arranged for interleaving the transfer of compressed versions of the uplink digital baseband antenna-carrier channels for the individual carriers across the data transfer network.
23. The base transceiver system of claim 13, wherein the compression and decompression logic is configurable in response to one or more of sample rate, a sample width, a bandwidth and a modulation type for the antenna carrier channels.
24. In a base transceiver system of a wireless communication network, a method for transferring signal data from a radio frequency (RF) unit to a baseband processor over a serial data link, wherein the RF unit is connected to an antenna to receive an analog signal, the analog signal representing a plurality of antenna-carrier channels, the RF unit including an analog to digital converter (ADC) that converts the analog signal to a digital signal and a digital down converter (DDC) that downconverts the digital signal to a plurality of baseband channels, each baseband channel corresponding to one of the antenna-carrier channels and having a sequence of signal samples, wherein each signal sample includes an in-phase (I) sample and a quadrature (Q) sample, and wherein the baseband processor performs signal processing operations on the signal samples received from the RF unit, the method comprising:
- compressing the signal samples of each baseband channel at the RF unit to form compressed samples in accordance with a compression control parameter, wherein each compressed sample includes a compressed I sample and a compressed Q sample;
- formatting the compressed samples for transfer over the serial data link;
- transferring the compressed samples over the serial data link from the RF unit to the baseband processor;
- receiving the compressed samples at the baseband processor;
- decompressing the compressed samples corresponding to each baseband channel in accordance with a decompression control parameter to form decompressed signal samples of the corresponding baseband channel, wherein each decompressed signal sample includes a decompressed I sample and a decompressed Q sample, wherein the baseband processor applies the signal processing operations to the decompressed signal samples for each baseband channel.
25. The method of claim 24, wherein the step of compressing further comprises one of the following steps:
- applying block floating point encoding to the signal samples to form the compressed samples; and
- applying Huffman encoding to the signal samples to form the compressed samples.
26. The method of claim 24, wherein the step of compressing further comprises:
- calculating first or higher order differences of the signal samples to form a sequence of difference samples in accordance with the compression control parameter; and
- encoding the difference samples to form the compressed samples.
27. The method of claim 26, wherein the step of encoding includes block floating point encoding or Huffman encoding applied to the difference samples.
28. The method of claim 24, wherein the compression control parameter is based on one or more characteristics of the signal samples.
29. The method of claim 28, wherein the characteristic includes at least one of a sample rate, a sample width, a bandwidth and a modulation type of the signal samples.
30. The method of claim 24, wherein the step of compressing is performed in a compression subsystem implemented in a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC) of the RF unit.
31. The method of claim 24, wherein the steps of formatting, transferring and receiving are performed in accordance with one of the following industry standards:
- an Open Base Station Architecture Initiative (OBSAI) standard; and
- a Common Public Radio Interface (CPRI) standard.
32. The method of claim 24, wherein the step of formatting further comprises:
- mapping a sequence of the compressed samples corresponding to each baseband channel to a sequence of data structures, to form a plurality of sequences of data structures for the plurality of baseband channels; and
- multiplexing the plurality of sequences of the data structures corresponding to the plurality of baseband channels to form a sequence of multiplexed data structures representing the compressed samples for the step of transferring.
33. The method of claim 32, wherein the step of mapping further comprises:
- mapping the sequence of the compressed samples corresponding to each baseband channel to a sequence of Ethernet MAC frames; and
- mapping the sequence of Ethernet MAC frames to the sequence of data structures corresponding to each baseband channel.
34. The method of claim 32, wherein the data structures are formed in accordance with one of the following:
- an Open Base Station Architecture Initiative (OBSAI) standard, wherein the data structures are formed in accordance with a Reference Point 3(RP3) message protocol; and
- a Common Public Radio Interface (CPRI) standard wherein the data structures are formed in accordance with an antenna-carrier (AxC) container protocol.
35. The method of claim 25, wherein the step of decompressing further comprises one of the following:
- applying block floating point decoding to the compressed samples to form the decompressed signal samples; and
- applying Huffman decoding to the compressed samples to form the decompressed signal samples.
36. The method of claim 26, wherein the step of decompressing further comprises:
- decoding the compressed samples to form decoded difference samples; and
- integrating the decoded difference samples to form the decompressed signal samples.
37. The method of claim 36, wherein the step of decoding further comprises applying block floating point decoding or Huffman decoding to the compressed samples.
38. The method of claim 24, wherein the step of decompressing is performed in a decompression subsystem implemented in a programmable processor, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) of the baseband processor.
39. The method of claim 32, wherein the step of receiving further comprises the following steps:
- demultiplexing the sequence of multiplexed data structures to reconstruct the plurality of sequences of data structures corresponding to the plurality of baseband channels; and
- extracting the sequence of the compressed samples from the sequence of data structures corresponding to each baseband channel.
40. The method of claim 33, wherein the step of receiving further comprises the following steps:
- demultiplexing the sequence of multiplexed data structures to reconstruct the plurality of sequences of data structures corresponding to the plurality of baseband channels;
- reconstructing the sequence of Ethernet MAC frames from the sequence of data structures corresponding to each baseband channel; and
- extracting the sequence of the compressed samples corresponding to each baseband channel from the corresponding sequence of Ethernet MAC frames.
41. The method of claim 24, wherein the base transceiver system includes a plurality of RF units in communication with the baseband processor via a plurality serial data links in a distributed antenna system, each RF unit performing the steps of compressing the signal samples, formatting the compressed samples and transferring the compressed samples over the serial data link to the baseband processor, wherein the baseband processor applies the step of decompressing to the compressed samples received from each of the RF units to form corresponding decompressed signal samples.
Type: Application
Filed: Jul 26, 2011
Publication Date: Nov 17, 2011
Patent Grant number: 8705634
Applicant: SAMPLIFY SYSTEMS, INC. (Santa Clara, CA)
Inventor: Albert W. Wegener (Aptos Hills, CA)
Application Number: 13/191,330
International Classification: H04W 88/08 (20090101); H04W 72/04 (20090101);