Computer-Readable Storage Medium, Image Display Apparatus, Image Display System, and Image Display Method
First, the interval between a left virtual camera and a right virtual camera is determined based on the relative position and the relative orientation of an outer imaging section (left) with respect to a marker, which are calculated from a result of marker recognition in the left real world image, and on the relative position and the relative orientation of an outer imaging section (right) with respect to the marker, which are calculated from a result of marker recognition in the right real world image. After the interval between the left virtual camera and the right virtual camera is determined, the positions and the orientations of the left virtual camera and the right virtual camera are determined based on the determined interval such that the relationship between the position and the orientation of the left virtual camera, and the position and the orientation of the right virtual camera is ideal.
Latest NINTENDO CO., LTD. Patents:
- Storage medium storing game program, game system, game apparatus, and game processing method
- Non-transitory computer-readable storage medium, information processing apparatus, information processing system, and information processing method
- Computer-readable non-transitory storage medium having game program stored therein, game apparatus, game processing method, and game system
- Storage medium storing game program, game system, game apparatus, and game processing method
- Non-transitory computer-readable storage medium having game program stored therein, game apparatus, game process method, and game system
The disclosures of Japanese Patent Application No. 2010-134545, filed on Jun. 11, 2010, Japanese Patent Application No. 2010-134575, filed on Jun. 11, 2010, and Japanese Patent Application No. 2010-135507, filed on Jun. 14, 2010 are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a computer-readable storage medium, an image display apparatus, an image display system, and an image display method, and more particularly, to a computer-readable storage medium, an image display apparatus, an image display system, and an image display method for stereoscopically displaying a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view.
2. Description of the Background Art
In recent years, development of an AR (Augmented Reality) technique has been advanced in which a virtual object is superimposed onto an image of a real world and the resultant image is displayed, whereby the virtual object appears to be present in the real world.
For example, a stereoscopic display apparatus disclosed in Patent Literature 1 (Japanese Laid-Open Patent Publication No. 2008-146109) calculates the relative positions and relative orientations of a camera for a right eye and a camera for a left eye with respect to a marker placed in the real world, from respective images shot by the camera for a right eye and the camera for a left eye, which are attached to a head mounted display, and then, based on the result of the calculation, generates an image of a virtual object for a right eye and an image for the virtual object for a left eye. Then, the stereoscopic display apparatus superimposes the image of the virtual object for a right eye and the image for the virtual object for a left eye onto the images shot by the camera for a right eye and the camera for a left eye, respectively, and displays the resultant composite images on an LCD (liquid crystal display) for a right eye and an LCD for a left eye, respectively.
In addition, Non-Patent Literature 1 (Hirokazu Kato, Mark Billinghurst, “Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System,” iwar, pp.85, 2nd IEEE and ACM International Workshop on Augmented Reality, 1999) discloses a method of, based on the position and the orientation of a marker in an image shot by a camera, calculating the relative positions and the relative orientations of the marker and the camera with respect to each other in the real world.
However, in the case where the relative positions and the relative orientations of the marker and the camera with respect to each other in the real world are calculated based on the position and the orientation of the marker in an image shot by the camera, if the image shot by the camera is blurred or if the accuracy of marker recognition is not perfect, error occurs in a result of calculation. Therefore, in the stereoscopic display apparatus disclosed in Patent Literature 1, the relative position and orientation of the camera for a right eye with respect to the marker calculated based on an image shot by the camera for a right eye are not always accurate, and also, the relative position and orientation of the camera for a left eye with respect to the marker calculated based on an image shot by the camera for a left eye are not always accurate. An image for a right eye including a virtual object, and an image for a left eye including the virtual object that are generated based on a result of calculation that is not accurate, do not have consistency with each other, that is, they are inconsistence with each other. As a result, a user cannot normally stereoscopically view the virtual object.
SUMMARY OF THE INVENTIONTherefore, an object of the present invention is to provide a computer-readable storage medium, an image display apparatus, an image display system, and an image display method that are capable of displaying a virtual object so as to be normally stereoscopically visible.
The present invention has the following features to attain the object mentioned above.
A computer-readable storage medium of the present invention is a computer-readable storage medium having stored therein an image display program which stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, the image display program causing a computer to function as first position orientation calculation means, virtual camera setting means, right virtual space image generation means, left virtual space image generation means, and display control means. The first position orientation calculation means recognizes a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculates position orientation information indicating relative positions and relative orientations of the one of the real cameras and the predetermined shooting target with respect to each other. The virtual camera setting means determines the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means. The right virtual space image generation means generates a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera. The left virtual space image generation means generates a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera. The display control means superimposes the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposes the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
It is noted that the virtual camera setting means may determine the position and the orientation of the right virtual camera for generating the image for a right eye, and the position and the orientation of the left virtual camera for generating the image for a left eye, in the predetermined virtual space, without using a result of recognition of the predetermined shooting target in the piece of real world image data outputted from the other one of the real cameras which is different from the one of the real camera in the first position orientation calculation means.
According to the above configuration, even if the predetermined shooting target can be recognized only in one of the two pieces of real world image data respectively outputted from the two real cameras, the position and the orientation of one of the two virtual cameras are determined based on the position orientation information calculated based on the one, of the two pieces of real world image data, in which the predetermined shooting target can be recognized, and the position and the orientation of the other one of the two virtual cameras are determined based on the position and the orientation of the one of the two virtual cameras which have been determined. Therefore, even if the predetermined shooting target can be recognized only in one of the two pieces of real world image data respectively outputted from the two real cameras, a virtual object can be appropriately displayed in a stereoscopic manner. In addition, even if the predetermined shooting target can be recognized in both the two pieces of real world image data respectively outputted from the two real cameras, a virtual object can be appropriately displayed in a stereoscopic manner merely by recognizing the predetermined shooting target in one of the two pieces of real world image data. Thus, a load of processing on the computer can be reduced.
In another preferable configuration, the virtual camera setting means may determine the positions and the orientations of the right virtual camera and the left virtual camera such that the relationship between the relative orientations of the right virtual camera and the left virtual camera with respect to each other is the same as the relationship between designed relative orientations of the real camera for a right eye and the real camera for a left eye with respect to each other.
According to the above configuration, even if the position orientation information calculated based on the piece of real world image data outputted from one of the two real cameras, and the position orientation information calculated based on the piece of real world image data outputted from the other one of the two real cameras do not accurately correspond to the respective relative orientations of the two real cameras because of error in recognition of the predetermined shooting target, error in attachment of the two real cameras, or the like, the relative orientations of the right virtual camera and the left virtual camera can be set appropriately. Therefore, a virtual object can be appropriately displayed in a stereoscopic manner.
In another preferable configuration, the virtual camera setting means may include: a first virtual camera orientation determination section for determining the orientation of one of the right virtual camera and the left virtual camera that corresponds to the one of the real cameras in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and a second virtual camera orientation determination section for, based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, determining the orientation of the other one of the right virtual camera and the left virtual camera such that the relationship between the relative orientations of the right virtual camera and the left virtual camera with respect to each other is the same as the relationship between designed relative orientations of the real camera for a right eye and the real camera for a left eye with respect to each other.
In another preferable configuration, the image display program may further cause the computer to function as virtual camera relative position relationship determination means for determining a relative position relationship between the right virtual camera and the left virtual camera. The virtual camera setting means may include: a first virtual camera position determination section for determining the position of one of the right virtual camera and the left virtual camera that corresponds to the one of the real cameras in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and a second camera position determination section for determining the position of the other one of the right virtual camera and the left virtual camera so as to be separated, by the relative position determined by the virtual camera relative position relationship determination means, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
It is noted that the “relative position relationship” mentioned above may be the distance between the left virtual camera and the right virtual camera, or may be the relative position of one of the virtual cameras with respect to the other one of the virtual cameras.
It is noted that the virtual camera relative position relationship determination means may determine the relative position relationship between the right virtual camera and the left virtual camera, based on a result of recognition of the predetermined shooting target in the two pieces of real world image data respectively outputted from the two real cameras, or may determine the relative position relationship between the right virtual camera and the left virtual camera, based on the designed relative relationship between the real camera for a right eye and the real camera for a left eye.
According to the above configuration, even if the position orientation information calculated based on the piece of real world image data outputted from one of the two real cameras, and the position orientation information calculated based on the piece of real world image data outputted from the other one of the two real cameras do not accurately correspond to the relative position relationship between the two real cameras because of error in recognition of the predetermined shooting target, error in attachment of the two real cameras, or the like, the relative position relationship between the right virtual camera and the left virtual camera can be set appropriately. Therefore, a virtual object can be appropriately displayed in a stereoscopic manner.
In another preferable configuration, the virtual camera setting means may include: a first virtual camera position determination section for determining the position of one of the right virtual camera and the left virtual camera that corresponds to the one of the real cameras in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; a first virtual camera orientation determination section for determining the orientation of the one of the right virtual camera and the left virtual camera that corresponds to the one of the real cameras in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and a second virtual camera position determination section for determining the position of the other one of the right virtual camera and the left virtual camera so as to be present, in a direction based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section,
It is noted that the second virtual camera position determination section may determine the position of the other one of the right virtual camera and the left virtual camera so as to be present, in the lateral direction of the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
In another preferable configuration, the image display program may further cause the computer to function as virtual cameras distance determination means for determining the distance between the right virtual camera and the left virtual camera. The second virtual camera position determination section may determine the position of the other one of the right virtual camera and the left virtual camera so as to be separated by the distance determined by the virtual cameras distance determination means, in the direction based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
In another preferable configuration, the virtual camera relative position relationship determination means may determine the relative position relationship between the right virtual camera and the left virtual camera, based on a parallax between the pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye.
According to the above configuration, the relative position relationship between the right virtual camera and the left virtual camera is determined based on the parallax between the two pieces of real world image data. Therefore, even if the relative position relationship between the two real cameras is not known, or even if the relative position relationship between the two real cameras has error because of error in the attachment of the two real cameras, the right virtual camera and the left virtual camera can be set appropriately.
In another preferable configuration, the relative position relationship which is determined by the relative position relationship determination means may be the interval between the right virtual camera and the left virtual camera.
In another preferable configuration, the image display program may further cause the computer to function as second position orientation calculation means for recognizing the predetermined shooting target in the piece of real world image data outputted from the other one of the real cameras which is different from the one of the real cameras in the first position orientation calculation means, among the two pieces of real world image data respectively outputted from the two real cameras, and calculating position orientation information indicating relative positions and relative orientations of the other one of the real cameras and the predetermined shooting target with respect to each other. The virtual camera relative position relationship determination means may calculate the distance between the one of the real cameras and the other one of the real cameras, based on the information, about the relative positions of the one of the real cameras and the predetermined shooting target, which is calculated by the first position orientation calculation means, and on the information, about the relative positions of the other one of the real cameras and the predetermined shooting target, which is calculated by the second position orientation calculation means.
In another preferable configuration, the first position orientation calculation means may include first transform matrix generation means for, based on the piece of real world image data outputted from the one of the real cameras, generating a first transform matrix that transforms a coordinate value represented in a coordinate system whose origin is the position of the predetermined shooting target, into a coordinate value represented in a first shooting section coordinate system whose origin is the position of the one of the real cameras. The second position orientation calculation means may include second transform matrix generation means for, based on the piece of real world image data outputted from the other one of the real cameras, generating a second transform matrix that transforms a coordinate value represented in a coordinate system whose origin is the position of the predetermined shooting target, into a coordinate value represented in a second shooting section coordinate system whose origin is the position of the other one of the real cameras.
In another preferable configuration, the virtual camera relative position relationship determination means may execute processing of calculating the relative position relationship between the right virtual camera and the left virtual camera every time a new piece of real world image data is outputted from each of the two real cameras, and may determine the relative position relationship between the right virtual camera and the left virtual camera, based on results of a plurality of the calculations of the relative position relationship obtained by the processing being executed a plurality of times.
According to the above configuration, influence of error in recognition of the predetermined shooting target in each piece of real world image data is reduced. Therefore, reliability of the relative position relationship between the right virtual camera and the left virtual camera determined by the virtual camera relative position relationship determination means is improved.
In another preferable configuration, the virtual camera relative position relationship determination means may determine the relative position relationship between the right virtual camera and the left virtual camera, based on the results of the plurality of calculations of the relative position relationship, only when all the results of the plurality of calculations of the relative position relationship are within a predetermined range.
According to the above configuration, reliability of the relative position relationship between the right virtual camera and the left virtual camera determined by the virtual camera relative position relationship determination means is improved.
In another preferable configuration, the image display program may further cause the computer to function as depth variation determination means for determining whether or not the depth distance from each of the two real cameras to the predetermined shooting target has varied beyond a predetermined range in comparison with the depth distance as it was when the virtual camera relative position relationship determination means determined the relative position relationship between the right virtual camera and the left virtual camera. The virtual camera relative position relationship determination means may determine again the relative position relationship between the right virtual camera and the left virtual camera, when the result of the determination by the depth variation determination means is positive.
The magnitude of influence of error in attachment of the two real cameras varies depending on the depth distance from each of the two real cameras to the predetermined shooting target. According to the above configuration, the influence of error in attachment of the two real cameras can appropriately be corrected as necessary at any time.
In another preferable configuration, the image display program may further cause the computer to function as depth distance calculation means for calculating the depth distance from each of the two real cameras to the predetermined shooting target, based on a piece of real world image data that includes the predetermined shooting target. The depth variation determination means may determine whether or not the depth distance from each of the two real cameras to the predetermined shooting target has varied beyond the predetermined range by comparing a reference depth distance calculated by the depth distance calculation means at a time when the virtual camera relative position relationship determination means determined the relative position relationship between the right virtual camera and the left virtual camera, with the latest depth distance calculated by the depth distance calculation means after the calculation of the reference depth distance.
In another preferable configuration, the depth distance calculation means may execute processing of calculating the depth distance from each of the two real cameras to the predetermined shooting target every time a new piece of real world image data is outputted from each of the two real cameras, and may calculate the reference depth distance, based on results of a plurality of the calculations of the depth distance obtained by the processing being executed a plurality of times.
According to the above configuration, influence of error in recognition of the predetermined shooting target in each piece of real world image data is reduced. Therefore, reliability of the depth distance from each of the two real cameras to the predetermined shooting target calculated by the depth distance calculation means is improved.
In another preferable configuration, the depth distance calculation means may determine the reference depth distance, based on the results of the plurality of calculations of the depth distance, only when all the results of the plurality of calculations of the depth distance are within a predetermined range.
According to the above configuration, reliability of the depth distance from each of the two real cameras to the predetermined shooting target calculated by the depth distance calculation means is improved.
In another preferable configuration, the image display program may further cause the computer to function as: second position orientation calculation means for recognizing the predetermined shooting target in the piece of real world image data outputted from the other one of the real cameras which is different from the one of the real cameras in the first position orientation calculation means, among the two pieces of real world image data respectively outputted from the two real cameras, and calculating position orientation information indicating relative positions and relative orientations of the other one of the real cameras and the predetermined shooting target with respect to each other; and real camera selection means for selecting one of the two real cameras in accordance with the position of the predetermined shooting target in at least one of the two pieces of real world image data respectively outputted from the two real cameras. The virtual camera setting means may, if the real camera selected by the real camera selection means is the one of the real cameras, determine the position and the orientation of the right virtual camera, and the position and the orientation of the left virtual camera, by using the position orientation information indicating the relative positions and relative orientations of the one of the real cameras and the predetermined shooting target, which is calculated by the first position orientation calculation means, and if the real camera selected by the real camera selection means is the other one of the real cameras, determine the position and the orientation of the right virtual camera, and the position and the orientation of the left virtual camera, by using the position orientation information indicating the relative positions and relative orientations of the other one of the real cameras and the predetermined shooting target, which is calculated by the second position orientation calculation means.
According to the above configuration, even if the predetermined shooting target is out of a shooting area of one of the real cameras, the right virtual camera and the left virtual camera can be set appropriately. Therefore, it is possible to keep stereoscopically displaying a virtual object.
In another preferable configuration, the real camera selection means may switch the real camera for a left eye to the real camera for a right eye, in accordance with entrance of the position of the predetermined shooting target in the piece of real world image data outputted from the real camera for a left eye of the two real cameras into a right end area of the piece of real world image data, and may switch the real camera for a right eye to the real camera for a left eye, in accordance with entrance of the position of the predetermined shooting target in the piece of real world image data outputted from the real camera for a right eye of the two real cameras into a left end area of the piece of real world image data.
In another preferable configuration, the pieces of real world image data to be used by the first position orientation calculation means and the display control means may be outputted in real time from the real cameras.
According to the above configuration, it is possible to make a virtual object on the screen of the stereoscopic display apparatus appear as if the virtual object were present in real time in the real world.
In another preferable configuration, the computer may be included in an information processing apparatus having the two real cameras and the stereoscopic display apparatus.
An image display apparatus according to the present invention stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, and comprises first position orientation calculation means, virtual camera setting means, right virtual space image generation means, left virtual space image generation means, and display control means. The first position orientation calculation means recognizes a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculates position orientation information indicating relative positions and relative orientations of the one of the real cameras and the predetermined shooting target with respect to each other. The virtual camera setting means determines the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means. The right virtual space image generation means generates a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera. The left virtual space image generation means generates a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera. The display control means superimposes the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposes the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
An image display system according to the present invention stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, and comprises a predetermined shooting target, first position orientation calculation means, virtual camera setting means, right virtual space image generation means, left virtual space image generation means, and display control means. The first position orientation calculation means recognizes the predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculates position orientation information indicating relative positions and relative orientations of the one of the real cameras and the predetermined shooting target with respect to each other. The virtual camera setting means determines the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means. The right virtual space image generation means generates a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera. The left virtual space image generation means generates a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera. The display control means superimposes the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposes the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
An image display method according to the present invention stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, and comprises a first position orientation calculation step, a virtual camera setting step, a right virtual space image generation step, a left virtual space image generation step, and a display control step. The first position orientation calculation step recognizes a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculates position orientation information indicating relative positions and relative orientations of the one of the real cameras and the predetermined shooting target with respect to each other. The virtual camera setting step determines the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated in the first position orientation calculation step. The right virtual space image generation step generates a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera. The left virtual space image generation step generates a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera. The display control step superimposes the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposes the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
According to the present invention, it is possible to display a virtual object so as to be normally stereoscopically visible.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
(Structure of Game Apparatus)
Hereinafter, a game apparatus according to one embodiment of the present invention will be described.
Initially, an external structure of the game apparatus 10 will be described with reference to
As shown in
(Description of Lower Housing)
Initially, a structure of the lower housing 11 will be described. As shown in
As shown in
As shown in
The operation buttons 14A to 14L are each an input device for making a predetermined input. As shown in
The analog stick 15 is a device for indicating a direction, and is provided to the left of the lower LCD 12 in an upper portion of the inner side surface of the lower housing 11. As shown in
Four buttons, that is, the button 14B, the button 14C, the button 14D, and the button 14E, which are positioned so as to form a cross shape, are positioned such that a thumb of a right hand with which the lower housing 11 is held is naturally positioned on the positions of the four buttons. Further, the four buttons and the analog stick 15 sandwich the lower LCD 12, so as to be bilaterally symmetrical in position with respect to each other. Thus, depending on a game program, for example, a left-handed person can make a direction instruction input by using these four buttons.
Further, the microphone hole 18 is provided on the inner side surface of the lower housing 11. Under the microphone hole 18, a microphone (see
As shown in
Further, as shown in
Further, as shown in
A rechargeable battery (not shown) acting as a power supply for the game apparatus 10 is accommodated in the lower housing 11, and the battery can be charged through a terminal provided on a side surface (for example, the upper side surface) of the lower housing 11.
(Description of Upper Housing)
Next, a structure of the upper housing 21 will be described. As shown in
As shown in
The screen of the upper LCD 22 is provided on the inner side surface (main surface) 21B of the upper housing 21, and the screen of the upper LCD 22 is exposed at an opening of the upper housing 21. Further, as shown in
The upper LCD 22 is a display device capable of displaying a stereoscopically visible image. Further, in the present embodiment, an image for a left eye and an image for a right eye are displayed by using substantially the same display area. Specifically, the upper LCD 22 may be a display device using a method in which the image for a left eye and the image for a right eye are alternately displayed in the horizontal direction in predetermined units (for example, every other line). Alternatively, a display device using a method in which the image for a left eye and the image for a right eye are alternately displayed for a predetermined time period may be used. Further, in the present embodiment, the upper LCD 22 is a display device capable of displaying an image which is stereoscopically visible with naked eyes. A lenticular lens type display device or a parallax barrier type display device is used which enables the image for a left eye and the image for a right eye, which are alternately displayed in the horizontal direction, to be separately viewed by the left eye and the right eye, respectively. In the present embodiment, the upper LCD 22 of a parallax barrier type is used. The upper LCD 22 displays, by using the image for a right eye and the image for a left eye, an image (a stereoscopic image) which is stereoscopically visible with naked eyes. That is, the upper LCD 22 allows a user to view the image for a left eye with her/his left eye, and the image for a right eye with her/his right eye by utilizing a parallax barrier, so that a stereoscopic image (a stereoscopically visible image) exerting a stereoscopic effect for a user can be displayed. Further, the upper LCD 22 may disable the parallax barrier. When the parallax barrier is disabled, an image can be displayed in a planar manner (it is possible to display a planar visible image which is different from a stereoscopically visible image as described above. Specifically, a display mode is used in which the same displayed image is viewed with a left eye and a right eye). Thus, the upper LCD 22 is a display device capable of switching between a stereoscopic display mode for displaying a stereoscopically visible image and a planar display mode (for displaying a planar visible image) for displaying an image in a planar manner. The switching of the display mode is performed by the 3D adjustment switch 25 described later.
Two imaging sections (23a and 23b) provided on the outer side surface (the back surface reverse of the main surface on which the upper LCD 22 is provided) 21D of the upper housing 21 are generically referred to as the outer imaging section 23. The imaging directions of the outer imaging section (left) 23a and the outer imaging section (right) 23b are each the same as the outward normal direction of the outer side surface 21D. Further, these imaging sections are each designed so as to be positioned in a direction which is opposite to the normal direction of the display surface (inner side surface) of the upper LCD 22 by 180 degrees. Specifically, the imaging direction of the outer imaging section (left) 23a and the imaging direction of the outer imaging section (right) 23b are parallel to each other. The outer imaging section (left) 23a and the outer imaging section (right) 23b can be used as a stereo camera depending on a program executed by the game apparatus 10. Further, depending on a program, when any one of the two outer imaging sections (23a and 23b) is used alone, the outer imaging section 23 may be used as a non-stereo camera. Further, depending on a program, images shot by the two outer imaging sections (23a and 23b) may be combined with each other or may compensate for each other, thereby enabling imaging using an extended imaging range. In the present embodiment, the outer imaging section 23 is structured so as to include two imaging sections, that is, the outer imaging section (left) 23a and the outer imaging section (right) 23b. Each of the outer imaging section (left) 23a and the outer imaging section (right) 23b includes an imaging device, such as a CCD image sensor or a CMOS image sensor, having a common predetermined resolution, and a lens. The lens may have a zooming mechanism.
As indicated by dashed lines in
In the present embodiment, the outer imaging section (left) 23a and the outer imaging section (right) 23b are secured to the housing, and the imaging directions thereof cannot be changed.
Further, the outer imaging section (left) 23a and the outer imaging section (right) 23b are positioned to the left and to the right, respectively, of the upper LCD 22 (on the left side and the right side, respectively, of the upper housing 21) so as to be horizontally symmetrical with respect to the center of the upper LCD 22. Specifically, the outer imaging section (left) 23a and the outer imaging section (right) 23b are positioned so as to be symmetrical with respect to a line which divides the upper LCD 22 into two equal parts, that is, the left part and the right part. Further, the outer imaging section (left) 23a and the outer imaging section (right) 23b are positioned at positions which are reverse of positions above the upper edge of the screen of the upper LCD 22 and which are on the upper portion of the upper housing 21 in an opened state. Specifically, when the upper LCD 22 is projected on the outer side surface of the upper housing 21, the outer imaging section (left) 23a and the outer imaging section (right) 23b are positioned, on the outer side surface of the upper housing 21, at a position above the upper edge of the screen of the upper LCD 22 having been projected.
As described above, the two imaging sections (23a and 23b) of the outer imaging section 23 are positioned to the left and the right of the upper LCD 22 so as to be horizontally symmetrical with respect to the center of the upper LCD 22. Therefore, when a user views the upper LCD 22 from the front thereof, the imaging direction of the outer imaging section 23 can be the same as the direction of the line of sight of the user. Further, the outer imaging section 23 is positioned at a position reverse of a position above the upper edge of the screen of the upper LCD 22. Therefore, the outer imaging section 23 and the upper LCD 22 do not interfere with each other inside the upper housing 21. Therefore, the upper housing 21 may have a reduced thickness as compared to a case where the outer imaging section 23 is positioned on a position reverse of a position of the screen of the upper LCD 22.
The inner imaging section 24 is positioned on the inner side surface (main surface) 21B of the upper housing 21, and acts as an imaging section which has an imaging direction which is the same direction as the inward normal direction of the inner side surface. The inner imaging section 24 includes an imaging device, such as a CCD image sensor and a CMOS image sensor, having a predetermined resolution, and a lens. The lens may have a zooming mechanism.
As shown in
As described above, the inner imaging section 24 is used for shooting an image in the direction opposite to that of the outer imaging section 23. The inner imaging section 24 is positioned on the inner side surface of the upper housing 21 at a position reverse of the middle position between the left and the right imaging sections of the outer imaging section 23. Thus, when a user views the upper LCD 22 from the front thereof, the inner imaging section 24 can shoot an image of a face of the user from the front thereof. Further, the left and the right imaging sections of the outer imaging section 23 do not interfere with the inner imaging section 24 inside the upper housing 21, thereby enabling reduction of the thickness of the upper housing 21.
The 3D adjustment switch 25 is a slide switch, and is used for switching a display mode of the upper LCD 22 as described above. Further, the 3D adjustment switch 25 is used for adjusting the stereoscopic effect of a stereoscopically visible image (stereoscopic image) which is displayed on the upper LCD 22. As shown in
As shown in
The 3D indicator 26 indicates whether or not the upper LCD 22 is in the stereoscopic display mode. The 3D indicator 26 is implemented as a LED, and is lit up when the stereoscopic display mode of the upper LCD 22 is enabled. The 3D indicator 26 may be lit up only when the program processing for displaying a stereoscopically visible image is performed (namely, image processing in which an image for a left eye is different from an image for a right eye is performed in the case of the 3D adjustment switch being positioned between the first position and the second position) in a state where the upper LCD 22 is in the stereoscopic display mode. As shown in
Further, a speaker hole 21E is provided on the inner side surface of the upper housing 21. A sound is outputted through the speaker hole 21E from a speaker 43 described below.
(Internal Configuration of Game Apparatus 10)
Next, an internal electrical configuration of the game apparatus 10 will be described with reference to
The information processing section 31 is information processing means which includes a CPU (Central Processing Unit) 311 for executing a predetermined program, a GPU (Graphics Processing Unit) 312 for performing image processing, and the like. The CPU 311 of the information processing section 31 executes a program stored in a memory (for example, the external memory 44 connected to the external memory I/F 33 or the internal data storage memory 35) inside the game apparatus 10, thereby executing processing (for example, shooting processing, or image display processing described later) corresponding to the program. The program executed by the CPU 311 of the information processing section 31 may be acquired from another device through communication with the other device. The information processing section 31 further includes a VRAM (Video RAM) 313. The GPU 312 of the information processing section 31 generates an image in accordance with an instruction from the CPU 311 of the information processing section 31, and renders the image in the VRAM 313. The GPU 312 of the information processing section 31 outputs the image rendered in the VRAM 313, to the upper LCD 22 and/or the lower LCD 12, and the image is displayed on the upper LCD 22 and/or the lower LCD 12.
To the information processing section 31, the main memory 32, the external memory I/F 33, the external data storage memory I/F 34, and the internal data storage memory 35 are connected. The external memory I/F 33 is an interface for detachably connecting to the external memory 44. The external data storage memory I/F 34 is an interface for detachably connecting to the external data storage memory 45.
The main memory 32 is volatile storage means used as a work area and a buffer area for (the CPU 311 of) the information processing section 31. That is, the main memory 32 temporarily stores various types of data used for the processing based on the program, and temporarily stores a program acquired from the outside (the external memory 44, another device, or the like), for example. In the present embodiment, for example, a PSRAM (Pseudo-SRAM) is used as the main memory 32.
The external memory 44 is nonvolatile storage means for storing a program executed by the information processing section 31. The external memory 44 is implemented as, for example, a read-only semiconductor memory. When the external memory 44 is connected to the external memory I/F 33, the information processing section 31 can load a program stored in the external memory 44. Predetermined processing is performed by the program loaded by the information processing section 31 being executed. The external data storage memory 45 is implemented as a non-volatile readable and writable memory (for example, a NAND flash memory), and is used for storing predetermined data. For example, images shot by the outer imaging section 23 and/or images shot by another device are stored in the external data storage memory 45. When the external data storage memory 45 is connected to the external data storage memory I/F 34, the information processing section 31 loads an image stored in the external data storage memory 45, and the image can be displayed on the upper LCD 22 and/or the lower LCD 12.
The internal data storage memory 35 is implemented as a non-volatile readable and writable memory (for example, a NAND flash memory), and is used for storing predetermined data. For example, data and/or programs downloaded through the wireless communication module 36 by wireless communication are stored in the internal data storage memory 35.
The wireless communication module 36 has a function of connecting to a wireless LAN by using a method based on, for example, IEEE 802.11.b/g standard. The local communication module 37 has a function of performing wireless communication with the same type of game apparatus in a predetermined communication method (for example, communication by a unique protocol, or infrared communication). The wireless communication module 36 and the local communication module 37 are connected to the information processing section 31. The information processing section 31 can perform data transmission to and data reception from another device via the Internet by using the wireless communication module 36, and can perform data transmission to and data reception from the same type of another game apparatus by using the local communication module 37.
The acceleration sensor 39 is connected to the information processing section 31. The acceleration sensor 39 detects magnitudes of accelerations (linear accelerations) in the directions of the straight lines along the three axial (xyz axial) directions, respectively. The acceleration sensor 39 is provided inside the lower housing 11. In the acceleration sensor 39, as shown in
The RTC 38 and the power supply circuit 40 are connected to the information processing section 31. The RTC 38 counts time, and outputs the time to the information processing section 31. The information processing section 31 calculates a current time (date) based on the time counted by the RTC 38. The power supply circuit 40 controls power from the power supply (the rechargeable battery accommodated in the lower housing 11 as described above) of the game apparatus 10, and supplies power to each component of the game apparatus 10.
The I/F circuit 41 is connected to the information processing section 31. The microphone 42 and the speaker 43 are connected to the I/F circuit 41. Specifically, the speaker 43 is connected to the I/F circuit 41 through an amplifier which is not shown. The microphone 42 detects a voice from a user, and outputs a sound signal to the I/F circuit 41. The amplifier amplifies a sound signal outputted from the I/F circuit 41, and a sound is outputted from the speaker 43. The touch panel 13 is connected to the I/F circuit 41. The I/F circuit 41 includes a sound control circuit for controlling the microphone 42 and the speaker 43 (amplifier), and a touch panel control circuit for controlling the touch panel. The sound control circuit performs A/D conversion and D/A conversion on the sound signal, and converts the sound signal to a predetermined form of sound data, for example. The touch panel control circuit generates a predetermined form of touch position data based on a signal outputted from the touch panel 13, and outputs the touch position data to the information processing section 31. The touch position data represents a coordinate of a position, on an input surface of the touch panel 13, on which an input is made. The touch panel control circuit reads a signal outputted from the touch panel 13, and generates the touch position data every predetermined time. The information processing section 31 acquires the touch position data, to recognize a position on which an input is made on the touch panel 13.
The operation button 14 includes the operation buttons 14A to 14L described above, and is connected to the information processing section 31. Operation data representing an input state of each of the operation buttons 14A to 14I is outputted from the operation button 14 to the information processing section 31, and the input state indicates whether or not each of the operation buttons 14A to 14I has been pressed. The information processing section 31 acquires the operation data from the operation button 14 to perform processing in accordance with the input on the operation button 14.
The lower LCD 12 and the upper LCD 22 are connected to the information processing section 31. The lower LCD 12 and the upper LCD 22 each display an image in accordance with an instruction from (the GPU 312 of) the information processing section 31. In the present embodiment, the information processing section 31 causes the upper LCD 22 to display a stereoscopic image (image that is stereoscopically visible).
Specifically, the information processing section 31 is connected to an LCD controller (not shown) of the upper LCD 22, and causes the LCD controller to set the parallax barrier to ON or OFF. When the parallax barrier is set to ON in the upper LCD 22, an image for a right eye and an image for a left eye, which are stored in the VRAM 313 of the information processing section 31 are outputted to the upper LCD 22. More specifically, the LCD controller alternately repeats reading of pixel data of the image for a right eye for one line in the vertical direction, and reading of pixel data of the image for a left eye for one line in the vertical direction, thereby reading, from the VRAM 313, the image for a right eye and the image for a left eye. Thus, an image to be displayed is divided into the images for a right eye and the images for a left eye each of which is a rectangle-shaped image having one line of pixels aligned in the vertical direction, and an image, in which the rectangle-shaped image for the left eye which is obtained through the division, and the rectangle-shaped image for the right eye which is obtained through the division are alternately aligned, is displayed on the screen of the upper LCD 22. A user views the images through the parallax barrier in the upper LCD 22, so that the image for the right eye is viewed by the user's right eye, and the image for the left eye is viewed by the user's left eye. Thus, the stereoscopically visible image is displayed on the screen of the upper LCD 22.
The outer imaging section 23 and the inner imaging section 24 are connected to the information processing section 31. The outer imaging section 23 and the inner imaging section 24 each shoot an image in accordance with an instruction from the information processing section 31, and output data of the shot image to the information processing section 31.
The 3D adjustment switch 25 is connected to the information processing section 31. The 3D adjustment switch 25 transmits, to the information processing section 31, an electrical signal in accordance with the position of the slider 25a.
The 3D indicator 26 is connected to the information processing section 31. The information processing section 31 controls whether or not the 3D indicator 26 is to be lit up. For example, the information processing section 31 lights up the 3D indicator 26 when the upper LCD 22 is in the stereoscopic display mode. The game apparatus 10 has the internal configuration as described above.
(Outline of Operation of Game Apparatus 10)
Hereinafter, the outline of operation of the game apparatus 10 according to the present embodiment will be described. In the present embodiment, a composite image obtained by combining an image of the real world currently shot by the outer imaging section 23 (the outer imaging section (left) 23a and the outer imaging section (right) 23b), and an image of a virtual object present in a 3-dimensional virtual space is displayed in a stereoscopically visible manner on the screen of the upper LCD 22, based on an image display program.
(Stereoscopic Display of Real World Image)
Two images shot by the outer imaging section 23 are supplied to the upper LCD such that the two images have a predetermined parallax, and then are stereoscopically displayed.
(Stereoscopic Display of Real World Image and CG Image)
Hereinafter, with reference to
(Memory Map)
First, main data stored in the main memory 32 when the image display processing is performed will be described.
The image display program 70 is a program for causing the CPU 311 to execute the image display processing.
The latest left real world image 71L is the latest image shot by the outer imaging section (left) 23a.
The latest right real world image 71R is the latest image shot by the outer imaging section (right) 23b.
The display left real world image 72L is the latest image that has been determined as an image that is to be displayed on the upper LCD 22, among images shot by the outer imaging section (left) 23a.
The display left real world image 72R is the latest image that has been determined to be displayed on the upper LCD 22, among images shot by the outer imaging section (right) 23b.
The stereoscopic view zero distance 73 is a variable indicating the distance, of an object from the outer imaging section 23 in the shooting direction, that allows the object to appear to be present at a position with the same depth as the screen of the upper LCD 22 when the object is stereoscopically displayed on the screen of the upper LCD 22. For example, the stereoscopic view zero distance 73 is represented by unit of centimeter. In the present embodiment, the stereoscopic view zero distance 73 has a fixed value of 25 cm, but this value is merely an example. The stereoscopic view zero distance 73 may be changed anytime as needed, in accordance with instructions from the user, or automatically by a computer. The stereoscopic view zero distance 73 may be defined by a distance from the marker 61 or a ratio about the distance between the outer imaging section 23 and the marker 61. Alternatively, the stereoscopic view zero distance 73 does not necessarily need to be defined as a distance in the real world, but may be defined as a distance in the virtual world. If, for example, the size of the marker 61 is known, it is possible to cause the unit of length in the real world and the unit of length in the virtual space to coincide with each other. In this way, if it is possible to cause both units to coincide with each other, the stereoscopic view zero distance 73 can be set by using the unit of length in the real world. However, if it is not possible to cause both units to coincide with each other, the stereoscopic view zero distance 73 may be set by using the unit of length in the virtual world. It is noted that, as described later, in the present embodiment, it is possible to cause the unit of length in the real world and the unit of length in the virtual space to coincide with each other without using the size of the marker 61.
The virtual object information 74 is information that relates to the aforementioned virtual object 62, and includes 3D model data (polygon data) indicating the shape of the virtual object 62, texture data indicating the pattern of the virtual object 62, information about the position and the orientation of the virtual object 62 in the virtual space, and the like.
The left transform matrix 75L is a coordinate transform matrix that transforms coordinates represented in a coordinate system (marker coordinate system) set based on the position and the orientation of the marker 61, into coordinates represented in a coordinate system (outer imaging section (left) coordinate system) set based on the position and the orientation of the outer imaging section (left) 23a, which matrix is calculated by recognizing the position and the orientation of the marker 61 in a left real world image. The left transform matrix 75L includes information about the relative position and relative orientation of the outer imaging section (left) 23a with respect to the position and the orientation of the marker 61. More specifically, the left transform matrix 75L includes information about the position and the orientation of the outer imaging section (left) 23a in the marker coordinate system.
The right transform matrix 75R is a coordinate transform matrix that transforms coordinates represented in the marker coordinate system, into coordinates represented in a coordinate system (outer imaging section (right) coordinate system) set based on the position and the orientation of the outer imaging section (right) 23b, which matrix is calculated by recognizing the position and the orientation of the marker 61 in a right real world image. The right transform matrix 75R includes information about the relative position and relative orientation of the outer imaging section (right) 23b with respect to the position and the orientation of the marker 61. More specifically, the right transform matrix 75R includes information about the position and the orientation of the outer imaging section (right) 23b in the marker coordinate system.
It is noted that in the present specification, a transform matrix that transforms the marker coordinate system into the outer imaging section (left) coordinate system or the outer imaging section (right) coordinate system, is referred to as a “marker-camera transform matrix”. The left transform matrix 75L and the right transform matrix 75R are the “marker-camera transform matrices”.
The left view matrix 76L is a coordinate transform matrix that transforms coordinates represented in a world coordinate system of the virtual world, into coordinates represented in a left virtual camera coordinate system, which matrix is used for drawing the virtual object 62 as it is looked at by the left virtual camera. The left view matrix 76L includes information about the position and the orientation of the left virtual camera in the world coordinate system of the virtual world.
The right view matrix 76R is a coordinate transform matrix that transforms coordinates represented in the world coordinate system of the virtual world, into coordinates represented in a right virtual camera coordinate system, which matrix is used for drawing the virtual object 62 as it is looked at by the right virtual camera. The right view matrix 76R includes information about the position and the orientation of the right virtual camera in the world coordinate system of the virtual world.
The left projection matrix 77L is a coordinate transform matrix that transforms coordinates represented in a left virtual camera coordinate system, into coordinates represented in a screen coordinate system, which matrix is used for drawing the virtual world (the virtual object 62 present in the virtual world) as it is looked at by the left virtual camera.
The right projection matrix 77R is a coordinate transform matrix that transforms coordinates represented in a right virtual camera coordinate system, into coordinates represented in the screen coordinate system, which matrix is used for drawing the virtual world (the virtual object 62 present in the virtual world) as it is looked at by the right virtual camera.
The display mode 78 is data indicating the current display mode. More specifically, the display mode 78 is data indicating a synchronous display mode in which the real world image and the virtual space image are superimposed and displayed being synchronized with each other, or an asynchronous display mode in which the real world image and the virtual space image are superimposed and displayed without synchronizing the real world image and the virtual space image with each other.
The marker recognition mode 79 is data indicating the current marker recognition mode. More specifically, the marker recognition mode 79 is data indicating a one-image recognition mode in which marker recognition processing is performed for only one of the left real world image and the right real world image, or a both-image recognition mode in which the marker recognition processing is performed for both the left real world image and the right real world image.
The main real world image identification information 80 is data indicating which of the left real world image and the right real world image is a main real world image. In the above one-image recognition mode, the marker recognition processing is performed for only the main real world image, whereas the marker recognition processing is not performed for the other real world image (hereinafter, referred to as a sub real world image).
The variables 81 are used in executing the image display program 70, and include variables shown in
When the game apparatus 10 is powered on, the information processing section 31 (CPU 311) of the game apparatus 10 executes a boot program stored in a ROM, which is not shown, thereby initializing units such as the main memory 32. Next, the image display program stored in the data storage internal memory 35 is loaded onto the main memory 32, and then the CPU 311 of the information processing section 31 starts to execute the image display program.
Hereinafter, with reference to flowcharts shown in
(Marker Processing)
In step S10 in
It is noted that, as previously described, the outer imaging section (left) 23a and the outer imaging section (right) 23b of the upper housing 21 are separated by a certain distance away (for example, 3.5 cm, hereinafter, referred to as imaging sections distance). Therefore, when the marker 61 is shot by the outer imaging section (left) 23a and the outer imaging section (right) 23b at the same time, a difference due to a parallax occurs between each of the position and the orientation of the marker 61 in the left real world image shot by the outer imaging section (left) 23a, and each of the position and the orientation of the marker 61 in the right real world image shot by the outer imaging section (right) 23b, as shown in
In step S11, the CPU 311 performs the marker recognition processing for the main real world image. More specifically, the CPU 311 determines whether or not the marker 61 is included in the main real world image by a pattern matching method or the like. If the marker 61 is included in the main real world image, the CPU 311 calculates the left transform matrix 75L or the right transform matrix 75R, based on the position and the orientation of the marker 61 in the main real world image (if the main real world image is the left real world image, the CPU 61 calculates the left transform matrix 75L, and if the main real world image is the right real world image, the CPU 61 calculates the right transform matrix 75R).
It is noted that the left transform matrix 75L is a matrix reflecting therein the position and the orientation of the outer imaging section (left) 23a which are calculated based on the position and the orientation of the marker 61 in the left real world image. To be more exact, as shown in
In addition, the right transform matrix 75R is a matrix reflecting therein the position and the orientation of the outer imaging section (right) 23b which are calculated based on the position and the orientation of the marker 61 in the right real world image. To be more exact, as shown in
It is noted that if it is assumed that the accuracy of the marker recognition is sufficiently high so that there is no error, and that the accuracy in the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10 is sufficiently high so that there is no error, the position of the outer imaging section (right) 23b indicated by the right transform matrix 75R which is the result of the marker recognition for the right real world image coincides with a position separated by the certain distance (imaging sections distance), along the x-axis direction of the outer imaging section (left) coordinate system (which direction is the lateral direction of the game apparatus 10 and is included in the horizontal directions when the game apparatus 10 is used), from the position of the outer imaging section (left) 23a indicated by the left transform matrix 75L which is the result of the marker recognition for the left real world image. In addition, the orientation of the outer imaging section (right) 23b indicated by the right transform matrix 75R, and the orientation of the outer imaging section (left) 23a indicated by the left transform matrix 75L are the same as the state of the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10. In the present embodiment, the game apparatus 10 is designed such that the outer imaging section (left) 23a and the outer imaging section (right) 23b are attached so as to be in parallel with each other. Therefore, the x-axis, the y-axis, and the z-axis of the outer imaging section (left) coordinate system are in parallel with the x-axis, the y-axis, and the z-axis of the outer imaging section (right) coordinate system. However, actually, the marker recognition has some error, and the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10 has some error. Therefore, the relationship between each of the position and the orientation of the outer imaging section (left) 23a indicated by the left transform matrix 75L, and each of the position and the orientation of the outer imaging section (right) 23b indicated by the right transform matrix 75R, is not ideal. For example, the left transform matrix 75L and the right transform matrix 75R are such that the outer imaging section (left) 23a and the outer imaging section (right) 23b are rather close to each other or rather away from each other, or such that the orientation of the outer imaging section (left) 23a and the orientation of the outer imaging section (right) 23b are different. Alternatively, the left transform. matrix 75L and the right transform matrix 75R are such that the orientation of the outer imaging section (left) 23a and the orientation of the outer imaging section (right) 23b are not in parallel with each other.
Here, in the AR technology, a matrix that transforms the marker coordinate system into the outer imaging section (left) coordinate system or the outer imaging section (right) coordinate system is designated as a view matrix of a virtual camera, to superimpose a CG image onto the real world image. However, if the left transform matrix 75L is merely designated as the left view matrix 76L, and the right transform matrix 75R is merely designated as the right view matrix 76R in stereoscopically displaying a virtual space image on the upper LCD 22, a normal stereoscopic view of the virtual object 62 might not be provided. Accordingly, in the present embodiment, as is obvious from the description below, based on the position and the orientation (view matrix) of one of the virtual cameras calculated from the result of the marker recognition (marker-camera transform matrix) for the corresponding one of the left real world image and the right real world image, the position and the orientation (view matrix) of the other one of the virtual cameras are determined such that the relationship between each of the position and the orientation of the left virtual camera 63L, and each of the position and the orientation of the right virtual camera 63R, is ideal.
It is noted that if the marker 61 has not been recognized in the main real world image in step S11, a null value is stored in the left transform matrix 75L or the right transform matrix 75R, whereby the failure of the recognition of the marker 61 in the left real world image or the right real world image is recorded.
In step S12, the CPU 311 determines whether or not the current marker recognition mode is the one-image recognition mode. Then, if the current marker recognition mode is the one-image recognition mode, the CPU 311 proceeds to step S13, and if the current marker recognition mode is not the one-image recognition mode (that is, the marker recognition mode is the both-image recognition mode), the CPU 311 proceeds to step S14.
In step S13, the CPU 311 determines, as a failure, the result of the marker recognition for one of the left real world image and the right real world image that is not the main real world image (hereinafter, the one is referred to as a sub real world image). More specifically, if the main real world image is the left real world image, a null value is stored in the right transform matrix 75R, and if the main real world image is the right real world image, a null value is stored in the left transform matrix 75L.
In step S14, the CPU 311 performs the marker recognition processing for the sub real world image. More specifically, the CPU 311 determines whether or not the marker 61 is included in the sub real world image by a pattern matching method or the like. If the marker 61 is included in the sub real world image, the CPU 311 calculates the left transform matrix 75L or the right transform matrix 75R, based on the position and the orientation of the marker 61 in the sub real world image (if the sub real world image is the left real world image, the CPU 311 calculates the left transform matrix 75L, and if the sub real world image is the right real world image, the CPU 311 calculates the right transform matrix 75R).
In step S15, the CPU 311 determines whether or not the current display mode is the synchronous display mode. Then, if the current display mode is the synchronous display mode, the CPU 311 proceeds to step S17, and if the current display mode is not the synchronous display mode (that is, the current display mode is the asynchronous display mode), the CPU 311 proceeds to step S16.
In step S16, the CPU 311 stores the latest left real world image 71L and the latest right real world image 71R as the display left real world image 72L and the display right real world image 72R, respectively, in the main memory 32. Then, the CPU 311 returns to step S10.
In step S17, the CPU 311 determines whether or not the current marker recognition mode is the one-image recognition mode. Then, if the current marker recognition mode is the one-image recognition mode, the CPU 311 proceeds to step S18, and if the current marker recognition mode is the one-image recognition mode (the current marker recognition mode is the both-image recognition mode), the CPU 311 proceeds to step S19.
In step S18, the CPU 311 determines whether or not the marker recognition for the main real world image has been successful. More specifically, if the main real world image is the left real world image, the CPU 311 determines whether or not a valid matrix which is not a null value is stored in the left transform matrix 75L, and if the main real world image is the right real world image, the CPU 311 determines whether or not a valid matrix which is not a null value is stored in the right transform matrix 75R. Then, if the marker recognition for the main real world image has been successful, the CPU 311 proceeds to step S16, and if the marker recognition for the main real world image has not been successful, the CPU 311 returns to step S10.
In step S19, the CPU 311 determines whether or not at least one of the marker recognition for the left real world image and the marker recognition for the right real world image has been successful. More specifically, the CPU 311 determines whether or not valid matrices which are not null values are stored in the left transform matrix 75L and the right transform matrix 75R. Then, if at least one of the marker recognition for the left real world image and the marker recognition for the right real world image has been successful, the CPU 311 proceeds to step S16, and if not, the CPU 311 returns to step S10.
(Main Processing)
In step S20 in
In step S21, the CPU 311 executes updating processing. In the updating processing, the CPU 311 updates variables used for drawing the virtual object 62. The details of the updating processing will be described later.
In step S22, the CPU 311 executes virtual object processing. The virtual object processing relates to the virtual object 62 placed in the virtual space. For example, as needed, the size of the virtual object 62 is changed, or the virtual object 62 is caused to take a predetermined action (The virtual object 62 is caused to move in the virtual space. For example, if the virtual object 62 is caused to move around the origin of the virtual space, the virtual object 62 walking around the origin of the marker coordinate system is displayed). It is noted that control of a movement of the virtual object 62 is realized by changing the coordinates of the position of the virtual object 62 in the world coordinate system in the virtual space.
In step S23, in accordance with the stereoscopic view zero distance 73, the CPU 311 determines a drawing area that is an area, of the left real world image, used for display. More specifically, as shown in
It is noted that in step S27 for determining a drawing area of the right real world image, which step will be described later, an area whose center overlaps with the stereoscopic view zero point as they are viewed from the outer imaging section (right) 23b, is determined as the drawing area of the right real world image, as shown in
In step S24, the CPU 311 draws a drawing area of the display left real world image 72L which is determined in step S23, in a predetermined storage area (hereinafter, referred to as a left frame buffer) for temporarily storing an image for a left eye to be supplied to the upper LCD 22, in the VRAM 313.
In step S25, the CPU 311 determines whether or not the value of an AR-Active (see
In step S26, for example, the CPU 311 overwrites the left frame buffer with the virtual space (hereinafter, referred to as a virtual space image for a left eye) as it is viewed from the left virtual camera 63L, as shown in
In step S27, the CPU 311 determines a drawing area of the right real world image in accordance with the stereoscopic view zero distance 73. It is noted that the details of processing of determining the drawing area are omitted because the processing is the same as processing of determining the drawing area of the left real world image.
In step S28, the CPU 311 draws a drawing area of the display right real world image 72R which is determined in step S27, in a predetermined storage area (hereinafter, referred to as a right frame buffer) for temporarily storing an image for a right eye to be supplied to the upper LCD 22, in the VRAM 313.
In step S29, the CPU 311 determines whether or not the value of the AR-Active is true. If the value of the AR-Active is true, the CPU 311 proceeds to step S30, and if the value of the AR-Active is not true (that is, the value of the AR-Active is false), the CPU 311 proceeds to step S31.
In step S30, the CPU 311 overwrites the right frame buffer with the virtual space (hereinafter, referred to as a virtual space image for a right eye) as it is viewed from the right virtual camera 63R (actually and typically, the GPU 312 draws the virtual space in accordance with an instruction from the CPU 311). As a result, the virtual space image for a right eye is superimposed onto the right real world image drawn in the right frame buffer in step S28. The resultant image in the right frame buffer is supplied, as an image for a right eye, to the upper LCD 22 at a predetermined timing.
In step S31, the CPU 311 waits for an interrupt signal (vertical synchronization interrupt) from the upper LCD 22. If the interrupt signal is generated, the CPU 311 returns to step S21. As a result, steps S21 to S31 are repeated in cycles of a predetermined period (for example, 1/60 second).
(Updating Processing)
Next, the details of the updating processing in step S21 in the main processing will be described with reference to the flowchart in
In step S40 in
In step S41, the CPU 311 determines whether or not both the marker recognition for the left real world image and the marker recognition for the right real world image have been successful. If both the marker recognition for the left real world image and the marker recognition for the right real world image have been successful, the CPU 311 proceeds to step S42, and if at least one of or both of the marker recognition for the left real world image and the marker recognition for the right real world image have been failed, the CPU 311 proceeds to step S44.
In step S42, the CPU 311 determines whether or not the value of EyeWidth (see
In step S43, the CPU 311 executes virtual cameras interval determination processing. In the virtual cameras interval determination processing, the interval between left virtual camera 63L and the right virtual camera 63R (that is, the EyeWidth) is determined and updated, as appropriate. The details of the virtual cameras interval determination processing will be described later.
In step S44, the CPU 311 executes view matrix generation processing. In the view matrix generation processing, the left view matrix 76L and the right view matrix 76R are calculated, based on the interval between the left virtual camera 63L and the right virtual camera 63R (that is, the EyeWidth) which has been already determined. The details of the view matrix generation processing will be described later.
In step S45, the CPU 311 executes main real world image setting processing. In the main real world image setting processing, the left real world image and the right real world image take turns switching to the main real world image, as appropriate (this is equivalent to the outer imaging section (left) 23a and the outer imaging section (right) 23b taking turns switching to a main imaging section). The details of the main real world image setting processing will be described later.
In step S46, the CPU 311 executes display mode switching processing, and ends the updating processing. In the display mode switching processing, the display mode is switched between the synchronous display mode and the asynchronous display mode, as appropriate. The details of the display mode switching processing will be described later.
(Virtual Cameras Interval Determination Processing)
Next, the details of the virtual cameras interval determination processing in step S43 in the updating processing (
In step S50 in
First, as shown in
In step S51, based on the left transform matrix 75L, the CPU 311 calculates the coordinates V1, of the origin of the marker coordinate system, that are represented in the outer imaging section (left) coordinate system. Specifically, (0, 0, 0) is multiplied by the left transform matrix 75L, thereby obtaining the coordinates V1, of the origin of the marker coordinate system, that are represented in the outer imaging section (left) coordinate system. It is noted that in the present embodiment, the coordinates, of the origin of the marker coordinate system, that are represented in the outer imaging section (left) coordinate system, are defined as V1. However, instead, the coordinates, of the origin of the marker coordinate system, that are represented in the outer imaging section (right) coordinate system, may be defined as V1.
In step S52, the CPU 311 stores, in ew (see
It is noted that in the case where the shooting direction of the outer imaging section (left) 23a and the shooting direction of the outer imaging section (right) 23b are not in parallel with each other owing to error in the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10, the distance (ew) between the outer imaging section (left) 23a and the outer imaging section (right) 23b calculated as described above varies in accordance with the distance in the shooting direction between the outer imaging section 23 and the marker 61. Therefore, as described later, when the distance in the shooting direction between the outer imaging section 23 and the marker 61 has varied, the distance (EyeWidth described later) between the outer imaging section (left) 23a and the outer imaging section (right) 23b is calculated again by using the marker-camera transform matrix as it is at this time.
It is noted that in the present embodiment, the ew indicates the magnitude of the V0. However, the ew may indicate the component of the V0 in the direction of a line connecting the position of the outer imaging section (left) 23a, which is indicated by the left transform matrix 75L, and the position of the outer imaging section (right) 23b, which is indicated by the right transform matrix 75R.
The ew calculated as described above indicates the interval between the outer imaging section (left) 23a and the outer imaging section (right) 23b in the marker coordinate system. The ew is used as the interval between the left virtual camera 63R and the right virtual camera 63R (in step S65 or S68 described later).
It is noted that there is another method of calculating the ew other than the above-described method. For example, (0, 0, 0) is multiplied by the left transform matrix 75L, thereby obtaining the coordinates V1, of the origin of the marker coordinate system, that are represented in the outer imaging section (left) coordinate system (that is, the position of the marker 61 relative to the outer imaging section (left) 23a). Moreover, (0, 0, 0) is multiplied by the right transform matrix 75R, thereby obtaining coordinates Vr, of the origin of the marker coordinate system, that are represented in the outer imaging section (right) coordinate system (that is, the position of the marker 61 relative to the outer imaging section (right) 23b). The ew may be obtained by calculating the distance between the coordinates V1 and the coordinates Vr calculated as described above.
In step S53, the CPU 311 determines whether or not the value of LogIndex (see
In step S54, the CPU 311 stores the value of the ew obtained in step S52 in the array LogWidth [LogIndex]. Moreover, the CPU 311 stores the value of the ed obtained in step S52 in the array LogDepth [LogIndex]. Moreover, the value of the LogIndex is incremented. The LogWidth is array variables for storing a plurality of values of the ew. The LogDepth is array variables for storing a plurality of values of the ed.
In step S55, the CPU 311 determines whether or not the value of the LogIndex is larger than the value of LogMax. If the value of the LogIndex is larger than the value of the LogMax, the CPU 311 proceeds to step S56, and if not (that is, if the value of the LogIndex is equal to or smaller than the value of the LogMax), the CPU 311 ends the virtual cameras interval determination processing.
In step S56, the CPU 311 calculates the average value of the components of the LogWidth, and stores the average value in the EyeWidth. Moreover, the CPU 311 calculates the average value of the components of the LogDepth, and stores the average value in the EyeDepth. Moreover, the CPU 311 sets the value of the EyeMeasure at false. Moreover, the CPU 311 sets the marker recognition mode 79 at the one-image recognition mode. The EyeDepth is a variable indicating the depth distance (the depth, the distance in the shooting direction) to the origin of the marker coordinate system from the coordinates of the position of the outer imaging section (left) 23a in the marker coordinate system, which is indicated by the left transform matrix 75L (or the coordinates of the position of the outer imaging section (right) 23b in the marker coordinate system, which is indicated by the right transform matrix 75R). The EyeDepth is used as a reference value for determination in step S72 in
In step S57, the CPU 311 determines whether or not: the absolute value of the difference between the value of the ew obtained in step S52 and the value of the LogWidth [1] is smaller than 10 percent of the value of the LogWidth [1]; and the absolute value of the difference between the value of the ed obtained in step S52 and the value of the LogDepth [1] is smaller than 10 percent of the value of the LogDepth [1]. If the result of the determination in step S57 is positive, the CPU 311 proceeds to step S54, and if the result of the determination in step S57 is negative, the CPU 311 proceeds to step S58.
In step S58, the CPU 311 resets the value of the LogIndex at 1 (initial value), and ends the virtual cameras interval determination processing.
As described above, in the virtual cameras interval determination processing, the ew and the ed are calculated based on the position of the outer imaging section (left) 23a calculated based on the position and the orientation of the marker 61 in the left real world image, and the position of the outer imaging section (right) 23b calculated based on the position and the orientation of the marker 61 in the right real world image. The values of the ew and the values of the ed calculated in this manner are sequentially stored in the LogWidth and the LogDepth, respectively. At this time, if the value of the ew newly calculated is out of a predetermined range (±10%) from the value of the ew that was stored earliest in the LogWidth (that is, the value of the LogWidth [1]), or if the value of the ed newly calculated is out of a predetermined range (±10%) from the value of the ed that was stored earliest in the LogDepth (that is, the value of the LogDepth [1]), values of the ew or values of the ed are stored again in the LogWidth or the LogDepth from the beginning. Therefore, only when values of the ew and values of the ed which are sequentially calculated do not vary significantly (that is, values of the ew and the values of the ed have been stable, to a certain extent, for a certain period), the average value of the values of the ew and the average value of the values of the ed are stored in the EyeWidth and the EyeDepth.
It is noted that when the user is moving or turning the game apparatus 10, the left real world image and the right real world image shot by the outer imaging section 23 are likely to be blurred, and the accuracy of the recognition of the marker 61 significantly decreases. As a result, values of the ew or values of the ed which are sequentially detected are likely to vary significantly. It is desired to avoid determining the value of the EyeWidth and the value of the EyeDepth, based on values of the ew and values of the ed, having low reliability, detected in such a situation as described above. Therefore, in the present embodiment, only when values of the ew and values of the ed which are sequentially calculated do not vary significantly, the value of the EyeWidth and the value of the EyeDepth are determined based on the values of the ew and the values of the ed. In addition, the accuracies of the value of the EyeWidth and the value of the EyeDepth can be enhanced because the average value of a plurality of values of the ew and the average value of a plurality of values of the ed obtained by calculations performed a plurality of times are used as the value of the EyeWidth and the value of the EyeDepth, respectively.
(View Matrix Generation Processing)
Next, the view matrix generation processing in step S44 in the updating processing (
In step S60 in
In step S61, the CPU 311 determines whether or not the display mode is the synchronous display mode. If the display mode is the synchronous display mode, the CPU 311 ends the view matrix generation processing, and if not (that is, if the display mode is the asynchronous display mode), the CPU 311 proceeds to step S62.
In step S62, the CPU 311 sets the value of the AR-Active at false. Then, the CPU 311 ends the view matrix generation processing.
In step S63, the CPU 311 determines whether or not the marker recognition for the left real world image has been successful, with reference to the left transform matrix 75L. If the marker recognition for the left real world image has been successful, the CPU 311 proceeds to step S64, and if not (that is, the value of the left transform matrix 75L is a null value), the CPU 311 proceeds to step S66.
In step S64, the CPU 311 stores the value of the left transform matrix 75L in the left view matrix 76L. This means that the position and the orientation of the outer imaging section (left) 23a in the marker coordinate system, which are calculated based on the position and the orientation of the marker 61 in the left real world image, are directly used as the position and the orientation of the left virtual camera 63L for generating a virtual space image for a left eye.
In step S65, the CPU 311 stores, in the right view matrix 76R, the value of the left view matrix 76L multiplied by a parallel movement matrix (−EyeWidth, 0, 0). This means that a position that is separated by the value of the EyeWidth in the positive direction of the x-axis in the left virtual camera coordinate system from the position of the left virtual camera 63L in the world coordinate system of the virtual space, which has been set in step S64, is used as the position of the right virtual camera 63R for generating a virtual space image for a right eye, as shown in
In step S66, the CPU 311 determines whether or not the marker recognition for the right real world image has been successful, with reference to the right transform matrix 75R. If the marker recognition for the right real world image has been successful, the CPU 311 proceeds to step S67, and if not (that is, the value of the right transform matrix 75R is a null value), the CPU 311 ends the view matrix generation processing.
In step S67, the CPU 311 stores the value of the right transform matrix 75R in the right view matrix 76R. This means that the position and the orientation of the outer imaging section (right) 23b in the marker coordinate system, which are calculated based on the position and the orientation of the marker 61 in the right real world image, are directly used as the position and the orientation of the right virtual camera 63R for generating a virtual space image for a right eye.
In step S68, the CPU 311 stores, in the left view matrix 76L, the value of the right view matrix 76R multiplied by a parallel movement matrix (EyeWidth, 0, 0). This means that a position that is separated by the value of the EyeWidth in the negative direction of the x-axis in the right virtual camera coordinate system from the position of the right virtual camera 63R in the world coordinate system of the virtual space, which has been set in step S67, is used as the position of the left virtual camera 63L for generating a virtual space image for a left eye, as shown in
As described above, in the present embodiment, while the position and the orientation of one of the virtual cameras (for example, the left virtual camera 63L) are set by using (more specifically, directly using) a “marker-camera transform matrix” calculated from an image shot by one of the outer imaging sections (for example, the outer imaging section (left) 23a), the position and the orientation of the other one of the virtual cameras (for example, the right virtual camera 63R) are set without using a “marker-camera transform matrix” calculated from an image shot by the other one of the outer imaging sections (for example, the outer imaging section (right) 23b).
In providing a stereoscopic view of AR by using a stereo camera, two virtual cameras for right and left need to be set, and a transform matrix (left transform matrix 25L) for the outer imaging section (left) 23a and a transform matrix (right transform matrix 25R) for the outer imaging section (right) 23b are used as the “marker-camera transform matrices”. In the present embodiment, in setting the virtual cameras 63L and 63R, the respective transform matrices 25L and 25R are not used. Instead, one transform matrix is set (one of the transform matrices 25L and 25R is directly used, or one new transform matrix (for example, using an average position and an average orientation) is generated from both the transform matrices 25L and 25R), and then the positions and the orientations of both the virtual cameras 63L and 63R are set by using the one transform matrix that has been set. In this way, problems on the accuracy of AR recognition can be solved.
In step S69, the CPU 311 sets the value of AR-Active at true. As a result, processing of displaying the virtual object 62 being superimposed onto the real world image is started, or restarted.
In step S70, the CPU 311 determines whether or not the value of the EyeMeasure is true. If the value of the EyeMeasure is true, the CPU 311 ends the view matrix generation processing, and if not (that is, if the value of the EyeMeasure is false), the CPU 311 proceeds to step S71.
In step S71, based on the left view matrix 76L determined in step S64 or step S68, the CPU 311 calculates coordinates V, of the origin of the virtual space, that are represented in the left virtual camera coordinate system. Specifically, as shown in
In step S72, the CPU 311 determines whether or not the absolute value of the difference between the absolute value (|V.z|) of the z-coordinate value of the V and the value of the EyeDepth is larger than 20 percent of the value of the EyeDepth. If the absolute value of the difference is larger than 20 percent of the value of the EyeDepth, the CPU 311 proceeds to step S73, and if not, the CPU 311 ends the view matrix generation processing. The |V.z| is substantially the same as the distance (depth), in the shooting direction, from the outer imaging section 23 to the marker 61. That is, in step S72, the CPU 311 determines whether or not the depth distance (depth) from the outer imaging section 23 to the marker 61 has varied beyond a range of ±20 percent in comparison with the depth distance as it was when the value of the EyeWidth was calculated in the virtual cameras interval determination processing (
In step S73, the CPU 311 sets the value of the EyeMeasure at true, resets the value of the LogIndex at 1, and sets the marker recognition mode 79 at the both-image recognition mode, thereby ending the view matrix generation processing. As a result, calculation of the EyeWidth in the virtual cameras interval determination processing is started again.
The reason why, as described above, the EyeWidth is calculated again when the depth distance (depth) from the outer imaging section 23 to the marker 61 has varied beyond a predetermined range in comparison with the depth distance as it was when the value of the EyeWidth was previously calculated in the virtual cameras interval determination processing, is because the optimum interval (EyeWidth) between the virtual cameras varies in accordance with the depth distance (depth) from the outer imaging section 23 to the marker 61 owing to error in the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10. For example, under the condition that the shooting direction of the outer imaging section (left) 23a and the shooting direction of the outer imaging section (right) 23b are not in parallel with each other, it is assumed that when the depth distance from the outer imaging section 23 to the marker 61 is D1, the value of the EyeWidth calculated in the virtual cameras interval determination processing is EyeWidth 1, as shown in
(Main Real World Image Setting Processing)
Next, the details of the main real world image setting processing in step S45 in the updating processing (
In step S80 in
In step S81, the CPU 311 generates the left projection matrix 77L and the right projection matrix 77R. The left projection matrix 77L is a matrix for specifying a drawing area of the virtual space as viewed from the left virtual camera 63L. In the present embodiment, as shown in
Specifically, the projection matrix for the left virtual camera 63L is set as a projection matrix that defines a view volume that has an angle of view such that the ratio of the angle of view in the horizontal direction of the outer imaging section (left) 23a, and the angle of view in the horizontal direction of the left virtual camera 63L is the same as the ratio representing the position and the size in the lateral direction of the drawing area with respect to the length in the lateral direction of the left real world image.
In step S82, the CPU 311 determines whether or not the left real world image is the main real world image. If the left real world image is the main real world image, the CPU 311 proceeds to step S83, and if not (that is, if the right real world image is the main real world image), the CPU 311 proceeds to step S86.
In step S83, the CPU 311 multiplies (0, 0, 0, 1) by the left view matrix 76L and the left projection matrix 77L, thereby obtaining a vector V.
In step S84, the CPU 311 determines whether or not a value (V.x/V.w) obtained by multiplying the first component (x) of the vector V by the fourth component (w) is larger than 0.5. If the value (V.x/V.w) is larger than 0.5, the CPU 311 proceeds to step S85, and if not, the CPU 311 ends the main real world image setting processing. The value of the V.x/V.w indicates the position in the lateral direction, in the virtual space image for a left eye, where the origin of the world coordinate system in the virtual space is present (it is noted that the position in the lateral direction, in the virtual space image for a left eye, where the origin of the world coordinate system in the virtual space is present, is equivalent to the position in the lateral direction, in an image shot by the outer imaging section (left) 23a, where the origin of the marker coordinate system is present). If the origin of the world coordinate system in the virtual space is at the middle of the virtual space image for a left eye, the value of the V.x/V.w is 0. The value of the V.x/V.w approaches −1.0 as the origin of the world coordinate system in the virtual space approaches the left end of the virtual space image for a left eye, and the value of the V.x/V.w approaches +1.0 as the origin of the world coordinate system in the virtual space approaches the right end of the virtual space image for a left eye. If the value of V.x/V.w is larger than 0.5, the origin of the world coordinate system in the virtual space is in the right end area (diagonal-line area in
In step S85, the CPU 311 changes the main real world image from the left real world image to the right real world image. That is, in the virtual space image shot by the left virtual camera 63L, if the origin in the virtual space is present to the right of a position separated rightward by a predetermined distance (or by a predetermined percent of the lateral width of the virtual space image) from the middle of the virtual space image, the CPU 311 changes the main real world image to the right real world image. Alternatively, in the image shot by the outer imaging section (left) 23a, if the origin of the marker coordinate system is present to the right of a position separated rightward by a predetermined distance (or by a predetermined percent of the lateral width of the shot image) from the middle of the shot image, the CPU 311 changes the main real world image to the right real world image. Thus, even if, for example, the position of the marker 61 in the left real world image gradually moves rightward to end up disappearing from the left real world image, the CPU 311 changes the main real world image to the right real world image before the marker 61 disappears from the left real world image. Therefore, it is possible to continuously recognize the marker 61 in the one-image recognition mode. If processing in step S85 has been finished, the main real world image setting processing is ended.
In step S86, the CPU 311 multiplies (0, 0, 0, 1) by the right view matrix 76R and the right projection matrix 77R, thereby obtaining the vector V.
In step S87, the CPU 311 determines whether or not the value (V.x/V.w) obtained by multiplying the first component (x) of the vector V by the fourth component (w) is smaller than −0.5. If the value (V.x/V.w) is smaller than −0.5, the CPU 311 proceeds to step S87, and if not, the CPU 311 ends the main real world image setting processing. The value of the V.x/V.w indicates the position in the lateral direction, in the virtual space image for a right eye, where the origin of the world coordinate system in the virtual space is present. If the origin of the world coordinate system in the virtual space is at the middle of the virtual space image for a right eye, the value of the V.x/V.w is 0. The value of the V.x/V.w approaches −1.0 as the origin of the world coordinate system in the virtual space approaches the left end of the virtual space image for a right eye, and the value of the V.x/V.w approaches +1.0 as the origin of the world coordinate system in the virtual space approaches the right end of the virtual space image for a right eye. If the value of V.x/V.w is smaller than −0.5, the origin of the world coordinate system in the virtual space is in the left end area (diagonal-line area in
In step S88, the CPU 311 changes the main real world image from the right real world image to the left real world image. Thus, even if, for example, the position of the marker 61 in the right real world image gradually moves leftward to end up disappearing from the right real world image, the CPU 311 changes the main real world image to the left real world image before the marker 61 disappears from the right real world image. Therefore, it is possible to continuously recognize the marker 61 in the one-image recognition mode. If processing in step S88 has been finished, the main real world image setting processing is ended.
(Display Mode Switching Processing)
Next, the details of the display mode switching processing in step S46 in the updating processing (
In step S90 in
In step S91, the CPU 311 determines whether or not: the EyeWidth is larger than 0; and the marker recognition for the left real world image or the marker recognition for the right real world image has been successful. Then, if the result of the determination is positive, the CPU 311 proceeds to step S92, and if the result of the determination is negative (that is, if the EyeWidth is 0 or if both the marker recognition for the left real world image and the marker recognition for the right real world image have been failed), the CPU 311 proceeds to step S93.
In step S92, the CPU 311 sets the value of SyncCount (see
In step S93, the CPU 311 decrements the value of SyncCount.
In step S94, the CPU 311 determines whether or not the value of the SyncCount is larger than 0. If the value of the SyncCount is larger than 0, the CPU 311 ends the display mode switching processing, and if not (that is, the value of the SyncCount is 0), the CPU 311 proceeds to step S95.
In step S95, the CPU 311 sets the value of the LogIndex at 1, sets the value of the EyeWidth and the value of the EyeDepth at 0, changes the display mode 78 from the synchronous display mode to the asynchronous display mode, and sets the marker recognition mode 79 to the both-image recognition mode. If processing in step S95 has been finished, the display mode switching processing is ended.
In step S96, the CPU 311 determines whether or not: the EyeWidth is larger than 0; and the marker recognition for the left real world image or the marker recognition for the right real world image has been successful. Then, if the result of the determination is positive, the CPU 311 proceeds to step S97, and if the result of the determination is negative (that is, if the EyeWidth is 0 or if both the marker recognition for the left real world image and the marker recognition for the right real world image have been failed), the CPU 311 ends the display mode switching processing.
In step S97, the CPU 311 sets the value of SyncCount at 20, and changes the display mode from the asynchronous display mode to the synchronous display mode. If processing in step S97 has been finished, the display mode switching processing is ended.
As described above, the display mode switching processing appropriately switches the display mode between the synchronous display mode and the asynchronous display mode. More specifically, just after execution of the image display program has been started, the display mode is the asynchronous display mode, and the latest real world image is constantly displayed on the upper LCD 22. Thereafter, at the time when the marker 61 has been recognized and it has become possible to display the virtual object 62 being superimposed onto the real world image displayed on the upper LCD 22, the display mode is changed from the asynchronous display mode to the synchronous display mode. In the synchronous display mode, in order to superimpose and display the virtual object 62 at a proper position in the real world image, a composite image obtained by superimposing the virtual object 62 onto the last real world image in which the marker 61 has been recognized (which is not always the latest real world image) is displayed on the upper LCD 22. In this way, the position on the real world image where the virtual object 62 is superimposed and displayed can be prevented from being out of a proper position. Thereafter, at the time when the marker 61 has continued to be unrecognized for a predetermined time period, the display mode is changed from the synchronous display mode to the asynchronous display mode, and the latest real world image is constantly displayed on the upper LCD 22. In this way, when the marker 61 continues to be unrecognized, it is possible to prevent an old image from continuing to be displayed on the upper LCD 22.
(Effects of the Present Embodiment)
As described above, in the present embodiment, the position and the orientation of one of the virtual cameras is determined based on the position and the orientation of one of the outer imaging sections (the outer imaging section (left) 23a or the outer imaging section (right) 23b) in the marker coordinate system, which are calculated from the result of the marker recognition for the corresponding one of the left real world image and the right real world image. In addition, the position and the orientation of the other one of the virtual cameras are determined such that the relationship between each of the position and the orientation of the left virtual camera 63L, and each of the position and the orientation of the right virtual camera 63R, is ideal. Therefore, the virtual object 62 can be displayed so as to provide a normal stereoscopic view, on a display apparatus capable of providing a stereoscopic view.
In addition, the interval between the two outer imaging sections are calculated based on the position of the outer imaging section (left) 23a calculated based on the result of the marker recognition for the left real world image, and the position of the outer imaging section (right) 23b calculated based on the result of the marker recognition for the right real world image. The virtual cameras interval (EyeWidth) is determined based on the result of the calculation. A position separated, by the calculated interval in the direction perpendicular to the shooting direction in a coordinate system of one of the virtual cameras, from the position of the one of the virtual cameras, is calculated, to set the other one of the virtual cameras at the calculated position. As a result, both the virtual cameras are set so as to be placed along the direction perpendicular to the shooting direction. In addition, even if the interval between the outer imaging section (left) 23a and the outer imaging section (right) 23b is not known, or even if the accuracy in the attachment of the outer imaging section (left) 23a and the outer imaging section (right) 23b to the game apparatus 10 is bad, it is possible to place the left virtual camera 63L and the right virtual camera 63R with an ideal interval provided therebetween.
In addition, after the virtual cameras interval (EyeWidth) has been determined in the virtual cameras interval determination processing, the marker recognition processing needs to be performed only for the main real world image. Therefore, a load of processing can be reduced in comparison with the case where the marker recognition processing is always performed for both the left real world image and the right real world image.
It is noted that if the interval between the outer imaging section (left) 23a and the outer imaging section (right) 23b is known, the interval (EyeWidth), between the outer imaging section (left) 23a and the outer imaging section (right) 23b in the marker coordinate system, that corresponds to the interval (for example, 3.5 cm) between the outer imaging section (left) 23a and the outer imaging section (right) 23b in the real world, is figured out based on the result of the virtual cameras interval determination processing. Therefore, for example, it is possible to, in the virtual space, perform processing based on a scale of the real world such as displaying a character (virtual object) having a height of 30 cm being superimposed onto the real world image, or moving a character (virtual object) displayed being superimposed onto the real world image real world image at a velocity of 10 cm per second.
(Variations)
It is noted that in the present embodiment, the position and the orientation of the marker 61 in the real world image are recognized, and the virtual object 62 is superimposed onto the real world image in accordance with the result of the recognition. However, in other embodiments, instead of the marker 61, the position and/or the orientation of any recognition target may be recognized, and the virtual object 62 may be superimposed onto the real world image in accordance with the result of the recognition. An example of a recognition target is the face of a person.
In addition, in the present embodiment, a stereoscopic image is displayed on the upper LCD 22, based on the real world image being shot in real time by the outer imaging section 23. However, in other embodiments, a stereoscopic image may be displayed on the upper LCD 22, based on data of moving images shot in the past by the outer imaging section 23, an external stereo camera, or the like.
In addition, in the present embodiment, the outer imaging section 23 is provided in the game apparatus 10 in advance. However, in other embodiments, an external camera attachable to and detachable from the game apparatus 10 may be used.
In addition, in the present embodiment, the upper LCD 22 is provided in the game apparatus 10 in advance. However, in other embodiments, an external stereoscopic display attachable to and detachable from the game apparatus 10 may be used.
In addition, in the present embodiment, the virtual object 62 is placed at the position of the origin of the marker coordinate system. However, in other embodiments, the virtual object 62 may be placed at a position away from the origin of the marker coordinate system.
In addition, in the present embodiment, one virtual object is placed in the virtual space. However, in other embodiments, a plurality of virtual objects may be placed in the virtual space.
In addition, in the present embodiment, in the virtual cameras interval determination processing, the interval (EyeWidth) between the outer imaging section (left) 23a and the outer imaging section (right) 23b in the marker coordinate system is calculated, and based on the interval, the position and the orientation of one of the left virtual camera 63L and the right virtual camera 63R are determined from the position and the orientation of the other one of the virtual cameras calculated based on the result of the marker recognition. However, in other embodiments, the position and the orientation of the outer imaging section 23 (for example, the average position of the position of the outer imaging section (left) 23a and the position of the outer imaging section (right) 23b, and the average orientation of the orientation of the outer imaging section (left) 23a and the orientation of the outer imaging section (right) 23b) may be calculated based on the position and the orientation of the outer imaging section (left) 23a calculated based on the result of the marker recognition for the left real world image, and the position and the orientation of the outer imaging section (right) 23b calculated based on the result of the marker recognition for the right real world image. Based on the result of the calculation, the positions and/or the orientations of the left virtual camera 63L and the right virtual camera 63R may be determined. For example, the orientations of the left virtual camera 63L and the right virtual camera 63R may be determined such that both the orientations are intermediate between the orientation of the outer imaging section (left) 23a calculated based on the result of the marker recognition for the left real world image, and the orientation of the outer imaging section (right) 23b calculated based on the result of the marker recognition for the right real world image. In addition, for example, after the interval (EyeWidth) between the outer imaging section (left) 23a and the outer imaging section (right) 23b is calculated in the virtual cameras interval determination processing, positions separated, by distances of EyeWidth/2 in the respective directions opposite to each other and perpendicular to the shooting direction of the virtual cameras, from a position in the virtual space corresponding to the average position of the position of the outer imaging section (left) 23a calculated based on the result of the marker recognition for the left real world image, and the position of the outer imaging section (right) 23b calculated based on the result of the marker recognition for the right real world image, may be calculated, and the positions of the left virtual camera 63L and the right virtual camera 63R may be determined so as to be the calculated positions.
In addition, in the present embodiment, after the virtual cameras interval (EyeWidth) is calculated in the virtual cameras interval determination processing, the marker recognition processing is performed for only the main real world image. However, in other embodiments, the marker recognition processing may be always performed for both the left real world image and the right real world image.
In addition, in the present embodiment, the upper LCD 22 is a stereoscopic display apparatus of a parallax barrier type. However, in other embodiments, the upper LCD 22 may be a stereoscopic display apparatus of any other type such as lenticular lens type. For example, if a stereoscopic display apparatus of a lenticular lens type is used, an image for a left eye and an image for a right eye may be combined with each other by the CPU 311 or another processor, and the resultant composite image may be supplied to the stereoscopic display apparatus of a lenticular lens type.
In addition, in the present embodiment, the game apparatus 10 is used for superimposing a virtual object onto the real world image and displaying the resultant image. However, in another embodiment, any information processing apparatus or any information processing system (for example, a PDA (Personal Digital Assistant), a mobile phone, a personal computer, or a camera) may be used for superimposing a virtual object onto the real world image and displaying the resultant image.
In addition, in the present embodiment, the image display processing is executed by using only one information processing apparatus (game apparatus 10). However, in other embodiments, a plurality of information processing apparatuses, included in an image display system, that can communicate with each other may share the execution of the image display processing.
While the invention has been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It will be understood that numerous other modifications and variations can be devised without departing from the scope of the invention.
Claims
1. A computer-readable storage medium having stored therein an image display program which stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, the image display program causing a computer to function as:
- first position orientation calculation means for recognizing a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other;
- virtual camera setting means for determining the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means;
- right virtual space image generation means for generating a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera;
- left virtual space image generation means for generating a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera; and
- display control means for superimposing the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposing the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
2. The computer-readable storage medium according to claim 1, wherein
- the virtual camera setting means determines the positions and the orientations of the right virtual camera and the left virtual camera such that the relationship between the relative orientations of the right virtual camera and the left virtual camera with respect to each other is the same as the relationship between designed relative orientations of the real camera for a right eye and the real camera for a left eye with respect to each other.
3. The computer-readable storage medium according to claim 2, wherein
- the virtual camera setting means includes: a first virtual camera orientation determination section for determining the orientation of one of the right virtual camera and the left virtual camera that corresponds to the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and a second virtual camera orientation determination section for, based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, determining the orientation of the other one of the right virtual camera and the left virtual camera such that the relationship between the relative orientations of the right virtual camera and the left virtual camera with respect to each other is the same as the relationship between designed relative orientations of the real camera for a right eye and the real camera for a left eye with respect to each other.
4. The computer-readable storage medium according to claim 2, the image display program further causing the computer to function as virtual camera relative position relationship determination means for determining a relative position relationship between the right virtual camera and the left virtual camera,
- wherein the virtual camera setting means includes: a first virtual camera position determination section for determining the position of one of the right virtual camera and the left virtual camera that corresponds to the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and a second virtual camera position determination section for determining the position of the other one of the right virtual camera and the left virtual camera so as to be separated, by the relative position determined by the virtual camera relative position relationship determination means, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
5. The computer-readable storage medium according to claim 2, wherein the virtual camera setting means includes:
- a first virtual camera position determination section for determining the position of one of the right virtual camera and the left virtual camera that corresponds to the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means;
- a first virtual camera orientation determination section for determining the orientation of the one of the right virtual camera and the left virtual camera that corresponds to the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, by using the position orientation information calculated by the first position orientation calculation means; and
- a second virtual camera position determination section for determining the position of the other one of the right virtual camera and the left virtual camera so as to be present, in a direction based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
6. The computer-readable storage medium according to claim 5, the image display program further causing the computer to function as virtual cameras distance determination means for determining the distance between the right virtual camera and the left virtual camera,
- wherein the second virtual camera position determination section determines the position of the other one of the right virtual camera and the left virtual camera so as to be separated by the distance determined by the virtual cameras distance determination means, in the direction based on the orientation of the one of the right virtual camera and the left virtual camera determined by the first virtual camera orientation determination section, from the position of the one of the right virtual camera and the left virtual camera determined by the first virtual camera position determination section.
7. The computer-readable storage medium according to claim 4, wherein the virtual camera relative position relationship determination means determines the relative position relationship between the right virtual camera and the left virtual camera, based on a parallax between the pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye.
8. The computer-readable storage medium according to claim 7, wherein the relative position relationship which is determined by the relative position relationship determination means is the interval between the right virtual camera and the left virtual camera.
9. The computer-readable storage medium according to claim 4, the image display program further causing the computer to function as second position orientation calculation means for recognizing the predetermined shooting target in the piece of real world image data outputted from the other one of the real camera for a right eye and the real camera for a left eye, which is different from the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, among the two pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the other one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other,
- wherein the virtual camera relative position relationship determination means calculates the distance between the one and the other one of the real camera for a right eye and the real camera for a left eye, based on the information, about the relative positions of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target, which is calculated by the first position orientation calculation means, and on the information, about the relative positions of the other one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target, which is calculated by the second position orientation calculation means.
10. The computer-readable storage medium according to claim 9, wherein
- the first position orientation calculation means includes first transform matrix generation means for, based on the piece of real world image data outputted from the one of the real camera for a right eye and the real camera for a left eye, generating a first transform matrix that transforms a coordinate value represented in a coordinate system whose origin is the position of the predetermined shooting target, into a coordinate value represented in a first shooting section coordinate system whose origin is the position of the one of the real camera for a right eye and the real camera for a left eye, and
- the second position orientation calculation means includes second transform matrix generation means for, based on the piece of real world image data outputted from the other one of the real camera for a right eye and the real camera for a left eye, generating a second transform matrix that transforms a coordinate value represented in a coordinate system whose origin is the position of the predetermined shooting target, into a coordinate value represented in a second shooting section coordinate system whose origin is the position of the other one of the real camera for a right eye and the real camera for a left eye.
11. The computer-readable storage medium according to claim 7, wherein the virtual camera relative position relationship determination means executes processing of calculating the relative position relationship between the right virtual camera and the left virtual camera every time a new piece of real world image data is outputted from each of the real camera for a right eye and the real camera for a left eye, and determines the relative position relationship between the right virtual camera and the left virtual camera, based on results of a plurality of the calculations of the relative position relationship obtained by the processing being executed a plurality of times.
12. The computer-readable storage medium according to claim 11, wherein the virtual camera relative position relationship determination means determines the relative position relationship between the right virtual camera and the left virtual camera, based on the results of the plurality of calculations of the relative position relationship, only when all the results of the plurality of calculations of the relative position relationship are within a predetermined range.
13. The computer-readable storage medium according to claim 7, the image display program further causing the computer to function as depth variation determination means for determining whether or not the depth distance from each of the real camera for a right eye and the real camera for a left eye to the predetermined shooting target has varied beyond a predetermined range in comparison with the depth distance as it was when the virtual camera relative position relationship determination means determined the relative position relationship between the right virtual camera and the left virtual camera,
- wherein the virtual camera relative position relationship determination means determines again the relative position relationship between the right virtual camera and the left virtual camera, when the result of the determination by the depth variation determination means is positive.
14. The computer-readable storage medium according to claim 13, the image display program further causing the computer to function as depth distance calculation means for calculating the depth distance from each of the real camera for a right eye and the real camera for a left eye to the predetermined shooting target, based on a piece of real world image data that includes the predetermined shooting target,
- wherein the depth variation determination means determines whether or not the depth distance from each of the real camera for a right eye and the real camera for a left eye to the predetermined shooting target has varied beyond the predetermined range by comparing a reference depth distance calculated by the depth distance calculation means at a time when the virtual camera relative position relationship determination means determined the relative position relationship between the right virtual camera and the left virtual camera, with the latest depth distance calculated by the depth distance calculation means after the calculation of the reference depth distance.
15. The computer-readable storage medium according to claim 14, wherein the depth distance calculation means executes processing of calculating the depth distance from each of the real camera for a right eye and the real camera for a left eye to the predetermined shooting target every time a new piece of real world image data is outputted from each of the real camera for a right eye and the real camera for a left eye, and calculates the reference depth distance, based on results of a plurality of the calculations of the depth distance obtained by the processing being executed a plurality of times.
16. The computer-readable storage medium according to claim 15, wherein the depth distance calculation means determines the reference depth distance, based on the results of the plurality of calculations of the depth distance, only when all the results of the plurality of calculations of the depth distance are within a predetermined range.
17. The computer-readable storage medium according to claim 1, the image display program further causing the computer to function as:
- second position orientation calculation means for recognizing the predetermined shooting target in the piece of real world image data outputted from the other one of the real camera for a right eye and the real camera for a left eye which is different from the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, among the two pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the other one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other; and
- real camera selection means for selecting one of the real camera for a right eye and the real camera for a left eye in accordance with the position of the predetermined shooting target in at least one of the two pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye,
- wherein the virtual camera setting means, if the real camera selected by the real camera selection means is the one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, determines the position and the orientation of the right virtual camera, and the position and the orientation of the left virtual camera, by using the position orientation information indicating the relative positions and relative orientations of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target, which is calculated by the first position orientation calculation means, and if the real camera selected by the real camera selection means is the other one of the real camera for a right eye and the real camera for a left eye in the first position orientation calculation means, determines the position and the orientation of the right virtual camera, and the position and the orientation of the left virtual camera, by using the position orientation information indicating the relative positions and relative orientations of the other one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target, which is calculated by the second position orientation calculation means.
18. The computer-readable storage medium according to claim 17, wherein the real camera selection means
- switches the real camera to be selected, from the real camera for a left eye to the real camera for a right eye, in accordance with entrance of the position of the predetermined shooting target in the piece of real world image data outputted from the real camera for a left eye into a right end area of the piece of real world image data, and
- switches the real camera to be selected, from the real camera for a right eye to the real camera for a left eye, in accordance with entrance of the position of the predetermined shooting target in the piece of real world image data outputted from the real camera for a right eye into a left end area of the piece of real world image data.
19. The computer-readable storage medium according to claim 1, wherein the pieces of real world image data to be used by the first position orientation calculation means and the display control means are outputted in real time from the real camera for a right eye and the real camera for a left eye.
20. The computer-readable storage medium according to claim 1, wherein the computer is included in an information processing apparatus having the real camera for a right eye, the real camera for a left eye, and the stereoscopic display apparatus.
21. An image display apparatus which stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, the image display apparatus comprising:
- first position orientation calculation means for recognizing a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other;
- virtual camera setting means for determining the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means;
- right virtual space image generation means for generating a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera;
- left virtual space image generation means for generating a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera; and
- display control means for superimposing the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposing the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
22. An image display system which stereoscopically displays a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, the image display system comprising:
- a predetermined shooting target;
- first position orientation calculation means for recognizing the predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other;
- virtual camera setting means for determining the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated by the first position orientation calculation means;
- right virtual space image generation means for generating a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera;
- left virtual space image generation means for generating a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera; and
- display control means for superimposing the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposing the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
23. An image display method for stereoscopically displaying a real world image onto which a 3-dimensional virtual object is superimposed, on a screen of a stereoscopic display apparatus capable of providing a stereoscopic view, by using outputs from a real camera for a right eye and a real camera for a left eye, the image display method comprising:
- a first position orientation calculation step of recognizing a predetermined shooting target in a piece of real world image data outputted from one of the real camera for a right eye and the real camera for a left eye, among pieces of real world image data respectively outputted from the real camera for a right eye and the real camera for a left eye, and calculating position orientation information indicating relative positions and relative orientations of the one of the real camera for a right eye and the real camera for a left eye, and the predetermined shooting target with respect to each other;
- a virtual camera setting step of determining the position and the orientation of a right virtual camera for generating an image for a right eye, and the position and the orientation of a left virtual camera for generating an image for a left eye, in a predetermined virtual space, by using the position orientation information calculated in the first position orientation calculation step;
- a right virtual space image generation step of generating a right virtual space image indicating the predetermined virtual space as it is looked at from the right virtual camera;
- a left virtual space image generation step of generating a left virtual space image indicating the predetermined virtual space as it is looked at from the left virtual camera; and
- a display control step of superimposing the right virtual space image onto the piece of real world image data outputted from the real camera for a right eye, and superimposing the left virtual space image onto the piece of real world image data outputted from the real camera for a left eye, to output images for a stereoscopic view to the stereoscopic display apparatus.
Type: Application
Filed: Jun 13, 2011
Publication Date: Dec 15, 2011
Applicant: NINTENDO CO., LTD. (Kyoto)
Inventor: Yuichiro ITO (Kyoto)
Application Number: 13/158,824
International Classification: H04N 13/02 (20060101);